Supporting Information

Slow relaxation of magnetization in lanthanide-biradical complexes based on a functionalized nitronyl nitroxide biradical

Juan Sun,*a Qi Wu, a Jiao Lu, b Pei Jing, b Yeshuang Du, a Licun Li* b

aHubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China.
*E-mail: sunjuan@hbnu.edu.cn

bDepartment of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
*E-mail: llicun@nankai.edu.cn

Contents
Table S1. Selected bond lengths [Å] and angles [°] for 1-Gd ...3
Table S2. Selected bond lengths [Å] and angles [°] for 2-Tb ...5
Table S3. Selected bond lengths [Å] and angles [°] for 3-Dy ...7
Table S4. SHAPE analysis for the Ln coordination spheres..9
Table S5. Distances (Å) for the hydrogen bonds in all compounds.................................9

Fig. S1 Molecular structure of 1-Gd and coordination polyhedrons of the Gd(III) ions..10
Fig. S2 Molecular structure of 2-Tb and coordination polyhedrons of the Tb(III) ions..10
Fig. S3 Hydrogen bond-linked motifs in 1-Gd ..11
Fig. S4 Hydrogen bond-linked motifs in 2-Tb ...11
Fig. S5 Powder X-ray diffraction patterns of all complexes..11
Fig. S6 Field-dependent magnetization at 2.0 K for 1-Gd. The red line was simulated by the PHI program using the obtained magnetic parameters by the modeling of susceptibility data.

Fig. S7 M versus H plot at 2 K for complex 2-Tb.

Fig. S8 M versus H plot at 2 K for complex 3-Dy.

Fig. S9 Temperature dependence of the in-phase and out-of-phase components of the ac magnetic susceptibility in zero field with an oscillation 3 Oe for complex 2-Tb.

Fig. S10 Temperature-dependent ac signals under a zero dc field for 3-Dy.

Fig. S11 Frequency dependence of the χ' (top) and χ'' (bottom) components of the ac susceptibility, between 0-5000 Oe and between 10-10000 Hz, for 3-Dy at 2 K.

Fig. S12 The τ versus H plot for complex 3-Dy at 2.0 K under the applied dc field.
Table S1. Selected bond lengths [Å] and angles [°] for 1-Gd.

<table>
<thead>
<tr>
<th>Bond distances</th>
<th>Bond lengths [Å]</th>
<th>Bond angles [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gd(1)-O(2)</td>
<td>2.407(5)</td>
<td>O(2)-N(2)</td>
</tr>
<tr>
<td>Gd(1)-O(3)</td>
<td>2.409(6)</td>
<td>O(3)-N(3)</td>
</tr>
<tr>
<td>Gd(1)-O(10)</td>
<td>2.401(6)</td>
<td>O(1)-N(1)</td>
</tr>
<tr>
<td>Gd(1)-O(6)</td>
<td>2.401(6)</td>
<td>O(4)-N(4)</td>
</tr>
<tr>
<td>Gd(1)-O(5)</td>
<td>2.379(6)</td>
<td>Gd(3)-O(19)</td>
</tr>
<tr>
<td>Gd(1)-O(8)</td>
<td>2.341(6)</td>
<td>Gd(3)-O(20)</td>
</tr>
<tr>
<td>Gd(1)-O(7)</td>
<td>2.402(7)</td>
<td>Gd(3)-O(25)</td>
</tr>
<tr>
<td>Gd(1)-O(9)</td>
<td>2.356(7)</td>
<td>Gd(3)-O(22)</td>
</tr>
<tr>
<td>Gd(2)-O(17)</td>
<td>2.370(5)</td>
<td>Gd(3)-O(27)</td>
</tr>
<tr>
<td>Gd(2)-O(12)</td>
<td>2.417(5)</td>
<td>Gd(3)-O(26)</td>
</tr>
<tr>
<td>Gd(2)-O(13)</td>
<td>2.344(6)</td>
<td>Gd(3)-O(24)</td>
</tr>
<tr>
<td>Gd(2)-O(11)</td>
<td>2.379(6)</td>
<td>Gd(3)-O(23)</td>
</tr>
<tr>
<td>Gd(2)-O(14)</td>
<td>2.379(6)</td>
<td>O(19)-N(7)</td>
</tr>
<tr>
<td>Gd(2)-O(16)</td>
<td>2.416(6)</td>
<td>O(20)-N(8)</td>
</tr>
<tr>
<td>Gd(2)-O(15)</td>
<td>2.344(6)</td>
<td>O(18)-N(6)</td>
</tr>
<tr>
<td>Gd(2)-N(5)</td>
<td>2.622(7)</td>
<td>O(21)-N(9)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angles</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O(2)-Gd(1)-O(3)</td>
<td>80.9(2)</td>
<td>O(11)-Gd(2)-N(5)</td>
</tr>
<tr>
<td>O(10)-Gd(1)-O(2)</td>
<td>69.1(2)</td>
<td>O(14)-Gd(2)-O(12)</td>
</tr>
<tr>
<td>O(10)-Gd(1)-O(3)</td>
<td>75.3(2)</td>
<td>O(14)-Gd(2)-O(16)</td>
</tr>
<tr>
<td>O(6)-Gd(1)-O(2)</td>
<td>70.2(2)</td>
<td>O(14)-Gd(2)-N(5)</td>
</tr>
<tr>
<td>O(6)-Gd(1)-O(3)</td>
<td>114.9(2)</td>
<td>O(16)-Gd(2)-O(12)</td>
</tr>
<tr>
<td>O(6)-Gd(1)-O(10)</td>
<td>135.5(2)</td>
<td>O(16)-Gd(2)-N(5)</td>
</tr>
<tr>
<td>O(6)-Gd(1)-O(7)</td>
<td>74.7(2)</td>
<td>O(15)-Gd(2)-O(17)</td>
</tr>
<tr>
<td>O(5)-Gd(1)-O(2)</td>
<td>116.5(2)</td>
<td>O(15)-Gd(2)-O(12)</td>
</tr>
<tr>
<td>O(5)-Gd(1)-O(3)</td>
<td>70.6(2)</td>
<td>O(15)-Gd(2)-O(11)</td>
</tr>
<tr>
<td>O(5)-Gd(1)-O(10)</td>
<td>143.5(2)</td>
<td>O(15)-Gd(2)-O(14)</td>
</tr>
<tr>
<td>O(5)-Gd(1)-O(6)</td>
<td>72.7(2)</td>
<td>O(15)-Gd(2)-O(16)</td>
</tr>
<tr>
<td>O(5)-Gd(1)-O(7)</td>
<td>70.2(2)</td>
<td>O(15)-Gd(2)-N(5)</td>
</tr>
<tr>
<td>O(8)-Gd(1)-O(2)</td>
<td>85.9(2)</td>
<td>N(2)-O(2)-Gd(1)</td>
</tr>
<tr>
<td>O(8)-Gd(1)-O(3)</td>
<td>148.4(2)</td>
<td>N(3)-O(3)-Gd(1)</td>
</tr>
<tr>
<td>O(8)-Gd(1)-O(10)</td>
<td>73.2(2)</td>
<td>O(19)-Gd(3)-O(25)</td>
</tr>
<tr>
<td>O(8)-Gd(1)-O(6)</td>
<td>86.9(2)</td>
<td>O(20)-Gd(3)-O(19)</td>
</tr>
<tr>
<td>O(8)-Gd(1)-O(5)</td>
<td>140.5(2)</td>
<td>O(20)-Gd(3)-O(25)</td>
</tr>
<tr>
<td>O(8)-Gd(1)-O(7)</td>
<td>71.9(2)</td>
<td>O(20)-Gd(3)-O(27)</td>
</tr>
<tr>
<td>O(8)-Gd(1)-O(9)</td>
<td>85.1(2)</td>
<td>O(22)-Gd(3)-O(19)</td>
</tr>
<tr>
<td>O(7)-Gd(1)-O(2)</td>
<td>139.2(2)</td>
<td>O(22)-Gd(3)-O(20)</td>
</tr>
<tr>
<td>O(7)-Gd(1)-O(3)</td>
<td>133.9(2)</td>
<td>O(22)-Gd(3)-O(25)</td>
</tr>
<tr>
<td>O(7)-Gd(1)-O(10)</td>
<td>131.2(2)</td>
<td>O(22)-Gd(3)-O(27)</td>
</tr>
<tr>
<td>O(9)-Gd(1)-O(2)</td>
<td>140.4(2)</td>
<td>O(22)-Gd(3)-O(23)</td>
</tr>
<tr>
<td>O(9)-Gd(1)-O(3)</td>
<td>86.9(2)</td>
<td>O(27)-Gd(3)-O(19)</td>
</tr>
<tr>
<td>O(9)-Gd(1)-O(10)</td>
<td>71.4(2)</td>
<td>O(27)-Gd(3)-O(25)</td>
</tr>
<tr>
<td>O(9)-Gd(1)-O(6)</td>
<td>147.3(2)</td>
<td>O(26)-Gd(3)-O(19)</td>
</tr>
<tr>
<td>O(9)-Gd(1)-O(5)</td>
<td>94.1(2)</td>
<td>O(26)-Gd(3)-O(20)</td>
</tr>
<tr>
<td>O(9)-Gd(1)-O(7)</td>
<td>72.7(3)</td>
<td>O(26)-Gd(3)-O(25)</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°) (ESR)</td>
<td>Bond</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>O(17)-Gd(2)-O(12)</td>
<td>74.37(19)</td>
<td>O(26)-Gd(3)-O(22)</td>
</tr>
<tr>
<td>O(17)-Gd(2)-O(11)</td>
<td>142.5(2)</td>
<td>O(26)-Gd(3)-O(27)</td>
</tr>
<tr>
<td>O(17)-Gd(2)-O(14)</td>
<td>145.3(2)</td>
<td>O(26)-Gd(3)-O(23)</td>
</tr>
<tr>
<td>O(17)-Gd(2)-O(16)</td>
<td>73.6(2)</td>
<td>O(24)-Gd(3)-O(19)</td>
</tr>
<tr>
<td>O(17)-Gd(2)-N(5)</td>
<td>75.8(2)</td>
<td>O(24)-Gd(3)-O(20)</td>
</tr>
<tr>
<td>O(12)-Gd(2)-N(5)</td>
<td>74.0(2)</td>
<td>O(24)-Gd(3)-O(25)</td>
</tr>
<tr>
<td>O(13)-Gd(2)-O(17)</td>
<td>88.7(2)</td>
<td>O(24)-Gd(3)-O(22)</td>
</tr>
<tr>
<td>O(13)-Gd(2)-O(12)</td>
<td>143.1(2)</td>
<td>O(24)-Gd(3)-O(27)</td>
</tr>
<tr>
<td>O(13)-Gd(2)-O(11)</td>
<td>110.1(2)</td>
<td>O(24)-Gd(3)-O(26)</td>
</tr>
<tr>
<td>O(13)-Gd(2)-O(14)</td>
<td>71.6(2)</td>
<td>O(24)-Gd(3)-O(23)</td>
</tr>
<tr>
<td>O(13)-Gd(2)-O(16)</td>
<td>79.8(2)</td>
<td>O(23)-Gd(3)-O(19)</td>
</tr>
<tr>
<td>O(13)-Gd(2)-O(15)</td>
<td>144.7(2)</td>
<td>O(23)-Gd(3)-O(20)</td>
</tr>
<tr>
<td>O(13)-Gd(2)-N(5)</td>
<td>70.1(2)</td>
<td>O(23)-Gd(3)-O(25)</td>
</tr>
<tr>
<td>O(11)-Gd(2)-O(12)</td>
<td>71.3(2)</td>
<td>O(23)-Gd(3)-O(27)</td>
</tr>
<tr>
<td>O(11)-Gd(2)-O(14)</td>
<td>72.2(2)</td>
<td>N(7)-O(19)-Gd(3)</td>
</tr>
<tr>
<td>O(11)-Gd(2)-O(16)</td>
<td>139.9(2)</td>
<td>N(8)-O(20)-Gd(3)</td>
</tr>
</tbody>
</table>
Table S2. Selected bond lengths [Å] and angles [°] for 2-Tb.

<table>
<thead>
<tr>
<th>Bond distances</th>
<th>Tb(2)-O(11)</th>
<th>O(2)-N(2)</th>
<th>1.305(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tb(2)-O(16)</td>
<td>2.330(7)</td>
<td>O(3)-N(3)</td>
<td>1.358(10)</td>
</tr>
<tr>
<td>Tb(2)-N(5)</td>
<td>2.596(7)</td>
<td>N(4)-O(4)</td>
<td>1.284(10)</td>
</tr>
<tr>
<td>Tb(2)-O(15)</td>
<td>2.370(7)</td>
<td>O(1)-N(1)</td>
<td>1.294(11)</td>
</tr>
<tr>
<td>Tb(2)-O(12)</td>
<td>2.356(7)</td>
<td>Tb(3)-O(19)</td>
<td>2.404(7)</td>
</tr>
<tr>
<td>Tb(2)-O(14)</td>
<td>2.396(7)</td>
<td>Tb(3)-O(20)</td>
<td>2.356(7)</td>
</tr>
<tr>
<td>Tb(2)-O(17)</td>
<td>2.332(7)</td>
<td>Tb(3)-O(24)</td>
<td>2.340(7)</td>
</tr>
<tr>
<td>Tb(2)-O(13)</td>
<td>2.329(7)</td>
<td>Tb(3)-O(26)</td>
<td>2.411(7)</td>
</tr>
<tr>
<td>Tb(1)-O(2)</td>
<td>2.389(6)</td>
<td>Tb(3)-O(27)</td>
<td>2.311(7)</td>
</tr>
<tr>
<td>Tb(1)-O(10)</td>
<td>2.379(7)</td>
<td>Tb(3)-O(25)</td>
<td>2.393(8)</td>
</tr>
<tr>
<td>Tb(1)-O(3)</td>
<td>2.402(7)</td>
<td>Tb(3)-O(22)</td>
<td>2.364(7)</td>
</tr>
<tr>
<td>Tb(1)-O(6)</td>
<td>2.371(7)</td>
<td>Tb(3)-O(23)</td>
<td>2.366(7)</td>
</tr>
<tr>
<td>Tb(1)-O(8)</td>
<td>2.321(8)</td>
<td>O(19)-N(7)</td>
<td>1.288(10)</td>
</tr>
<tr>
<td>Tb(1)-O(7)</td>
<td>2.387(7)</td>
<td>O(20)-N(8)</td>
<td>1.304(10)</td>
</tr>
<tr>
<td>Tb(1)-O(9)</td>
<td>2.336(8)</td>
<td>N(6)-O(18)</td>
<td>1.268(10)</td>
</tr>
<tr>
<td>Tb(1)-O(5)</td>
<td>2.353(7)</td>
<td>O(21)-N(9)</td>
<td>1.277(12)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angles</th>
<th>O(11)-Tb(2)-N(5)</th>
<th>O(7)-Tb(1)-O(3)</th>
<th>134.2(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(16)-Tb(2)-O(11)</td>
<td>142.7(2)</td>
<td>O(9)-Tb(1)-O(2)</td>
<td>140.2(3)</td>
</tr>
<tr>
<td>O(16)-Tb(2)-N(5)</td>
<td>69.9(2)</td>
<td>O(9)-Tb(1)-O(10)</td>
<td>71.4(3)</td>
</tr>
<tr>
<td>O(16)-Tb(2)-O(15)</td>
<td>72.2(2)</td>
<td>O(9)-Tb(1)-O(3)</td>
<td>88.2(3)</td>
</tr>
<tr>
<td>O(16)-Tb(2)-O(12)</td>
<td>109.1(3)</td>
<td>O(9)-Tb(1)-O(6)</td>
<td>147.0(3)</td>
</tr>
<tr>
<td>O(16)-Tb(2)-O(14)</td>
<td>79.4(3)</td>
<td>O(9)-Tb(1)-O(7)</td>
<td>72.3(3)</td>
</tr>
<tr>
<td>O(16)-Tb(2)-O(17)</td>
<td>88.6(3)</td>
<td>O(9)-Tb(1)-O(5)</td>
<td>94.6(3)</td>
</tr>
<tr>
<td>O(15)-Tb(2)-O(11)</td>
<td>137.2(2)</td>
<td>O(5)-Tb(1)-O(2)</td>
<td>116.5(2)</td>
</tr>
<tr>
<td>O(15)-Tb(2)-N(5)</td>
<td>121.1(3)</td>
<td>O(5)-Tb(1)-O(10)</td>
<td>143.5(3)</td>
</tr>
<tr>
<td>O(15)-Tb(2)-O(14)</td>
<td>74.4(3)</td>
<td>O(5)-Tb(1)-O(3)</td>
<td>70.5(2)</td>
</tr>
<tr>
<td>O(12)-Tb(2)-O(11)</td>
<td>72.4(2)</td>
<td>O(5)-Tb(1)-O(6)</td>
<td>73.2(3)</td>
</tr>
<tr>
<td>O(12)-Tb(2)-N(5)</td>
<td>80.5(2)</td>
<td>O(5)-Tb(1)-O(7)</td>
<td>70.4(3)</td>
</tr>
<tr>
<td>O(12)-Tb(2)-O(15)</td>
<td>71.5(3)</td>
<td>N(2)-O(2)-Tb(1)</td>
<td>139.5(5)</td>
</tr>
<tr>
<td>O(12)-Tb(2)-O(14)</td>
<td>139.8(2)</td>
<td>N(3)-O(3)-Tb(1)</td>
<td>140.2(6)</td>
</tr>
<tr>
<td>O(14)-Tb(2)-O(11)</td>
<td>124.6(2)</td>
<td>O(19)-Tb(3)-O(26)</td>
<td>70.2(2)</td>
</tr>
<tr>
<td>O(14)-Tb(2)-N(5)</td>
<td>136.7(2)</td>
<td>O(20)-Tb(3)-O(19)</td>
<td>86.9(2)</td>
</tr>
<tr>
<td>O(17)-Tb(2)-O(11)</td>
<td>74.3(2)</td>
<td>O(20)-Tb(3)-O(26)</td>
<td>70.2(2)</td>
</tr>
<tr>
<td>O(17)-Tb(2)-N(5)</td>
<td>75.9(2)</td>
<td>O(20)-Tb(3)-O(19)</td>
<td>138.6(3)</td>
</tr>
<tr>
<td>O(17)-Tb(2)-O(15)</td>
<td>145.1(3)</td>
<td>O(20)-Tb(3)-O(22)</td>
<td>116.2(3)</td>
</tr>
<tr>
<td>O(17)-Tb(2)-O(12)</td>
<td>143.4(2)</td>
<td>O(20)-Tb(3)-O(23)</td>
<td>71.9(3)</td>
</tr>
<tr>
<td>O(17)-Tb(2)-O(14)</td>
<td>73.6(2)</td>
<td>O(24)-Tb(3)-O(19)</td>
<td>78.0(2)</td>
</tr>
<tr>
<td>O(13)-Tb(2)-O(11)</td>
<td>72.1(2)</td>
<td>O(24)-Tb(3)-O(20)</td>
<td>143.2(2)</td>
</tr>
<tr>
<td>O(13)-Tb(2)-O(16)</td>
<td>145.0(2)</td>
<td>O(24)-Tb(3)-O(26)</td>
<td>73.1(3)</td>
</tr>
<tr>
<td>O(13)-Tb(2)-N(5)</td>
<td>144.7(2)</td>
<td>O(24)-Tb(3)-O(25)</td>
<td>71.4(3)</td>
</tr>
<tr>
<td>O(13)-Tb(2)-O(15)</td>
<td>80.0(3)</td>
<td>O(24)-Tb(3)-O(22)</td>
<td>90.8(3)</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
<td>Bond</td>
<td>Distance (Å)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>O(13)-Tb(2)-O(12)</td>
<td>80.8(3)</td>
<td>O(24)-Tb(3)-O(23)</td>
<td>143.8(3)</td>
</tr>
<tr>
<td>O(13)-Tb(2)-O(14)</td>
<td>72.9(2)</td>
<td>O(27)-Tb(3)-O(19)</td>
<td>142.2(3)</td>
</tr>
<tr>
<td>O(13)-Tb(2)-O(17)</td>
<td>103.2(3)</td>
<td>O(27)-Tb(3)-O(20)</td>
<td>85.8(3)</td>
</tr>
<tr>
<td>O(2)-Tb(1)-O(3)</td>
<td>80.4(2)</td>
<td>O(27)-Tb(3)-O(24)</td>
<td>86.0(3)</td>
</tr>
<tr>
<td>O(2)-Tb(1)-O(2)</td>
<td>68.9(2)</td>
<td>O(27)-Tb(3)-O(26)</td>
<td>72.5(3)</td>
</tr>
<tr>
<td>O(10)-Tb(1)-O(3)</td>
<td>75.3(3)</td>
<td>O(27)-Tb(3)-O(25)</td>
<td>72.5(3)</td>
</tr>
<tr>
<td>O(10)-Tb(1)-O(7)</td>
<td>131.2(3)</td>
<td>O(27)-Tb(3)-O(22)</td>
<td>143.3(3)</td>
</tr>
<tr>
<td>O(6)-Tb(1)-O(2)</td>
<td>70.2(2)</td>
<td>O(27)-Tb(3)-O(23)</td>
<td>89.5(3)</td>
</tr>
<tr>
<td>O(6)-Tb(1)-O(10)</td>
<td>135.1(3)</td>
<td>O(25)-Tb(3)-O(19)</td>
<td>131.3(3)</td>
</tr>
<tr>
<td>O(6)-Tb(1)-O(3)</td>
<td>114.8(3)</td>
<td>O(25)-Tb(3)-O(26)</td>
<td>131.0(3)</td>
</tr>
<tr>
<td>O(6)-Tb(1)-O(7)</td>
<td>74.7(3)</td>
<td>O(22)-Tb(3)-O(19)</td>
<td>71.6(2)</td>
</tr>
<tr>
<td>O(8)-Tb(1)-O(2)</td>
<td>86.0(2)</td>
<td>O(22)-Tb(3)-O(26)</td>
<td>140.8(2)</td>
</tr>
<tr>
<td>O(8)-Tb(1)-O(10)</td>
<td>73.4(3)</td>
<td>O(22)-Tb(3)-O(25)</td>
<td>71.8(3)</td>
</tr>
<tr>
<td>O(8)-Tb(1)-O(3)</td>
<td>148.6(3)</td>
<td>O(22)-Tb(3)-O(23)</td>
<td>72.1(3)</td>
</tr>
<tr>
<td>O(8)-Tb(1)-O(6)</td>
<td>86.2(3)</td>
<td>O(23)-Tb(3)-O(19)</td>
<td>123.0(3)</td>
</tr>
<tr>
<td>O(8)-Tb(1)-O(7)</td>
<td>71.7(3)</td>
<td>O(23)-Tb(3)-O(26)</td>
<td>138.9(3)</td>
</tr>
<tr>
<td>O(8)-Tb(1)-O(9)</td>
<td>84.5(3)</td>
<td>O(23)-Tb(3)-O(25)</td>
<td>73.0(3)</td>
</tr>
<tr>
<td>O(8)-Tb(1)-O(5)</td>
<td>140.4(3)</td>
<td>N(7)-O(19)-Tb(3)</td>
<td>139.0(5)</td>
</tr>
<tr>
<td>O(7)-Tb(1)-O(2)</td>
<td>139.4(3)</td>
<td>N(8)-O(20)-Tb(3)</td>
<td>139.3(6)</td>
</tr>
</tbody>
</table>
Table S3. Selected bond lengths [Å] and angles [°] for 3-Dy.

<table>
<thead>
<tr>
<th>Bond distances</th>
<th>2.389(9)</th>
<th>O(2)-N(2)</th>
<th>1.302(15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dy(2)-O(11)</td>
<td>2.325(11)</td>
<td>O(3)-N(3)</td>
<td>1.316(16)</td>
</tr>
<tr>
<td>Dy(2)-N(5)</td>
<td>2.602(12)</td>
<td>N(4)-O(4)</td>
<td>1.265(16)</td>
</tr>
<tr>
<td>Dy(2)-O(15)</td>
<td>2.353(10)</td>
<td>O(1)-N(1)</td>
<td>1.290(17)</td>
</tr>
<tr>
<td>Dy(2)-O(12)</td>
<td>2.333(11)</td>
<td>Dy(3)-O(19)</td>
<td>2.374(10)</td>
</tr>
<tr>
<td>Dy(2)-O(14)</td>
<td>2.368(11)</td>
<td>Dy(3)-O(20)</td>
<td>2.352(11)</td>
</tr>
<tr>
<td>Dy(2)-O(17)</td>
<td>2.328(10)</td>
<td>Dy(3)-O(24)</td>
<td>2.335(11)</td>
</tr>
<tr>
<td>Dy(2)-O(13)</td>
<td>2.327(12)</td>
<td>Dy(3)-O(26)</td>
<td>2.398(11)</td>
</tr>
<tr>
<td>Dy(1)-O(2)</td>
<td>2.389(10)</td>
<td>Dy(3)-O(27)</td>
<td>2.297(13)</td>
</tr>
<tr>
<td>Dy(1)-O(10)</td>
<td>2.369(11)</td>
<td>Dy(3)-O(25)</td>
<td>2.394(12)</td>
</tr>
<tr>
<td>Dy(1)-O(3)</td>
<td>2.405(12)</td>
<td>Dy(3)-O(22)</td>
<td>2.334(12)</td>
</tr>
<tr>
<td>Dy(1)-O(6)</td>
<td>2.358(12)</td>
<td>Dy(3)-O(23)</td>
<td>2.366(11)</td>
</tr>
<tr>
<td>Dy(1)-O(8)</td>
<td>2.329(14)</td>
<td>O(19)-N(7)</td>
<td>1.312(15)</td>
</tr>
<tr>
<td>Dy(1)-O(7)</td>
<td>2.383(12)</td>
<td>O(20)-N(8)</td>
<td>1.295(15)</td>
</tr>
<tr>
<td>Dy(1)-O(9)</td>
<td>2.319(13)</td>
<td>N(6)-O(18)</td>
<td>1.264(16)</td>
</tr>
<tr>
<td>Dy(1)-O(5)</td>
<td>2.333(12)</td>
<td>O(21)-N(9)</td>
<td>1.289(18)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angles</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O(11)-Dy(2)-N(5)</td>
<td>73.3(4)</td>
<td>O(7)-Dy(1)-O(3)</td>
<td>134.6(4)</td>
</tr>
<tr>
<td>O(16)-Dy(2)-O(11)</td>
<td>143.0(4)</td>
<td>O(9)-Dy(1)-O(2)</td>
<td>140.4(4)</td>
</tr>
<tr>
<td>O(16)-Dy(2)-N(5)</td>
<td>70.6(4)</td>
<td>O(9)-Dy(1)-O(10)</td>
<td>72.3(4)</td>
</tr>
<tr>
<td>O(16)-Dy(2)-O(15)</td>
<td>72.1(4)</td>
<td>O(9)-Dy(1)-O(3)</td>
<td>86.8(4)</td>
</tr>
<tr>
<td>O(16)-Dy(2)-O(12)</td>
<td>108.8(4)</td>
<td>O(9)-Dy(1)-O(6)</td>
<td>146.6(4)</td>
</tr>
<tr>
<td>O(16)-Dy(2)-O(14)</td>
<td>79.4(4)</td>
<td>O(9)-Dy(1)-O(7)</td>
<td>73.0(5)</td>
</tr>
<tr>
<td>O(16)-Dy(2)-O(17)</td>
<td>88.8(4)</td>
<td>O(9)-Dy(1)-O(5)</td>
<td>93.6(5)</td>
</tr>
<tr>
<td>O(16)-Dy(2)-O(13)</td>
<td>144.8(4)</td>
<td>O(5)-Dy(1)-O(2)</td>
<td>116.9(4)</td>
</tr>
<tr>
<td>O(15)-Dy(2)-O(11)</td>
<td>137.2(4)</td>
<td>O(5)-Dy(1)-O(10)</td>
<td>143.6(4)</td>
</tr>
<tr>
<td>O(15)-Dy(2)-N(5)</td>
<td>122.0(4)</td>
<td>O(5)-Dy(1)-O(3)</td>
<td>70.7(4)</td>
</tr>
<tr>
<td>O(15)-Dy(2)-O(14)</td>
<td>74.0(4)</td>
<td>O(5)-Dy(1)-O(6)</td>
<td>72.5(5)</td>
</tr>
<tr>
<td>O(12)-Dy(2)-O(11)</td>
<td>72.5(4)</td>
<td>O(5)-Dy(1)-O(7)</td>
<td>70.6(4)</td>
</tr>
<tr>
<td>O(12)-Dy(2)-N(5)</td>
<td>80.1(4)</td>
<td>N(2)-O(2)-Dy(1)</td>
<td>140.8(9)</td>
</tr>
<tr>
<td>O(12)-Dy(2)-O(15)</td>
<td>71.7(4)</td>
<td>N(3)-O(3)-Dy(1)</td>
<td>139.0(9)</td>
</tr>
<tr>
<td>O(12)-Dy(2)-O(14)</td>
<td>139.8(4)</td>
<td>O(19)-Dy(3)-O(26)</td>
<td>70.4(4)</td>
</tr>
<tr>
<td>O(14)-Dy(2)-O(11)</td>
<td>124.5(4)</td>
<td>O(19)-Dy(3)-O(25)</td>
<td>132.1(4)</td>
</tr>
<tr>
<td>O(14)-Dy(2)-N(5)</td>
<td>137.2(4)</td>
<td>O(20)-Dy(3)-O(19)</td>
<td>86.2(4)</td>
</tr>
<tr>
<td>O(17)-Dy(2)-O(11)</td>
<td>74.5(4)</td>
<td>O(20)-Dy(3)-O(26)</td>
<td>70.4(4)</td>
</tr>
<tr>
<td>O(17)-Dy(2)-N(5)</td>
<td>76.2(4)</td>
<td>O(20)-Dy(3)-O(25)</td>
<td>138.3(4)</td>
</tr>
<tr>
<td>O(17)-Dy(2)-O(15)</td>
<td>144.5(4)</td>
<td>O(20)-Dy(3)-O(23)</td>
<td>72.2(4)</td>
</tr>
<tr>
<td>O(17)-Dy(2)-O(12)</td>
<td>143.7(4)</td>
<td>O(24)-Dy(3)-O(19)</td>
<td>78.3(4)</td>
</tr>
<tr>
<td>O(17)-Dy(2)-O(14)</td>
<td>73.2(4)</td>
<td>O(24)-Dy(3)-O(20)</td>
<td>143.1(4)</td>
</tr>
<tr>
<td>O(17)-Dy(2)-O(13)</td>
<td>103.2(4)</td>
<td>O(24)-Dy(3)-O(26)</td>
<td>72.9(4)</td>
</tr>
<tr>
<td>O(13)-Dy(2)-O(11)</td>
<td>72.1(4)</td>
<td>O(24)-Dy(3)-O(25)</td>
<td>71.9(4)</td>
</tr>
<tr>
<td>O(13)-Dy(2)-N(5)</td>
<td>144.1(4)</td>
<td>O(24)-Dy(3)-O(23)</td>
<td>143.5(4)</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (°)</td>
<td>Bond</td>
<td>Distance (°)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>O(13)-Dy(2)-O(15)</td>
<td>79.5(4)</td>
<td>O(26)-Dy(3)-O(25)</td>
<td>130.9(4)</td>
</tr>
<tr>
<td>O(13)-Dy(2)-O(12)</td>
<td>80.8(4)</td>
<td>O(27)-Dy(3)-O(19)</td>
<td>142.7(4)</td>
</tr>
<tr>
<td>O(13)-Dy(2)-O(14)</td>
<td>72.9(4)</td>
<td>O(27)-Dy(3)-O(20)</td>
<td>86.7(4)</td>
</tr>
<tr>
<td>O(2)-Dy(1)-O(3)</td>
<td>80.9(4)</td>
<td>O(27)-Dy(3)-O(24)</td>
<td>85.8(4)</td>
</tr>
<tr>
<td>O(10)-Dy(1)-O(2)</td>
<td>68.2(4)</td>
<td>O(27)-Dy(3)-O(26)</td>
<td>72.8(4)</td>
</tr>
<tr>
<td>O(10)-Dy(1)-O(3)</td>
<td>75.1(4)</td>
<td>O(27)-Dy(3)-O(25)</td>
<td>71.5(5)</td>
</tr>
<tr>
<td>O(10)-Dy(1)-O(7)</td>
<td>131.6(4)</td>
<td>O(27)-Dy(3)-O(22)</td>
<td>143.0(4)</td>
</tr>
<tr>
<td>O(6)-Dy(1)-O(2)</td>
<td>71.0(4)</td>
<td>O(27)-Dy(3)-O(23)</td>
<td>88.6(4)</td>
</tr>
<tr>
<td>O(6)-Dy(1)-O(10)</td>
<td>135.5(4)</td>
<td>O(22)-Dy(3)-O(19)</td>
<td>71.3(4)</td>
</tr>
<tr>
<td>O(6)-Dy(1)-O(3)</td>
<td>115.2(4)</td>
<td>O(22)-Dy(3)-O(20)</td>
<td>115.8(4)</td>
</tr>
<tr>
<td>O(6)-Dy(1)-O(7)</td>
<td>73.8(4)</td>
<td>O(22)-Dy(3)-O(24)</td>
<td>90.7(4)</td>
</tr>
<tr>
<td>O(8)-Dy(1)-O(2)</td>
<td>85.4(4)</td>
<td>O(22)-Dy(3)-O(26)</td>
<td>140.6(4)</td>
</tr>
<tr>
<td>O(8)-Dy(1)-O(10)</td>
<td>73.6(4)</td>
<td>O(22)-Dy(3)-O(25)</td>
<td>72.4(4)</td>
</tr>
<tr>
<td>O(8)-Dy(1)-O(3)</td>
<td>148.6(4)</td>
<td>O(22)-Dy(3)-O(23)</td>
<td>72.8(4)</td>
</tr>
<tr>
<td>O(8)-Dy(1)-O(6)</td>
<td>86.3(4)</td>
<td>O(23)-Dy(3)-O(19)</td>
<td>123.5(4)</td>
</tr>
<tr>
<td>O(8)-Dy(1)-O(7)</td>
<td>71.4(4)</td>
<td>O(23)-Dy(3)-O(26)</td>
<td>138.8(4)</td>
</tr>
<tr>
<td>O(8)-Dy(1)-O(9)</td>
<td>86.0(5)</td>
<td>O(23)-Dy(3)-O(25)</td>
<td>72.1(4)</td>
</tr>
<tr>
<td>O(8)-Dy(1)-O(5)</td>
<td>140.3(4)</td>
<td>N(7)-O(19)-Dy(3)</td>
<td>139.4(9)</td>
</tr>
<tr>
<td>O(7)-Dy(1)-O(2)</td>
<td>138.8(4)</td>
<td>N(8)-O(20)-Dy(3)</td>
<td>139.7(9)</td>
</tr>
</tbody>
</table>
Table S4. SHAPE analysis for the Ln coordination spheres.

<table>
<thead>
<tr>
<th>Compound</th>
<th>SAPR-8</th>
<th>TDD-8</th>
<th>JBTPR-8</th>
<th>BTPR-8</th>
<th>JSD-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Gd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd1</td>
<td>2.623</td>
<td>1.742</td>
<td>1.767</td>
<td>0.992</td>
<td>4.122</td>
</tr>
<tr>
<td>Gd2</td>
<td>0.984</td>
<td>1.270</td>
<td>2.117</td>
<td>1.490</td>
<td>3.248</td>
</tr>
<tr>
<td>Gd3</td>
<td>2.632</td>
<td>1.614</td>
<td>1.724</td>
<td>0.922</td>
<td>3.593</td>
</tr>
<tr>
<td>2-Tb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb1</td>
<td>2.706</td>
<td>1.775</td>
<td>1.782</td>
<td>1.009</td>
<td>4.140</td>
</tr>
<tr>
<td>Tb2</td>
<td>0.992</td>
<td>1.190</td>
<td>2.104</td>
<td>1.491</td>
<td>3.112</td>
</tr>
<tr>
<td>Tb3</td>
<td>2.579</td>
<td>1.615</td>
<td>1.671</td>
<td>0.909</td>
<td>3.513</td>
</tr>
<tr>
<td>3-Dy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy1</td>
<td>2.526</td>
<td>1.738</td>
<td>1.727</td>
<td>0.953</td>
<td>4.067</td>
</tr>
<tr>
<td>Dy2</td>
<td>1.008</td>
<td>1.167</td>
<td>2.158</td>
<td>1.500</td>
<td>3.060</td>
</tr>
<tr>
<td>Dy3</td>
<td>2.549</td>
<td>1.531</td>
<td>1.612</td>
<td>0.881</td>
<td>3.393</td>
</tr>
</tbody>
</table>

SAPR-8: Square antiprism; TDD-8: Triangular dodecahedron; JBTPR-8: Biaugmented trigonal prism J50; BTPR-8: Biaugmented trigonal prism; JSD-8: Snub diphenoïd J84.

Table S5. Distances (Å) for the hydrogen bonds in all compounds.

<table>
<thead>
<tr>
<th>D–H⋯A</th>
<th>Compound</th>
<th>d(D–H)</th>
<th>d(H⋯A)</th>
<th>d(D⋯A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O17-H17A⋯O1</td>
<td>1-Gd</td>
<td>0.850</td>
<td>2.368</td>
<td>2.795</td>
</tr>
<tr>
<td>O17-H17A⋯O1</td>
<td>2-Tb</td>
<td>0.866</td>
<td>2.093</td>
<td>2.798</td>
</tr>
<tr>
<td>O17-H17A⋯O1</td>
<td>3-Dy</td>
<td>0.869</td>
<td>2.107</td>
<td>2.835</td>
</tr>
</tbody>
</table>
Fig. S1 Molecular structure of 1-Gd and coordination polyhedrons of the Gd(III) ions (H and F atoms are omitted for clarity).

Fig. S2 Molecular structure of 2-Tb and coordination polyhedrons of the Tb(III) ions (H and F atoms are omitted for clarity).
Fig. S3 Hydrogen bond-linked motifs in 1-Gd (partial H and all F atoms are omitted for clarity).

Fig. S4 Hydrogen bond-linked motifs in 2-Tb (partial H and all F atoms are omitted for clarity).

Fig. S5 Powder X-ray diffraction patterns of all complexes.
Fig. S6 Field-dependent magnetization at 2.0 K for 1-Gd. The red line was simulated by the PHI program using the obtained magnetic parameters by the modeling of susceptibility data.

Fig. S7 M versus H plot at 2 K for complex 2-Tb.

Fig. S8 M versus H plot at 2 K for complex 3-Dy.
Fig. S9 Temperature dependence of the in-phase and out-of-phase components of the ac magnetic susceptibility in zero field with an oscillation 3 Oe for complex 2-Tb.

Fig. S10 Temperature-dependent ac signals under a zero dc field for 3-Dy.
Fig. S11 Frequency dependence of the χ' (top) and χ'' (bottom) components of the ac susceptibility, between 0 and 5000 Oe and between 10 and 10000 Hz, for 3-Dy at 2 K.

Fig. S12 The τ versus H plot for complex 3-Dy at 2.0 K under the applied dc field.