Comparative bindings of lactones, lactide, and cyclic carbonates: experimental insights in the coordination step of polymerization

 Phongnarin Chumsaeng, ${ }^{\text {a }}$ and Khamphee Phomphrai* ${ }^{\text {a,b }}$

a Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, Rayong 21210, Thailand. Fax: +(66)-33-014-445; Tel: $+(66)-33-014-151$; Email: khamphee.p@vistec.ac.th.
${ }^{\mathrm{b}}$ Research Network of NANOTEC-VISTEC on Nanotechnology for Energy, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210 Thailand

Table of Contents

1. General information S2
2. Synthesis and characterization. S3
3. X-ray crystallography S7
4. NMR and in situ IR spectroscopy S10
5. Coordinating power study S38
6. DFT calculation S43

1. General information

All operations were carried out under dry nitrogen atmosphere and used glovebox technique. Dichloromethane, n-hexane, and toluene were dried using a MB SPS 5 Mbraun solvent purification system packed with activated alumina and activated copper. Chemicals were purchased from commercial suppliers and used as received. L-Lactide was sublimed three times under vacuum before use. ε-Caprolactone (CL), δ-valerolactone (DVL), γ-butyrolactone (GBL), ethylene carbonate (EC), propylene carbonate (PC), propylene oxide (PO) and cyclohexene oxide (CHO) were dried over calcium hydride and distilled prior to use and stored in a glovebox at $-30^{\circ} \mathrm{C}$. Benzene- d_{6} was dried over $4 \AA$ molecular sieves and stored under N_{2}.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, and ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded on a Bruker Ascend ${ }^{\mathrm{TM}} 600$ and referenced to protio impurities of commercial $\mathrm{C}_{6} \mathrm{D}_{6}$ (residual internal $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}, \delta=7.16 \mathrm{ppm}$) as internal standards. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts were referenced to protio impurities of deuterated solvent in the proton spectrum using the unified scale. X-ray crystallographic data were collected at $100,110,124,127,130,140 \mathrm{~K}$ on a Bruker D8 venture using Photon II detector and $\mathrm{I} \mu \mathrm{S} 3.0$ Microfocus source, Mo K_{α} radiation $(\lambda=0.71073 \AA$). The frames were integrated with the SAINT software, and intensity data were corrected based on the intensities symmetry-related reflections measured at different angular setting (SADABS). The space group was determined with the $X P R E P$ software. The crystal structure was solved by intrinsic phasing method ($X T$ program $)^{1}$ and refined by full-matrix least squares against F^{2} using the program XL based on ShelXle engine. ${ }^{2}$ The crystallographic images were processed by Ortep3 program. ${ }^{3}$ Mass spectrometry was obtained by compact QTOF Bruker mass spectrometer. High resolution mass spectra were carried out using QtofControl analysis, atmospheric pressure compressed interface (APCI) mode. IR spectra were obtained with a ReactIR ${ }^{\mathrm{TM}} 15$, equipped with a 6.3 mm AgX DiComp probe.

2. Synthesis and characterization

1:1 Reaction of $\mathbf{B}\left(\mathbf{C}_{6} \mathbf{F}_{5}\right)_{3}$ and $\mathbf{C L}$. ε-Caprolactone ($4.6 \mathrm{mg}, 0.040 \mathrm{mmol}$) and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ ($21 \mathrm{mg}, 0.040 \mathrm{mmol}$) were mixed in $\mathrm{C}_{6} \mathrm{D}_{6}$ in J-young NMR tube at room temperature. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 3{ }^{\circ} \mathrm{C}$): $\delta 2.97\left(\mathrm{t}, 2 \mathrm{H}, J=4.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 1.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}\right), 0.73(\mathrm{~m}$, $\left.2 \mathrm{H}, J=5.3 \mathrm{~Hz}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.53\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right): \delta$ $189.06(C=\mathrm{O}), 149.17,147.57,141.34,139.68,138.39,136.77\left(\mathrm{~m}, C_{6} \mathrm{~F}_{5}\right), 75.76\left(\mathrm{OCH}_{2}\right), 33.79$ $\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}\right), 27.36,26.87\left(\mathrm{CH}_{2}\right), 20.61\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}_{2}\right) .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(565 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30\right.$ $\left.{ }^{\circ} \mathrm{C}\right): \delta-134.76(\mathrm{~d}, J=22.8 \mathrm{~Hz}, o-\mathrm{F}),-156.92(\mathrm{t}, J=19.8 \mathrm{~Hz}, p-\mathrm{F}),-163.99(\mathrm{t}, J=18.7 \mathrm{~Hz}, m-$ F).

Crystal data for $\mathbf{B}\left(\mathbf{C}_{6} \mathbf{F}_{5}\right)_{\mathbf{3}} \cdot \mathbf{C L}$. The 1:1 mixture of $\mathbf{1}$ and CL was recrystallized by slow evaporation of toluene solution at $-30^{\circ} \mathrm{C}$ for several days to give colorless crystals. $\mathrm{C}_{24} \mathrm{H}_{10} \mathrm{BF}_{15} \mathrm{O}_{2}, M_{\mathrm{r}}=626.13$, triclinic, space group $\mathrm{P}-1, \mathrm{a}=10.3019(6) \AA, \mathrm{b}=11.4706(7) \AA, \mathrm{c}$ $=11.9410(7) \AA, \alpha=92.148(2)^{\circ}, \beta=103.691(2)^{\circ}, \gamma=107.901(2)^{\circ}, \mathrm{V}=1295.29(13) \AA^{3}, Z=2$, $\lambda=0.71073 \AA, \mu=0.174 \mathrm{~mm}^{-1}, \mathrm{~T}=110 \mathrm{~K}, 59809$ reflections measured, 7961 independent reflections, $\mathrm{R}_{\text {int }}=0.0306, \mathrm{R}_{1}=0.0381$ (obs. data), $\mathrm{wR}\left(\mathrm{F}^{2}\right)=0.1046$ (obs. data), $\mathrm{GOF}=1.032$, CCDC 1995497.

1:1 Reaction of $\mathbf{B}\left(\mathbf{C}_{6} \mathbf{F}_{5}\right)_{3}$ and DVL. δ-Valerolactone ($4.0 \mathrm{mg}, 0.040 \mathrm{mmol}$) and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(21 \mathrm{mg}, 0.040 \mathrm{mmol})$ were mixed in $\mathrm{C}_{6} \mathrm{D}_{6}$ in J-young NMR tube at room temperature. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 3{ }^{\circ} \mathrm{C}$): $\delta 2.94\left(\mathrm{t}, 2 \mathrm{H}, J=5.7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right.$), $1.62(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}$, $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}\right), 0.49-0.25\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{\{ } \mathrm{H}\right\}$ NMR ($150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}$): $\delta 149.18,147.58$, 141.34, 139.69, 138.41, $136.77\left(\mathrm{~m}, C_{6} \mathrm{~F}_{5}\right), 75.23\left(\mathrm{OCH}_{2}\right), 28.61\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}\right), 20.34,16.09\left(\mathrm{CH}_{2}\right)$ ($C=O$ is not seen at room temperature due to equilibrium). ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(565 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30\right.$ $\left.{ }^{\circ} \mathrm{C}\right): \delta-135.07(\mathrm{~d}, J=23.0 \mathrm{~Hz}, o-\mathrm{F}),-156.95(\mathrm{t}, J=20.8 \mathrm{~Hz}, p-\mathrm{F}),-163.96(\mathrm{t}, J=22.3 \mathrm{~Hz}, m-$ F).

Crystal data for $\mathbf{B}\left(\mathbf{C}_{6} \mathbf{F}_{5}\right)_{3} \cdot \mathbf{D V L}$. The $1: 1$ mixture of $\mathbf{1}$ and DVL was recrystallized by layering hexanes on top of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution for several days at $-30^{\circ} \mathrm{C}$ to give colorless crystals. $\mathrm{C}_{23} \mathrm{H}_{8} \mathrm{BF}_{15} \mathrm{O}_{2}, M_{\mathrm{r}}=612.10$, monoclinic, space group $\mathrm{C} 12 / \mathrm{c} 1$, $\mathrm{a}=29.422(4) \AA, \mathrm{b}=$ $10.4028(13) \AA, c=15.1204(19) \AA, \alpha=90^{\circ}, \beta=107.219(4)^{\circ}, \gamma=90^{\circ}, V=4420.5(10) \AA^{3}, Z=$ $8, \lambda=0.71073 \AA, \mu=0.202 \mathrm{~mm}^{-1}, \mathrm{~T}=130$.(2) $\mathrm{K}, 78313$ reflections measured, 4222 independent reflections, $\mathrm{R}_{\text {int }}=0.0347, \mathrm{R}_{1}=0.0323$ (obs. data), $w R\left(\mathrm{~F}^{2}\right)=0.0777$ (obs. data), GOF $=1.083$, CCDC 1995504.

1:1 Reaction of $\mathbf{B}\left(\mathbf{C}_{6} \mathbf{F}_{5}\right)_{3}$ and GBL. γ-Butyrolactone ($3.4 \mathrm{mg}, 0.040 \mathrm{mmol}$) and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(21 \mathrm{mg}, 0.040 \mathrm{mmol})$ were mixed in $\mathrm{C}_{6} \mathrm{D}_{6}$ in J-young NMR tube at room temperature. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}$): $\delta 3.05\left(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{OCH}_{2}\right.$), $1.59(\mathrm{t}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}$, $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}\right), 0.58\left(\mathrm{~m}, 2 \mathrm{H}, J=7.9,7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30{ }^{\circ} \mathrm{C}$): δ $190.64(\mathrm{C}=\mathrm{O}), 149.25,147.66,141.57,139.91,138.45,136.83\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{~F}_{5}\right), 77.85\left(\mathrm{OCH}_{2}\right), 30.67$ $\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}\right), 20.08\left(\mathrm{CH}_{2}\right) .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(565 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right): \delta-134.96(\mathrm{~d}, J=23.1 \mathrm{~Hz}, o-$ F), $-156.26(\mathrm{t}, J=21.0 \mathrm{~Hz}, p-\mathrm{F}),-163.68(\mathrm{t}, J=22.5 \mathrm{~Hz}, m-\mathrm{F})$.

Crystal data for $\mathbf{B}\left(\mathbf{C}_{6} \mathbf{F}_{5}\right)_{3} \cdot \mathbf{G B L}$. The $1: 1$ mixture of $\mathbf{1}$ and GBL was recrystallized by slow evaporation of benzene solution at room temperature for several days to give colorless crystals. $\mathrm{C}_{22} \mathrm{H}_{6} \mathrm{BF}_{15} \mathrm{O}_{2}, M_{\mathrm{r}}=598.08$, orthorhombic, space group P c a $2_{1}, \mathrm{a}=14.8191(9) \AA, \mathrm{b}$ $=13.9430(10) \AA, \mathrm{c}=20.8344(15) \AA, \alpha=90^{\circ}, \beta=90^{\circ}, \gamma=90^{\circ}, V=4304.9(5) \AA^{3}, Z=8, \lambda=$ $0.71073 \AA, \mu=0.205 \mathrm{~mm}^{-1}, \mathrm{~T}=100 \mathrm{~K}, 106403$ reflections measured, 8858 independent reflections, $\mathrm{R}_{\text {int }}=0.0712, \mathrm{R}_{1}=0.0529$ (obs. data), $\mathrm{wR}\left(\mathrm{F}^{2}\right)=0.1146$ (obs. data), $\mathrm{GOF}=1.050$, CCDC 1995501.

1:1 Reaction of $\mathbf{B}\left(\mathbf{C}_{6} \mathbf{F}_{5}\right)_{3}$ and LA. L-Lactide $(5.8 \mathrm{mg}, 0.040 \mathrm{mmol})$ and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(21$ $\mathrm{mg}, 0.040 \mathrm{mmol}$) were mixed in $\mathrm{C}_{6} \mathrm{D}_{6}$ in J-young NMR tube at room temperature. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}$): $\delta 3.61\left(\mathrm{q}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right.$), $0.97\left(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right.$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}$): $\delta 170.44(\mathrm{C}=\mathrm{O}), 149.09,147.48,142.37,140.86$, 138.48, $136.84\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{~F}_{5}\right), 74.35\left(\mathrm{CHCH}_{3}\right), 14.89\left(\mathrm{CHCH}_{3}\right) .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(565 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$, $30^{\circ} \mathrm{C}$): $\delta-133.60(\mathrm{~d}, J=22.8 \mathrm{~Hz}, o-\mathrm{F}),-151.96(\mathrm{~s}, p-\mathrm{F}),-162.41(\mathrm{t}, J=20.6 \mathrm{~Hz}, m-\mathrm{F})$.

Crystal data for $\mathbf{B}\left(\mathbf{C}_{6} \mathbf{F}_{\mathbf{5}}\right)_{3} \cdot \mathbf{L A}$. The $1: 1$ mixture of $\mathbf{1}$ and LA was recrystallized by layering hexanes on top of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution for several days at $-30^{\circ} \mathrm{C}$ to give colorless crystals. $\mathrm{C}_{42} \mathrm{H}_{8} \mathrm{~B}_{2} \mathrm{~F}_{30} \mathrm{O}_{4}, M_{\mathrm{r}}=1168.10$, orthorhombic, space group P $2_{1} 2_{1} 2_{1}, \mathrm{a}=14.4480(8) \AA, \mathrm{b}=$ $14.6266(9) \AA, \mathrm{c}=18.8637(13) \AA, \alpha=90^{\circ}, \beta=90^{\circ}, \gamma=90^{\circ}, \mathrm{V}=3986.4(4) \AA^{3}, \mathrm{Z}=4, \lambda=$ $0.71073 \AA, \mu=0.218 \mathrm{~mm}^{-1}, \mathrm{~T}=100 \mathrm{~K}, 67547$ reflections measured, 12232 independent reflections, $\mathrm{R}_{\text {int }}=0.0705, \mathrm{R}_{1}=0.0417$ (obs. data), $\mathrm{wR}\left(\mathrm{F}^{2}\right)=0.0999$ (obs. data), $\mathrm{GOF}=1.021$, CCDC 1995502.

1:1 Reaction of $\mathbf{B}\left(\mathbf{C}_{6} \mathbf{F}_{5}\right)_{3}$ and EC. Ethylene carbonate ($3.5 \mathrm{mg}, 0.040 \mathrm{mmol}$) and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(21 \mathrm{mg}, 0.040 \mathrm{mmol})$ were mixed in $\mathrm{C}_{6} \mathrm{D}_{6}$ in J-young NMR tube at room temperature. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}$): $\delta 2.74\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30$ $\left.{ }^{\circ} \mathrm{C}\right): \delta 163.2(\mathrm{C}=\mathrm{O}), 149.31,147.72,142.13,140.46,138.47,136.83\left(\mathrm{~m}, C_{6} \mathrm{~F}_{5}\right), 68.45\left(\mathrm{CH}_{2}\right)$.
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($565 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30{ }^{\circ} \mathrm{C}$): $\delta-134.55(\mathrm{~d}, J=22.9 \mathrm{~Hz}, o-\mathrm{F}),-155.08(\mathrm{~s}, p-\mathrm{F}),-$ 163.37 (m, m-F).

Crystal data for $\mathbf{B}\left(\mathbf{C}_{6} \mathbf{F}_{5}\right)_{3} \cdot \mathbf{E C}$. The $1: 1$ mixture of $\mathbf{1}$ and EC was recrystallized by layering hexanes on top of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution for several days at room temperature to give colorless crystals. $\mathrm{C}_{42} \mathrm{H}_{8} \mathrm{~B}_{2} \mathrm{~F}_{30} \mathrm{O}_{6}, M_{\mathrm{r}}=1200.10$, orthorhombic, space group P c a $21, \mathrm{a}=$ $14.9675(8) \AA, b=13.4729(7) \AA, c=20.6890(10) \AA, \alpha=90^{\circ}, \beta=90^{\circ}, \gamma=90^{\circ}, V=4172.1$ (4) $\AA^{3}, Z=4, \lambda=0.71073 \AA, \mu=0.215 \mathrm{~mm}^{-1}, T=124$.(2) $\mathrm{K}, 106695$ reflections measured, 10807 independent reflections, $\mathrm{R}_{\text {int }}=0.0447, \mathrm{R}_{1}=0.0357$ (obs. data), $\mathrm{wR}\left(\mathrm{F}^{2}\right)=0.0724$ (obs. data), GOF $=1.043$, CCDC 1995505.

1:1 Reaction of $\mathbf{B}\left(\mathbf{C}_{6} \mathbf{F}_{5}\right)_{3}$ and PC. Propylene carbonate ($4.1 \mathrm{mg}, 0.040 \mathrm{mmol}$) and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(21 \mathrm{mg}, 0.040 \mathrm{mmol})$ were mixed in $\mathrm{C}_{6} \mathrm{D}_{6}$ in J-young NMR tube at room temperature. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}$): $\delta 3.34(\mathrm{~m}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{CH}$), 3.05-2.38 (dt, 2H, CH2), $0.09\left(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right): \delta 163.01(\mathrm{C}=\mathrm{O}), 149.29$, 147.70, 143.03, 141.34, 138.50, $136.85\left(\mathrm{~m}, C_{6} \mathrm{~F}_{5}\right), 80.38\left(\mathrm{CH}_{2}\right), 73.69(\mathrm{CH}), 17.39\left(\mathrm{CH}_{3}\right)$. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($565 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}$): $\delta-134.84(\mathrm{~d}, J=22.7 \mathrm{~Hz}, o-\mathrm{F}),-156.17(\mathrm{t}, J=20.7$ $\mathrm{Hz}, p-\mathrm{F}),-163.77$ (m, m-F).

Crystal data for $\mathbf{B}\left(\mathbf{C}_{6} \mathbf{F}_{5}\right)_{3} \cdot \mathbf{P C}$. The $1: 1$ mixture of $\mathbf{1}$ and PC was recrystallized by layering hexanes on top of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution for several days at $-30^{\circ} \mathrm{C}$ to give colorless crystals. $\mathrm{C}_{22} \mathrm{H}_{6} \mathrm{BF}_{15} \mathrm{O}_{3}, M_{\mathrm{r}}=614.08$, triclinic, space group $\mathrm{P}-1, \mathrm{a}=10.3038(6) \AA, \mathrm{b}=12.6157(8) \AA, \mathrm{c}$ $=17.6372(12) \AA, \alpha=96.426(3)^{\circ}, \beta=92.793(3)^{\circ}, \gamma=103.676(2)^{\circ}, \mathrm{V}=2206.9(2) \AA^{3}, \mathrm{Z}=4, \lambda$ $=0.71073 \AA, \mu=0.205 \mathrm{~mm}^{-1}, \mathrm{~T}=127 \mathrm{~K}, 37308$ reflections measured, 8364 independent reflections, $\mathrm{R}_{\text {int }}=0.0432, \mathrm{R}_{1}=0.0444$ (obs. data), $\mathrm{wR}\left(\mathrm{F}^{2}\right)=0.0998$ (obs. data), $\mathrm{GOF}=1.087$, CCDC 1995503.

1:1 Reaction of $\mathbf{B}\left(\mathbf{C}_{6} \mathbf{F}_{5}\right)_{3}$ and PO. Propylene oxide ($2.3 \mathrm{mg}, 0.040 \mathrm{mmol}$) and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ ($21 \mathrm{mg}, 0.040 \mathrm{mmol}$) were mixed in $\mathrm{C}_{6} \mathrm{D}_{6}$ in J -young NMR tube at room temperature. The hydride shift reaction occurred within a few minutes. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}$): $\delta 8.23$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{CHO}), 1.58\left(\mathrm{q}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 0.46\left(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}(150$ $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right): \delta 149.20,147.59,142.30,140.55,138.52,136.97\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{~F}_{5}\right), 36.49\left(\mathrm{CH}_{2}\right)$, $5.13\left(\mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(565 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right): \delta-134.11(\mathrm{~d}, J=23.2 \mathrm{~Hz}, o-\mathrm{F}),-153.68$ ($\mathrm{s}, p-\mathrm{F}$), -162.45 ($\mathrm{s}, m-\mathrm{F}$).

Crystal data for $\mathbf{C H}_{3} \mathbf{C H}_{2} \mathbf{C H O} \cdot \mathbf{B}\left(\mathbf{C}_{6} \mathrm{~F}_{5}\right)_{3}$. The product was recrystallized by layering hexanes on top of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution for several days at $-30{ }^{\circ} \mathrm{C}$ to give colorless crystals. $\mathrm{C}_{21} \mathrm{H}_{6} \mathrm{BF}_{15} \mathrm{O}, M_{\mathrm{r}}=570.07$, monoclinic, space group $\mathrm{P} 12_{1} / \mathrm{n} 1$, $\mathrm{a}=11.5139(8) \AA, \mathrm{b}=9.2262$ (6) $\AA, c=19.1731(13) \AA, \alpha=90^{\circ}, \beta=90.084(3)^{\circ}, \gamma=90^{\circ}, V=2036.7(2) \AA^{3}, Z=4, \lambda=0.71073$ $\AA, \mu=0.208 \mathrm{~mm}^{-1}, \mathrm{~T}=140$.(2) $\mathrm{K}, 56448$ reflections measured, 4461 independent reflections, $\mathrm{R}_{\text {int }}=0.0779, \mathrm{R}_{1}=0.0541$ (obs. data), $\mathrm{wR}\left(\mathrm{F}^{2}\right)=0.1310$ (obs. data), $\mathrm{GOF}=1.021, \mathrm{CCDC}$ 1995506.

1:1 Reaction of $\mathbf{B}\left(\mathbf{C}_{\mathbf{6}} \mathbf{F}_{\mathbf{5}}\right)_{\mathbf{3}}$ and $\mathbf{C H O}$. Cyclohexene oxide ($3.9 \mathrm{mg}, 0.040 \mathrm{mmol}$) and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(21 \mathrm{mg}, 0.040 \mathrm{mmol})$ were mixed in $\mathrm{C}_{6} \mathrm{D}_{6}$ in J-young NMR tube at room temperature. Oligo(cyclohexene oxide) was obtained within a few minutes. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30$ ${ }^{\circ} \mathrm{C}$): δ 3.79-3.57 (br), 2.12 (br), 1.76-1.33 (br). APCI-MS (m/z) 99.06, 197.13, 295.19, 393.26, 491.32, 589.39 for $(\mathrm{CHO})_{\mathrm{n}}+\mathrm{H}^{+}(\mathrm{n}=1-6) ; 215.14,313.20,411.27,509.33,607.40,705.47$, 803.53 for $\mathrm{H}(\mathrm{CHO})_{\mathrm{n}} \mathrm{OH}+\mathrm{H}^{+}(\mathrm{n}=2-8)$.

References

1. Sheldrick, G. M., SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A: Found. Adv. 2015, 71, 3-8.
2. Sheldrick, G. M., Crystal structure refinement with SHELXL. Acta Crystallogr. Sec. C: Struct. Chem. 2015, 71, 3-8.
3. Farrugia, L. J., WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849-854.

3. X-ray crystallography

Figure S1 X-ray crystal structure of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{GBL}$ adduct with thermal ellipsoids drawn at 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond distances (\AA) and angles (${ }^{\circ}$): B1a-O1a 1.581(6), C1a-O1a 1.252(5), C1a-O2a 1.293(5), B1a-O1a-C1a 124.9(3), O1a-C1a-O2a 122.0(4), O2a-C1a-C4a 113.7(4), O1a-C1a-C4a 124.2(4), O1a-B1a-C11a 103.9(3), O1a-B1a-C17a 110.8(4), O1a-B1a-C5a 102.4(4).

Figure S 2 X-ray crystal structure of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$. EC adduct with thermal ellipsoids drawn at 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond distances (\AA) and angles (${ }^{\circ}$): B1-O3 1.591(4), C1-O3 1.242(3), C1-O11.302(3), C1-O2 1.301(3), B1-O3-C1 122.0(2), O3-C1-O1 123.7(2), O3-C1-O2 120.7(2), O1-C1-O2 115.6(2), O3-B1-C4 102.7(2), O3-B1-C10 110.7(2), O3-B1-C16 104.6(2).

Figure S3 X-ray crystal structure of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{PC}$ adduct with thermal ellipsoids drawn at 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond distances (\AA) and angles (${ }^{\circ}$): B1-O1 1.589(3), C1-O1 1.232(3), C1-O2 1.296(3), C1-O3 1.306(3), B1-O1-C1 133.4(2), O1-C1-O2 119.9(2), O1-C1-O3 125.3(2), O2-C1-O3 114.9(2), O1-B1-C5 104.2(2), O1-B1-C11 100.9(2), O1-B1-C17 110.5(2).

 Hydrogen atoms are omitted for clarity. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$: B1-O1 1.626(3), C1-O1 1.241(3), B1-O1-C1 128.4(2), O1-B1-C4 107.7(2), O1-B1-C10 101.1(2), O1-B1-C16 103.3(2).
4. NMR and IR spectroscopy

Figure $\boldsymbol{S 5}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right)$ of a) CL monomer and b) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{CL}$ adduct

Figure S6 ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(565 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right)$ of a) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and b) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{CL}$ adduct.

Figure $\boldsymbol{S} 7$ Selected IR spectra of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{CL}$ adduct (black line), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ (red line), and CL monomer (blue line) in the region of $1800-1550$ cm^{-1}. The relative intensities are normalized and thus are directly comparable.

Figure S8 ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}$) of a) DVL monomer and b) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$. DVL adduct.

Figure $\boldsymbol{S} \boldsymbol{9}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right)$ of a) DVL monomer and b) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot$ DVL adduct.

Figure S10 ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(565 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right)$ of a) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and b) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot$ DVL adduct.

 $1550 \mathrm{~cm}^{-1}$. The relative intensities are normalized and thus are directly comparable.
a)

b)

Figure S12 ${ }^{1} \mathrm{H}$ NMR spectra $\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right)$ of a) GBL monomer and b) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{GBL}$ adduct.

Figure S13 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right)$ of a) GBL monomer and b) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{GBL}$ adduct.

$$
\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}
$$

a) o-F

m

Figure S14 ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(565 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right)$ of a) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and b) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{GBL}$ adduct.

Figure S15 Selected IR spectra of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{GBL}$ adduct (black line), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ (red line), and GBL monomer (blue line) in the region of 1850 $1550 \mathrm{~cm}^{-1}$. The relative intensities are normalized and thus are directly comparable.

Figure S16 ${ }^{1} \mathrm{H}$ NMR spectra $\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right)$ of a) LA monomer and b) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot$ LA adduct.
a)
 CO
$\begin{array}{llllllllllllll}20 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \text { chemical shift } & (p p m)\end{array}$

Figure S17 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right)$ of a) LA monomer and b) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot$ LA adduct

Figure S18 ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(565 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right)$ of a) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and b$) \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{LA}$ adduct.

Figure S19 Selected IR spectra of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{LA}$ adduct (black line), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ (red line), and LA monomer (blue line) in the region of 1850 $1550 \mathrm{~cm}^{-1}$. The relative intensities are normalized and thus are directly comparable.

Figure S20 ${ }^{1} \mathrm{H}$ NMR spectra $\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right)$ of a mixture of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and LA in the $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$: LA ratios of a) $0: 1$, b) $0.5: 1$, c) $1: 1$, and d) $2: 1$.
a)

Figure $\boldsymbol{S} 21{ }^{1} \mathrm{H}$ NMR spectra $\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right)$ of a) EC monomer and b$) \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{EC}$ adduct.

Figure $\boldsymbol{S} 22{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right)$ of a) EC monomer and b) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{EC}$ adduct.

Figure $\boldsymbol{S} 233^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(565 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right)$ of a) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and b$) \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{EC}$ adduct.

Figure S24 Selected IR spectra of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{EC}$ adduct (black line), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ (red line), and EC monomer (blue line) in the region of $1900-1550 \mathrm{~cm}^{-1}$. The relative intensities are normalized and thus are directly comparable.

a) 1

Figure $\boldsymbol{S 2 5}{ }^{1} \mathrm{H}$ NMR spectra $\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right)$ of a) PC monomer and b$) \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{PC}$ adduct.

Figure $\boldsymbol{S} 26{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right)$ of a) PC monomer and b$) \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{PC}$ adduct.

Figure $\boldsymbol{S 2 7} 7^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(565 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right)$ of a) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and b) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{PC}$ adduct.

Figure S28 Selected IR spectra of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{PC}$ adduct (black line), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ (red line), and PC monomer (blue line) in the region of $1900-1550 \mathrm{~cm}^{-1}$. The relative intensities are normalized and thus are directly comparable.
CH_{3}

a)

$\sim \sim^{\mathrm{O}} \overbrace{} \cdot\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$

Figure S29 ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}$) of a) PO monomer and b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO} \cdot \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ adduct.

Figure S30 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right)$ of a) PO monomer and b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO} \cdot \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ adduct.

Figure S31 ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(565 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30{ }^{\circ} \mathrm{C}\right)$ of a) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO} \cdot \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ adduct.
a)

Figure S32 a) ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}$) of oligo(cyclohexene oxide) and b) APCI mass spectrum of oligo(cyclohexene oxide): $\bullet=(\mathrm{CHO})_{\mathrm{n}}+\mathrm{H}^{+} ; \Delta=\mathrm{H}(\mathrm{CHO})_{\mathrm{n}} \mathrm{OH}+\mathrm{H}^{+}$.

5. Competitive Coordination Studies

$>$ Comparison between CL and PC.

Figure S33 ${ }^{1} \mathrm{H}$ NMR spectra $\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right)$ of a) CL monomer, b) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{CL}$ adduct, c) adding PC to $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{CL}$ adduct, d) adding CL to $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{PC}$ adduct, e) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{PC}$ adduct, and f) PC monomer.
> Comparison between CL and THF.

Figure S34 ${ }^{1} \mathrm{H}$ NMR spectra $\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right)$ of a) CL monomer, b) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{CL}$ adduct, c) adding THF to $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{CL}$ adduct, d) adding CL to $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{THF}$ adduct, e) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{THF}$ adduct, and f) THF.
> Comparison between LA and PC.

Figure $\boldsymbol{S 3 5}{ }^{1} \mathrm{H}$ NMR spectra $\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right)$ of a) LA monomer, b) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{LA}$ adduct, c) adding PC to $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{LA}$ adduct, d) adding LA to $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{PC}$ adduct, e) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{PC}$ adduct, and f) PC monomer.
> Comparison between LA and THF.

Figure S36 ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}$) of a) LA monomer, b) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{LA}$ adduct, c$)$ adding THF to $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{LA}$ adduct, d) adding LA to $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{THF}$ adduct, e) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{THF}$ adduct, and f) THF.
> Comparison between PC and THF.

Figure $\boldsymbol{S 3 7}{ }^{1} \mathrm{H}$ NMR spectra $\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right)$ of a) PC monomer, b) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{PC}$ adduct, c) adding THF to $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{PC}$ adduct, d) adding PC to $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{THF}$ adduct, e) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \cdot \mathrm{THF}$ adduct, and f$)$ THF.

6. DFT calculations

All calculations were carried out with GAUSSIAN 09 program. ${ }^{1}$ The structural optimization was performed using B3LYP ${ }^{2-3}$ functional and $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})^{4}$ basis set. The gas phase optimized geometries of all structures were in good agreement regarding bond lengths and angles of Xray crystallographic result. Further single point energy calculations and solvent effects in benzene which computed using the polarizable continuum model (PCM) model ${ }^{5}$ were performed at B3LYP level with $6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set on B3LYP/6-31G(d,p) geometries. ${ }^{6}$

The free adsorption energy $(\Delta \mathrm{G})$ values of each Lewis acid-base adduct were calculated from the coordination of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and each cyclic monomer at oxygen atom of carbonyl group as shown in Eq. 1.

Eq. 1

Cyclic monomers

Figure S38 The calculated free adsorption energy of each Lewis acid-base adduct between $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and cyclic monomers.

References (for DFT calculations)

(1) Gaussian 09, Rev. A.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.;Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J., Wallingford, CT, 2016.
(2) Becke, A.D. Density Functional Thermochemistry. III. The Role of Exact Exchange J. Chem. Phys. 1993, 98, 5648-5652, DOI: 10.1063/1.464913.
(3) Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation Energy Formula into a Functional of the Electron Density, Phys. Rev. B 1988, 37, 785-789, DOI: 10.1103/PhysRevB.37.785.
(4) Frisch, M. J.; Pople, J. A.; Binkley, J. S. Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets J. Chem. Phys. 1984, 80, 3265-3269, DOI: 10.1063/1.447079.
(5) (a) Barone, V.; Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A 1998, 102, 1995-2001, DOI: 10.1021/jp9716997. (b) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Polarizable dielectric model of solvation with inclusion of charge penetration effects. J. Chem. Phys. 2001, 114, 5961-5701, DOI: 10.1063/1.1354187. (c) Scalmani, G.; Frisch, M. J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 2010, 132, 114110, DOI: 10.1063/1.3359469.
(6) Rajeshwari, B.; Kalaiselvan, A.; Senthilnathan D. Ab initio and DFT Investigations on the Ring Opening of Aziridines Using Singlet Unsaturated Carbenes. Comput. Theor. Chem. 2018, 1126, 1-6, DOI: 10.1016/j.comptc.2018.01.012.

