2-Pyridone-Stabilized Iridium Silylene Complexes: Structure and Bonding

Jefferson Guzmán,^a Ana M. Bernal,^a Pilar García-Orduña,^a Fernando J. Lahoz,^a Víctor Polo,^{b,*} and Francisco J. Fernández-Alvarez^{a,*}

^aDepartamento de Química Inorgánica – Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), e-mail: (<u>paco@unizar.es</u>). ^b Departamento de Química Fisica – BIFI, e-mail: (<u>vipolo@unizar.es</u>). Universidad de Zaragoza. Facultad de Ciencias 50009, Zaragoza – Spain;

Table of Contents

1.	Characterization of compound NSi ^{iPr2} -H (1)	2
2.	Characterization of complex $[Ir(Cl)(\kappa^2-NSi^{iPr2})_2]$ (3)	4
3.	Characterization of complex $[Ir(CF_3CO_2)(\kappa^2-NSi^{iPr2})_2]$ (5)	6
4.	Characterization of complex $[Ir(CF_3SO_3)(\kappa^2-NSi^{iPr2})_2]$ (6)	9
5.	Cartesian coordinates of DFT optimized species	17

1. Characterization of compound NSi^{iPr2}-H (1)

Figure S3. ¹H–¹³C HSQC spectrum of compound 1

Figure S4. ¹H-²⁹Si HMBC NMR spectrum of compound 1

Figure S5. HR-MS of compound 1. (11 %)

2. Characterization of complex $[Ir(Cl)(\kappa^2-NSi^{iPr2})_2]$ (3)

Figure S7. ¹³C APT NMR spectrum of complex 3

Figure S8. ¹H–¹³C HSQC spectrum of complex 3

Figure S9. ¹H-²⁹Si HMBC NMR spectrum of complex 3

Figure S10. HR-MS of complex 3

3. Characterization of complex $[Ir(CF_3CO_2)(\kappa^2-NSi^{iPr2})_2]$ (5)

Figure S12. ¹³C APT NMR spectrum of complex 5

Figure S14. ¹H-²⁹Si HMBC NMR spectrum of complex 5

Figure S15. ¹⁹F NMR spectrum of complex 5

Figure S16. HR-MS of complex 5

4. Characterization of complex $[Ir(CF_3SO_3)(\kappa^2-NSi^{iPr2})_2]$ (6)

Figure S18. ¹³C APT NMR spectrum of complex 6

Figure S19. ¹H–¹³C HSQC spectrum of complex 6

Figure S20. ¹H-²⁹Si HMBC NMR spectrum of complex 6

Figure S22. HR-MS of complex 6

Figure S23. Intermolecular C-H··Cl interactions in complex **3**. Geometrical parameters: C(46')-H(46'): 0.95 Å; C(46')···Cl(1): 3.645(1) Å;C(46')-H(46')···Cl(1): 159.0°. Symmetry operation: ')-x,2-y, 1-z.

	$[Ir(\mu-Cl)(\kappa^2-NSi^{Me2})_2]_2$	[Ir(CF ₃ CO ₂)	$(\kappa^2 - NSi^{Me2})_2]$	$[Ir(\mu-CF_3SO_3)(\kappa^2-NSi^{Me2})_2]_2$	Cmpnd 3		Cmpnd 5	Cmpnd 6	$[Ir(H)(Cl)(\kappa^2-NSi^{tBu2})(coe)]$
	Ref. 13a	Ref. 13a		Ref. 13b	This work		This work	This work	Ref. 14
		Molecule 1	Molecule 2		Molecule 1	Molecule 2			
Ir-Si(1)-O(1)-C(1)-N(1)									
$Q_{\rm T}$ (Å)	0.050(4) / 0.175(3)	0.0212(1)	0.202(1)	0.2213(6)	0.220(1)	0.251(1)	0.308(1)	0.223(1)	0.118(1)
Ø (°)	154(5) / -157(3)	12.51(13)	-146.08(1)	26.72(6)	29.26(8)	16.65(8)	32.8(7)	19.11(8)	-158.4(1)
conformation	${}^{5}T_{1} - {}^{5}E / {}^{2}T_{1}$	$^{1}T_{2}$	² E	${}^{1}T_{2} - E_{2}$	E ₂	$^{1}T_{2}$	E ₂	¹ T ₂	² T ₁
Ir-Si(2)-O(2)-C(13)-N(2)									
$Q_{\rm T}$ (Å)	0.154(3) 0.120(3)	0.0700(1)	0.133(1)	0.1249(6)	0.262(1)	0.214(1)	0.235(1)	0.308(1)	
Ø (°)	-148(2)/-164(2)	-141.93(5)	-162.01(1)	19.34(6)	14.73(8)	33.48(8)	11.8(5)	25.32	
conformation	$^{2}E/^{2}T_{l}$	² E	$^{2}T_{1}$	$^{1}T_{2}$	$^{1}T_{2}$	E ₂	$^{1}T_{2}/^{1}E$	${}^{1}T_{2} - E_{2}$	

Table S1. Ring puckering parameters for Ir-NSi^{R2} (R = tBu, Me, iPr) complexes.

D. Cremer and J.A Pople, J.Am. Chem. Soc., 1975, 97, 6, 1354-1358.

Table contains the value of both crystallographically independent molecules for complexes **3** and $[Ir(CF_3CO_2)(\kappa^2-NSi^{Me2})_2]$. Compound $[Ir(\mu-Cl)(\kappa^2-NSi^{Me2})_2]_2$ corresponds to a binuclear complex, with crystallographically independent molecules. Both values are indicated in the table, separated by a forward slash symbol.

	$\boxed{[Ir(\mu-Cl)(\kappa^2-NSi^{Me2})_2]_2} [Ir(CF_3CO_2)(\kappa^2-NSi^{Me2})_2]_2}$		κ^2 -NSi ^{Me2}) ₂]	$[Ir(\mu-CF_3SO_3)(\kappa^2-NSi^{Me2})_2]_2$	Cmpnd 3	Cmpnd 3		Cmpnd 6	$[Ir(H)(Cl)(\kappa^2-NSi^{tBu2})(coe)]$
	Ref. 13a	Ref. 13a		Ref. 13b	This work		This work	This work	Ref. 14
		Molecule 1	Molecule 2		Molecule 1	Molecule 2			
Ir(1)-Si(1)	2.2634(14) 2.2552(14)	2.2645(10)	2.2505(10)	2.2570(5)	2.2700(7)	2.2515(7)	2.2702(10)	2.2573(8)	2.2853(6)
Si(1)-O(1)	1.723(4) 1.728(4)	1.734(3)	1.719(3)	1.7281(14)	1.7282(18)	1.7333(19)	1.733(3)	1.727(2)	1.7285(16)
O(1)-C(1)	1.320(6) 1.316(6)	1.329(4)	1.331(4)	1.336(2)	1.330(3)	1.332(3)	1.332(5)	1.329(3)	1.334(3)
C(1)-N(1)	1.343(6) 1.351(6)	1.359(4)	1.351(5)	1.359(2)	1.359(3)	1.355(3)	1.367(5)	1.367(4)	1.347(3)
N(1)-Ir(1)	2.078(4) 2.069(4)	2.052(3)	2.053(3)	2.0591(15)	2.065(2)	2.058(2)	2.068(3)	2.048(2)	2.0947(18)
Ir(1)-Si(2)	2.2695(14) 2.2747(14)	2.2505(11)	2.2570(10)	2.2615(5)	2.2499(7)	2.2579(7)	2.2668(11)	2.2498(8)	
Si(2)-O(2)	1.721(4) 1.731(4)	1.729(3)	1.732(3)	1.7330(15)	1.7338(18)	1.7320(19)	1.742(3)	1.733(2)	
O(2)-C(13)	1.326(6) 1.338(6)	1.331(5)	1.328(5)	1.335(2)	1.333(3)	1.328(3)	1.333(5)	1.340(4)	
C(13)-N(2)	1.355(6) 1.354(6)	1.347(5)	1.364(5)	1.352(2)	1.363(3)	1.361(3)	1.352(5)	1.359(4)	
N(2)-Ir(1)	2.074(4) 2.073(4)	2.056(3)	2.049(3)	2.0581(15)	2.057(2)	2.061(2)	2.065(3)	2.052(2)	

Table S2. Bond lengths (Å) along the Ir-Si-O-C-N iridacycle for Ir-NSi^{R2} (R = tBu, Me, iPr) complexes.

Table contains the value of both crystallographically independent molecules for complexes **3** and $[Ir(CF_3CO_2)(\kappa^2-NSi^{Me2})_2]$. Compound $[Ir(\mu-Cl)(\kappa^2-NSi^{Me2})_2]_2$ corresponds to a binuclear complex, with crystallographically independent moieties. Both values are indicated in the table in two correlative lines.

	$[Ir(\mu-Cl)(\kappa^2-NSi^{Me2})_2]_2$	[Ir(CF ₃ CO ₂)(κ^2 -NSi ^{Me2}) ₂]	$[Ir(\mu-CF_3SO_3)(\kappa^2-$	Cmpnd 3		Cmpnd 5	Cmpnd 6	$[Ir(H)(Cl)(\kappa^2-NSi^{tBu2})(coe)]$
				$NSi^{Me2})_2]_2$					
	Ref. 13a	Ref. 13a		Ref. 13b	This work		This work	This work	Ref. 14
		Molecule 1	Molecule 2		Molecule 1	Molecule 2			
Ir-Si(1)-C	115.68(19)	109.71(13)	109.57(14)	113.84(7)	109.74(8)	107.86(9)	112.21(13)	108.05(10)	111.07(8)
	114.8(2)								
Ir-Si(1)-C	125.0(2)	129.56(15)	127.00(15)	124.35(7)	128.46(8)	127.45(9)	122.05(13)	127.84(11)	121.84(8)
	123.8(2)								
C-Si(1)-C	104.2(3)	107.19(19)	108.1(2)	105.84(10)	108.15(11)	108.47(12)	109.67(19)	108.98(13)	116.49(11)
	104.7(3)								
sum	344.9(4)	346.5(3)	344.7(3)	344.03(14)	346.35(16)	343.78(17)	343.9(3)	344.9(2)	349.4(16)
	343.3(4)								
Ir-Si(2)-C	115.15(19)	108.51(16)	108.77(13)	113.80(7)	107.79(9)	109.53(8)	111.91(14)	110.95(11)	
	116.47(19)								
Ir-Si(2)-C	125.1(2)	130.44(16)	128.20(14)	126.21(7)	127.17(8)	128.33(9)	125.91(13)	124.00(11)	
	124.9(2)								
C-Si(2)-C	103.9(3)	105.5(2)	107.58(19)	104.31(9)	108.90(12)	107.44(11)	108.94(19)	109.19(16)	
	104.3(3)								
sum	344.1(4)	344.4(3)	344.5(3)	344.32(13)	343.86(17)	345.30(16)	346.8(3)	344.1(2)	
	345.7(4)								

Table S3 Sum of the angles (°) around the Si atom, excluding Ir-Si-O angle, for Ir-NSi^{R2} (R = tBu, Me, iPr) complexes.

Table contains the value of both crystallographically independent molecules for complexes **3** and $[Ir(CF_3CO_2)(\kappa^2-NSi^{Me2})_2]$. Compound $[Ir(\mu-Cl)(\kappa^2-NSi^{Me2})_2]_2$

corresponds to a binuclear complex, with crystallographically independent moieties. Both values are indicated in the table in two correlative lines.

5. Cartesian coordinates (in Å) of DFT optimized species

Α

77 0.000000 0.000000 0.757592 17 0.000000 0.000000 3.210744 14 0.393777 1.520472 -0.891183 14 -0.393777 -1.520472 -0.891183 8 -1.286295 1.937800 -1.284621 8 1.286295 -1.937800 -1.284621 7 -1.891603 0.885307 0.681454 7 1.891603 -0.885307 0.681454 6 -2.212783 1.666319 -0.387847 6 -3.513621 2.174758 -0.545527 1 -3.712809 2.784877 -1.426882 6 -4.496294 1.902829 0.399607 6 -4.130380 1.119816 1.514008 1 -4.852183 0.886778 2.298510 6 -2.838793 0.642394 1.619784 1 -2.498218 0.058158 2.474681 6 -5.897108 2.428857 0.255109 1 -6.018093 3.020108 -0.663129 1 -6.164568 3.065319 1.114382 1 -6.623384 1.600043 0.231396 6 1.263921 1.268733 -2.564530 1 1.015194 0.253943 -2.910316 6 0.763931 2.272143 -3.613899 1 0.972720 3.311720 -3.309874 1 -0.321860 2.189870 -3.772578 1 1.265171 2.109498 -4.583935 6 2.791578 1.331515 -2.406338 1 3.290952 1.101305 -3.363033 1 3.165374 0.612599 -1.660768 1 3.127269 2.334875 -2.098702 6 1.082255 3.119082 -0.083012 1 1.434435 3.746330 -0.924015 6 2.277121 2.823240 0.837788 1 2.749304 3.758900 1.184214 1 3.056766 2.219862 0.347943 1 1.944509 2.271129 1.730775 6 0.000000 3.898454 0.676554 1 -0.420245 3.293361 1.496640 1 -0.829790 4.199808 0.020053 1 0.419739 4.813474 1.129187 6 2.212783 -1.666319 -0.387847 6 3.513621 -2.174758 -0.545527 1 3.712809 -2.784877 -1.426882 6 4.496294 -1.902829 0.399607 6 4.130380 -1.119816 1.514008 1 4.852183 -0.886778 2.298510 6 2.838793 -0.642394 1.619784 1 2.498218 -0.058158 2.474681 6 5.897108 -2.428857 0.255109

1 6.623384 -1.600043 0.231396 1 6.164568 -3.065319 1.114382 1 6.018093 -3.020108 -0.663129 1 4.166644 0.649482 1.798206 6 1.820198 2.116128 0.774813 6 0.641137 2.572629 1.407806 1 -0.234763 1.922615 1.465567 6 0.578875 3.853273 1.954172 1 -0.337250 4.190184 2.443820 7 -1.987548 -0.439251 0.096121 6 1.686556 4.704579 1.865182 1 1.635355 5.711361 2.286136 6 2.860351 4.270797 1.239838 1 3.722181 4.938095 1.170437 6 2.931862 2.983730 0.704161

6 -1.592577 -2.763109 0.710154 6 -2.041250 -4.006973 1.172019 1-1.329248-4.8256171.3088096-3.392797-4.2234231.4332966-4.296586-3.1819221.195545 1 -5.365955 -3.345115 1.348841 6 -3.861998 -1.934260 0.752245

 6
 -3.801990
 -1.994200
 0.111

 1
 -4.596848
 -1.156178
 0.551844

 6
 -2.491162
 -1.676241
 0.538229

 6
 -2.660932
 0.776451
 0.342008

 6 -3.544875 0.989245 1.418630 1 -3.758068 0.180096 2.115030 6 -4.126058 2.240490 1.631978 1 -4.798266 2.371045 2.483364 6 -3.851233 3.322511 0.790948 6 -2.950197 3.142527 -0.260177 1 -2.696185 3.988217 -0.903639 6 -2.352940 1.897776 -0.476487 6 -0.165183 3.158221 -2.008707 1 -0.845751 3.916469 -2.423091 6 -1.901364 1.233823 -3.297147 1 -1.155707 1.038302 -4.081631 1 2.244333 -2.674198 1.370281 1 1.604014 -3.719858 -1.272386 1 -0.089409 -3.767607 -1.853120 1 -3.741301 -5.195572 1.785407 6 -2.950197 3.142527 -0.260177 1 -3.741301 -5.195573 1.785407 1 -4.313956 4.295529 0.963715

 1 -4.313956
 4.295529
 0.963715

 1 -2.534254
 2.085209
 -3.589339

 1 -2.531033
 0.342015
 -3.170804

 1 0.271252
 3.526654
 -1.072192

 1 0.639583 2.970123 -2.734344

 1
 0.639583
 2.970123
 -2.734344

 1
 0.947494
 -2.017665
 2.421372

 1
 1.038144
 -0.535191
 -1.908435

 С 77 0.090271 0.799621 -0.384721 16 2.146250 -1.369702 2.243159 15 0.689552 3.076115 0.103013 14 1.425066 -1.124800 -0.734870 8 1.822825 -1.935322 0.816767 8 0.934257 -1.018518 2.978836 8 3.284551 -0.460953 2.233329 9-7.4951891.9804570.8531679-7.4951890.0656870.7370879-6.857673-2.4911780.0783699-4.284015-3.170861-0.47176893.043935-2.7899844.24203091.783678-3.9041162.874966

 1 3.853733
 2.657852
 0.216073
 9 3.819291
 -3.409052
 2.515720

 6 1.186017
 -2.766211
 1.652675
 6 2.740434
 -2.986375
 2.965373

 1 1.001996
 -3.770630
 2.062178
 6 -1.626146
 0.719076
 1.163704

 6 0.554307
 -3.832078
 -0.965115
 6 -1.302643
 -0.591632
 0.825211

 6 -2.106430
 -1.126952
 -0.368670

 6 -2.106430 -1.126952 -0.368670 6 -1.661254 -0.115785 -1.438037 6 -2.002493 1.209251 -1.109102 6 -2.712882 1.313510 0.253024 6 -3.912366 0.388653 0.249069 6 -5.227089 0.726433 0.526876 6 -6.230068 -0.251497 0.469839 6 -5.902039 -1.565985 0.131281 6 -4.570653 -1.905236 -0.150155 6 -3.581289 -0.936143 -0.092224 6 0.640255 -2.615633 -1.577503 6 0.246233 -3.767359 -0.874279 6 -0.434023 -4.804224 -1.519769 6 -0.728872 -4.709880 -2.882435 6 -0.331209 -3.577208 -3.600220 6 0.345362 -2.542623 -2.950902

 6
 3.132002
 -0.833269
 -1.479131

 6
 3.270887
 -0.089630
 -2.664808

 6
 4.524158
 0.132016
 -3.239281

 6
 5.672264
 -0.378003
 -2.625778

 6
 5.554339
 -1.116356
 -1.445646

 5.554339 -1.116356 -1.445646 6 4.296349 -1.347012 -0.882330 6 2.535955 3.412407 -0.053986 6 3.024481 3.629574 -1.489755 6 3.402233 2.338690 0.612007 6 0.293316 6 0.698910 5.057232 2.194197 6 0.698910 5.057232 2.194197 6 0.824905 2.651797 2.928119 6 -0.076668 4.430105 -0.956671 6 -0.107360 4.050679 -2.443857 6 -1.486635 4.822192 -0.499391 4.822192 -0.49939 1 1.405466 0.697463 0.532527 1 0.925036 1 10000 1 0.925036 1.164439 -1.704351 1 -1.387133 1.153405 2.131973 1 -0.769289 -1.253281 1.504012 1 -1.848631 -2.155901 -0.626555 1 -1.472503 -0.449128 -2.457579 1 -2.138181 1.982280 -1.862123 1 -2.977997 2.340657 0.520635 1 0.471477 -3.851046 0.190897 1 -0.737362 -5.689487 -0.955101 1 -1.265038 -5.518122 -3.385670 1 -0.550996 -3.500881 -4.668195 1 0.646444 -1.661061 -3.525647 1 2.385290 0.339978 -3.141419 1 2.385290 0.339978 -3.141419 1 4.606815 0.712055 -4.162068 1 6.656400 -0.197278 -3.065355 1 6.447345 -1.514308 -0.957129

```
14.225515-1.9188850.04300812.6633134.3619830.49213412.5979794.525204-1.96077012.8095912.753333-2.119253
1 4.118865 3.755028 -1.476931
1 4.112

1 3.435443 1.42750

1 3.066342 2.043549 1.611604

1 4.434798 2.713291 0.700856

~ 007453 3.551388 1.866411

~ 1.463478
1 1.792940 5.157021 2.262811
1 0.289290 5.338189 3.178131
10.7026141.5936592.66436110.2964492.8295273.87855611.8944142.8216223.117762
1 0.587394 5.303503 -0.830753

      1
      0.587394
      5.303503
      -0.830753

      1
      0.866092
      3.732448
      -2.829856

      1
      -0.442404
      4.916486
      -3.037618

      1
      -0.808902
      3.226194
      -2.623146

      1
      -1.516725
      5.228100
      0.520101

1 -2.171828 3.964657 -0.543414
1 -1.889402 5.595590 -1.172943
D
77 -0.679274 -0.024039 -0.277767
15 -1.265445 2.113108 0.332217
14 1.297510 0.475921 -1.375901
6 -1.001356 -2.265009 -0.431987
6 -2.227487 -1.731472 0.129685
6 -1.919626 -1.178497 1.403852
6 -0.503462 -1.347101 1.651088
6 0.047345 -2.061481 0.535083
6 -0.922518 -3.090880 -1.677162
6 -3.575872 -1.831817 -0.509110
6 -2.894035 -0.673752 2.420604
6 0.172297 -1.086373 2.962248
6 1.410510 -2.678535 0.486056
6 1.410510 -2.678535 0.486056
6 -3.092984 2.270201 0.477314
6 -0.675025 2.682289 1.979656
6 -0.893099 3.566131 -0.726373
6 -1.534956 0.436141 -2.187488
6 1.840796 2.175756 -2.005549
6 1.840796 2.175756 -2.005549
6 1.759448 -0.719890 -2.767433
1 0.110748 -3.199713 -2.030540
1 -1.322767 -4.103245 -1.498861
1 -1.509947 -2.648803 -2.495015
1 -4.015672 -2.829959 -0.344053
1 -4.275345 -1.087806 -0.103482
1 -3.517090 -1.676073 -1.595835
1 -3.058195 -1.445881 3.191482
1 -2.530222 0.222698 2.943597
1 -3.872455 -0.444904 1.978759
1 -0.162330 -0.143155 3.417481
```

1 -0.048967 -1.889870 3.686531 1 1.264491 -1.039916 2.857053 1 1.807865 -2.733864 -0.535506 1 2.132900 -2.134205 1.107846 1 1.362392 -3.711076 0.871448 1 -3.542045 2.070378 -0.505892 1 -3.482609 1.537433 1.192482 1 -3.376316 3.281995 0.804178 1 -1.149271 3.634065 2.264069 1 -0.906414 1.923836 2.740110 1 0.414778 2.827941 1.950863 1 -1.460559 4.435321 -0.362574 1 0.175718 3.804006 -0.700106 1 -1.184740 3.357962 -1.764236 1 -1.422155 -0.438418 -2.845801 1 -2.01 1 2.806883 2.0840. 1 1.111924 2.579819 -2.724044 1 1.965575 2.910468 -1.196842 1 1.842406 -1.764997 -2.436792 1 0.939096 -0.684321 -3.501926 1 0.939096 -0.442005 -3.30405 1 201035 -2.72804 6 3.987219 -0.315425 -0.549870 6 2.684583 0.655234 1.119289 6 5.063073 -0.455596 0.320272 1 4.044083 -0.642455 -1.587623 6 3.720717 0.561193 2.039162 1 1.699182 1.048000 1.374166 6 4.931856 -0.008904 1.636838 1 5.989115 -0.907980 -0.037210

 1
 3.572762
 0.921942
 3.057946

 1
 5.761369
 -0.105482
 2.340641

 7
 2.820870
 0.227379
 -0.151009

 Ε 77 -1.009688 -0.501598 -0.023067 33 1.394776 0.168068 -0.029677 14 -2.997383 0.907703 -0.100825 6 1.603227 2.105190 -0.179871 6 0.795709 2.801210 -1.088676 6 0.920129 4.185121 -1.225155 6 1.847607 4.885525 -0.448254 6 2.656567 4.194745 0.457936 6 2.539541 2.807810 0.590206 6 2.647819 -0.439507 -1.404781 6 3.344345 0.461428 -2.221098 6 4.206884 -0.012591 -3.214598 6 4.385073 -1.386105 -3.397211 6 3.694297 -2.289117 -2.583079 6 2.825335 -1.817795 -1.596900 6 2.400376 -0.173045 1.609488 6 1.795754 0.191861 2.822788

6	2.453952	-0.034830 4.032577
6	3.715947	-0.639071 4.041788
6	4.318605	-1.006606 2.836568
6	3.665885	-0.771300 1.621352
6	-0.570561	-2.074418 1.533656
6	-1.965268	-1.919020 1.448478
6	-2.881773	-2.940855 0.781669
6	-3.141308	-2.668367 -0.711160
6	-2.010620	-1.944180 -1.416530
6	-0.656337	-2.319733 -1.340186
6	-0.184171	-3.532562 -0.541482
6	0.211751	-3.216466 0.914522
6	-2.607352	2.770488 0.092532
6	-4.261252	0.485966 1.274312
6	-3.956412	0.822353 -1.757185
6	-1.905530	3.202782 1.381159
6	-5.485091	1.406626 1.352893
6	-3.185347	1.292594 -2.994548
1	0.054809	2.258598 -1.677824
1	0.280213	4.718716 -1.931927
1	1.937484	5.969999 -0.546931
1	3.383090	4.736862 1.068245
1	3.176572	2.276436 1.299306
1	3.216700	1.536316 -2.083415
1	5.060220	-1.753552 -4.173684
1	3.828021	-3.365109 -2.718962
1	2.288535	-2.529513 -0.969258
1	0.807031	0.657808 2.816487
1	1.978428	0.256996 4.972084
1	4.228318	-0.822423 4.989248
1	5.305716	-1.475551 2.838109
1	4.149171	-1.051337 0.683701
1	-0.071830	-1.597313 2.380903
1	-2.430779	-1.314143 2.227363
1	-3.843873	-2.949587 1.316039
1	-2.458367	-3.947702 0.921380
1	-4.043060	-2.046914 -0.808892
1	-3.368573	-3.614055 -1.241037
1	-2.317487	-1.399543 -2.311902
1	-0.013904	-2.014638 -2.170319
1	0.674240	-3.988492 -1.059309
1	-0.970079	-4.303044 -0.558592
1	0.118475	-4.125288 1.540900
1	1.278166	-2.940858 0.953411
1	-3.572621	3.300489 -0.006051
1	-2.008742	3.089266 -0.776465
1	-3.722767	0.500553 2.238192
1	-4.586446	-0.559323 1.134411
1	-4.858511	1.447717 -1.628772
1	-0.898860	2.761854 1.449898
1	-2.464268	2.881858 2.276725
1	-1.785307	4.297770 1.442543

1	-6.059443	1.404072	0.412216
1	-5.194294	2.451065	1.549656
1	-6.178673	1.105638	2.156846
1	-2.274238	0.693444	-3.156098
1	-1.020215	0.644870	1.114904
1	-1.007909	0.543541	-1.256137
1	-3.790763	1.228372	-3.914702
1	-2.860996	2.341136	-2.892084
1	-4.332300	-0.203168	-1.913239
1	4.744121	0.698376	-3.847164