ESI

The Impact of Boron Atoms on Clathrate-I Silicides: Composition Range of the Borosilicide $K_{8-x}B_ySi_{46-y}$

Walter Jung, Bodo Böhme, Julia M. Hübner, Ulrich Burkhardt, Horst Borrmann, Matej Bobnar, Hong Duong Nguyen, Ingo Pantenburg, Martin Etter, Ulrich Schwarz, Yuri Grin, and Michael Baitinger

Table of content:

- 1. Crystallographic determination of the boron content
- 2. Crystallographic data for crystal 1: $K_{7.18(2)}B_{7.2(5)}Si_{38.8(5)}$
- 3. Crystallographic data for crystal 2: K_{7.12(4)}B_{7.1(6)}Si_{38.9(6)}
- 4. Crystallographic data for crystal 3: K_{6.98(4)}B_{6.4(5)}Si_{39.6(5)}
- 5. Crystallographic data for crystal 4: K_{7.08(1)}B_{6.8(3)}Si_{39.2(3)}
- 6. Crystallographic data for crystal 5: K_{6.80(2)}B_{6.4(5)}Si_{39.6(5)}
- 7. Crystallographic data for the high pressure sample: $K_{7.85(2)}B_{7.8(1)}Si_{38.2(1)}$
- 8. Model for Quantum chemical calculations
- 9. Quantitative evaluation of the ¹¹B NMR signals
- 10. Magnetic susceptibility

1. Crystallographic determination of the boron content

The crystal structure refinement was conducted for a binary model $K_{8-x}Si_{46-y}$. In this model, the refinement reveals for site Si2 at Wyckoff position 16*i* and Si3 at Wyckoff position Si3 a deficiency in silicon. After the refinement, we have calculated the number of boron atoms assuming no vacancies in the framework. As explained in the main text, there are two 16*i* split-positions for Si2. Site Si21 is occupied by boron and silicon atoms, site Si22 by silicon atoms only (Fig. S1).

Fig. S1: The split positions Si21 and Si22 at Wyckoff position 16i.

From the crystal structure refinement of the binary model, the occupancy values *occ*(Si21) and *occ*(Si22) are experimentally obtained. As the 16*i* split-position Si22 is occupied by Si atoms only, the number of Si atoms is $n(Si_{22}) = 16 \text{ occ}(Si22)$

The number of electrons $n_e(Si22)$ amounts to:

 $n_e(Si22) = 14 * 16 occ(Si22)$

The 16*i* split-position Si21 is mixed occupied by Si21 and B21 atoms. As Si21 and Si22 are alternatively occupied, the total number of atoms at Si21 amounts to:

n(B21,Si21) = 16 - n(Si22)

The overall number of electrons at $n_e(B21,Si21)$ is derived from occ(Si21):

 $n_{\rho}(B21,Si21) = 14 * 16 occ(Si21)$

Alternatively, $n_e(B/Si21)$ corresponds to:

 $n_e(B21/Si21) = 5 n(B21) + 14 * n(Si21)$

With 16 atoms on both split positions:

$$\begin{split} n(Si21) &= 16 - 16 \; occ(Si22) - \; n(B21) \\ \text{and thus:} \\ n_e(B21/Si21) &= 5 \; n(B21) + 14 * [16 - 16 \; occ(Si22) - \; n(B21)] \end{split}$$

By equating both formulas for $n_e(B21, Si21)$, the number n(B21) is calculated as follows:

14 * 16 * occ(Si21) = 5 n(B21) + 14 * [16 - 16 occ(Si22) - n(B21)]

9 n(B21) = 14 * 16 - 14 * 16 occ(Si22) - 14 * 16 occ(Si21)

 $n(B21) = \frac{14 * 16}{9} [1 - occ(Si21) - occ(Si22)]$

Remarkably, the formula does not depend on the actual distribution of boron atoms over Si21 and Si22 and provides the total number of boron atoms at position 16*i*.

In similar way, the overall boron content is calculated for Si3, which is represented by the split positions 24*k* and 48*l*. However, the deficiency of Si3 in the binary model is small and the calculated boron content is thus obtained with a high standard deviation.

14 * 24 * occ(Si31) + 14 * 48 * occ(Si32) = 5 n(B3) + 14 * n(Si3)

14 * 24 * occ(Si31) + 14 * 48 * occ(Si32) = 5 n(B3) + 14 (24 - n(B3))

 $n(B_3) = \frac{14 * 24}{9} [1 - occ(Si31) - 2 occ(Si32)]$

2. Crystallographic data for crystal 1: K_{7.18(2)}B_{7.2(5)}Si_{38.8(5)}

Fable S-1a. Experimenta	l details for the single-crystal XRI	D measurement of crystal 1.
-------------------------	--------------------------------------	-----------------------------

Chemical formula	K _{7.18(2)} B _{7.2(5)} Si _{38.8(5)}
Space group	Pm ³ n
a	9.9366(3) Å
Calculated density	2.4424(2) g/cm ³
Data collection	Rigaku Saturn724+, CCD detector
Radiation; λ / Å	MoKα radiation; λ =0.71073 Å
Temperature	293 К
Reflections:	
measured	14944
unique	267
Reflections with <i>F</i> (hkl) > 4 σ(F(hkl))	259
2 $ heta$ and sin $ heta/\lambda$ (max)	58.56; 0.688
Refined parameters	29
R(sig); R(eq)	0.0110; 0.0672
Goodness of fit	1.100
R _f ; R _w	0.0372; 0.0413

Table S-1b. Atomic coordinates and isotropic displacement parameter (in Å ²) fo	or crystal 1.
---	---------------

Wyckoff Site	x/a	y/a	z/a	s.o.f.	B_{iso}/B_{eq}^*
2 <i>a</i>	0	0	0	0.59(1)	2.40(9)
6 <i>d</i>	1/4	1/2	0	1	2.91(5)
6 <i>c</i>	1/4	0	1/2	1	2.07(4)
16 <i>i</i>	0.1857(10)	X	X	0.494(7)	2.03(6)
16 <i>i</i>	0.202(2)	x	X	0.244(6)	2.09(6)
24 <i>k</i>	0	0.307(2)	0.1146(14)	0.344(7)	1.96(6)
48/	0.0149(9)	0.2909(10)	0.1267(8)	0.319(4)	1.82(5)
	Wyckoff Site 2a 6d 6c 16i 24k 48/	Wyckoff Site x/a 2a 0 6d 1/4 6c 1/4 16i 0.1857(10) 16i 0.202(2) 24k 0 48/ 0.0149(9)	Wyckoff Site x/a y/a 2a 0 0 6d 1/4 1/2 6c 1/4 0 16i 0.1857(10) x 16i 0.202(2) x 24k 0 0.307(2) 48/ 0.0149(9) 0.2909(10)	Wyckoff Site x/a y/a z/a 2a 0 0 0 6d 1/4 1/2 0 6c 1/4 0 1/2 16i 0.1857(10) x x 16i 0.202(2) x x 24k 0 0.307(2) 0.1146(14) 48/ 0.0149(9) 0.2909(10) 0.1267(8)	Wyckoff Site x/a y/a z/a s.o.f. 2a 0 0 0 0.59(1) 6d 1/4 1/2 0 1 6c 1/4 0 1/2 1 16i 0.1857(10) x x 0.494(7) 16i 0.202(2) x x 0.244(6) 24k 0 0.307(2) 0.1146(14) 0.344(7) 48/ 0.0149(9) 0.2909(10) 0.1267(8) 0.319(4)

 $\frac{1}{B_{eq}} = \frac{1}{3} [B_{11} a^{*2} a^{2} + \dots 2 B_{23} b^{*} c^{*} b c \cos \alpha]$

Table S-1c. Anisotropic atomic displacement parameters (in ${\rm \AA^2})$ for crystal 1.

Atom	B ₁₁	B ₂₂	B ₃₃	B ₁₂	B ₁₃	B ₂₃
K1	2.4(2)	B ₁₁	B ₁₁	0	0	0
К2	2.40(10)	3.17(8)	B ₂₂	0	0	0
Si1	2.17(10)	2.02(6)	B ₂₂	0	0	0

	8	{ 6.0 { 2.0	Si21/B Si22	3.195(10) 3.47(2)
K1		∫ 4.2	Si31	3.26(2)
	12	7.8	∫ Si32₁ Si32₂	3.156(9)
		L.	(0.0-2	
	4	(7.8	Si1 Si31	3.5131(1) 3.336(12)
	8		∫Si32 ₁	3.370(9)
K)			Si32 ₂	3.582(9)
κz	8	2.0	Si21/B Si22	3.684(10)
		1.2	Si31	3.872(14)
	4	2.8	$\int Si32_1$ Si32 ₂	3.735(8)
			ر <u>-</u>	
Si1	4	1.4	Si31	2.34(2)
511	-	2.6	Si32 ₂	2.417(9)
		ſ 0 2	Si22	1 94(2)
	1	0.2	Si21/B	2.215(14)
Si21/B	2		Si31	2.316(14)
	5	1.9	$\int Si32_1$ $\int Si32_2$	2.326(13)
		6.0	6:22	4 (7(2))
	1		B	1.67(3)
Si22		1.1	Si31	2.42(2)
	3	1.9	∫ Si32₁ Si32₂	2.19(2) 2.44(2)
		<u> </u>	< <u>-</u> 2	(_)
	2	∫ 1.5	Si21/B Si22	2.316(14) 2.42(2)
Si21	1	(0.5	Si1	2.34(2)
3131	1	0.4	Si31	2.28(2)
	T	0.6	$\int Si32_1$ $\int Si32_2$	2.41(2)
	2	1.5	Si21/B	2.078(13)
	2	0.5	Si22	∫2.19(2)
Si32 _{1,2}	1		Si1	〔2.44(2) 2.417(9)
		0.4	Si31	2.41(2)
	1	0.6	Si32	2.517(11) 2.535(11)
		l		

Table S-1d. Interatomic distances for crystal 1 (in Å).

3. Crystallographic data for crystal 2: K_{7.12(4)}B_{7.1(6)}Si_{38.9(6)}

 Table S-2a. Experimental details for the single-crystal XRD measurement of crystal 2.

Chemical formula	K _{7.12(4)} B _{7.1(6)} Si _{38.9(6)}
Space group	Pm ³ n
a	9.9393(2) Å
Calculated density	2.4380(2) g/cm ³
Data collection	Rigaku Saturn724+, CCD detector
Radiation; λ / Å	MoKα radiation; λ =0.71073 Å
Temperature	293 К
Reflections:	
measured	4457
unique	415
Reflections with $F(hkl) > 4 \sigma(F(hkl))$	339
2θ and sinθ/ λ (max)	69.94; 0.806
Refined parameters	29
R(sig); R(eq)	0.0410; 0.0861
Goodness of fit	1.110
R _f ; R _w	0.0446; 0.0489

Table S-2b. Atomic coordinates and isotropic displacement parameter (in Å²) for crystal 2.

Atom	Wyckoff Site	x/a	y/a	z/a	s.o.f.	B_{iso}/B_{eq}^*
K1	2 <i>a</i>	0	0	0	0.56(2)	0.95(8)
К2	6 <i>d</i>	1/4	1/2	0	1	1.74(5)
Si1	6 <i>c</i>	1/4	0	1/2	1	0.82(4)
Si21	16 <i>i</i>	0.1857(8)	X	x	0.491(8)	0.78(6)
Si22	16 <i>i</i>	0.2019(15)	x	x	0.240(7)	0.69(8)
Si31	24 <i>k</i>	0	0.309(3)	0.113(2)	0.228(8)	0.69(9)
Si32	48/	0.0141(7)	0.2926(8)	0.1254(7)	0.380(6)	0.69(6)

* $B_{eq} = 1/3[B_{11} a^{*2} a^2 + ... 2 B_{23} b^* c^* b c \cos \alpha]$

Table S-2c. Anisotropic atomic displacement parameters (in Å ²)) for cr y	ystal 2.
---	-------------------	----------

Atom	B ₁₁	B ₂₂	B ₃₃	B ₁₂	B ₁₃	B ₂₃
K1	0.95(13)	B ₁₁	B ₁₁	0	0	0
К2	1.15(8)	2.04(7)	B ₂₂	0	0	0
Si1	0.77(9)	0.84(7)	B ₂₂	0	0	0

	8	$\left\{ \begin{array}{c} 6.1\\ 1.9 \end{array} \right.$	Si21/B Si22	3.197(8) 3.476(15)
K1		2.8	Si31	3.28(3)
	12	9.2	∫ Si32 ₁ Si32 ₂	3.167(8)
	4	[1.8	Si1 Si31	3.5141(1) 3.32(2)
	8	6.2	∫Si32 ₁	3.362(8)
К2		ر 6.1	LSi32 ₂ Si21/B	3.563(7) 3.684(8)
	8	1.9	Si22	3.610(15)
	4	0.9	Si31 ∫Si321	3.89(2)
		3.1	Si32 ₂	3.750(6)
		ſ 0.9	Si31	2.33(2)
Si1	4	3.1	\int_{1} Si32 ₁	2.409(8)
		L	[313Z ₂	
	1	{ 0.2 0.8	Si22	1.93(2)
Si21/B		(0.8 (0.7	Si31	2.214(11) 2.33(2)
	3	2.3	∫ Si32 ₁	2.097(11)
		L	(31322	2.550(11)
	1	{ 0 1	Si22 B	1.66(2) 1.93(2)
Si22		0.7	Si31	2.44(2)
	3	2.3	∫Si32 ₁ Si32 ₂	2.21(2) 2.45(2)
			(<u>.</u>	
	2	1.5	Si21/B Si22	2.33(2) 2.44(2)
Si31	1		Si1	2.33(2)
	1	0.2	Si31 ∫Si32₁	2.25(3)
		0.8	Si32 ₂	2.38(2)
		4 5	c:24 /p	∫2.097(11)
	2	1.5	SI21/B	2.330(11)
6:22		0.5	Si22	2.21(2)
5132 _{1,2}	1		Si1	2.409(8)
	1	0.2	5131	2.38(2) ∫2.493(9)
		0.8	5132	2.509(9)
		ر ر		

Table S-2d. Interatomic distances for crystal 2 (in Å).

4. Crystallographic data for crystal 3: K_{6.98(4)}B_{6.4(5)}Si_{39.6(5)}

 Table S-3a. Experimental details for the single-crystal XRD measurement of crystal 3.

Chemical formula	K _{6.98(4)} B _{6.4(5)} Si _{39.6(5)}
Space group	Pm ³ n
a	9.9470(2) Å
Calculated density	2.4470(2) g/cm ³
Data collection	Rigaku Saturn724+, CCD detector
Radiation; λ / Å	MoKα radiation; λ =0.71073 Å
Temperature	293 К
Reflections:	
measured	19861
unique	341
Reflections with F(hkl) > 4 σ (F(hkl))	259
2θ and sinθ/ λ (max)	64.32; 0.749
Refined parameters	29
R(sig); R(eq)	0.0110; 0.0641
Goodness of fit	1.100
R _f ; R _w	0.0473; 0.0513

Table S-3b. Atomic coordinates and isotropic displacement parameter (in Å²) for crystal 3.

Wyckoff Site	x/a	y/a	z/a	s.o.f.	B_{iso}/B_{eq}^*
2 <i>a</i>	0	0	0	0.49(2)	1.04(8)
6 <i>d</i>	1/4	1/2	0	1	1.89(4)
6 <i>c</i>	1/4	0	1/2	1	1.00(4)
16 <i>i</i>	0.1836(3)	X	x	0.397(8)	1.20(5)
16 <i>i</i>	0.1976(3)	x	x	0.352(7)	1.01(5)
24 <i>k</i>	0	0.3070(5)	0.1160(5)	0.371(7)	0.87(5)
48/	0.0154(3)	0.2906(3)	0.1264(4)	0.313(5)	0.96(4)
	Wyckoff Site 2a 6d 6c 16i 24k 48/	Wyckoff Site x/a 2a 0 6d 1/4 6c 1/4 16i 0.1836(3) 16i 0.1976(3) 24k 0 48/ 0.0154(3)	Wyckoff Site x/a y/a 2a 0 0 6d 1/4 1/2 6c 1/4 0 16i 0.1836(3) x 16i 0.1976(3) x 24k 0 0.3070(5) 48/ 0.0154(3) 0.2906(3)	Wyckoff Site x/a y/a z/a 2a 0 0 0 6d 1/4 1/2 0 6c 1/4 0 1/2 16i 0.1836(3) x x 16i 0.1976(3) x x 24k 0 0.3070(5) 0.1160(5) 48/ 0.0154(3) 0.2906(3) 0.1264(4)	Wyckoff Site x/a y/a z/a s.o.f. 2a 0 0 0 0.49(2) 6d 1/4 1/2 0 1 6c 1/4 0 1/2 1 16i 0.1836(3) x x 0.397(8) 16i 0.1976(3) x x 0.352(7) 24k 0 0.3070(5) 0.1160(5) 0.371(7) 48/ 0.0154(3) 0.2906(3) 0.1264(4) 0.313(5)

* $B_{eq} = 1/3[B_{11} a^{*2} a^2 + \dots 2 B_{23} b^* c^* b c \cos \alpha]$

Table S-3c. Anisotropic atomic displacement parameters (in Ų) for cr y	ystal 3.
--	------	-------------------	----------

Atom	B ₁₁	B ₂₂	B ₃₃	B ₁₂	B ₁₃	B ₂₃
K1	1.04(14)	B ₁₁	B ₁₁	0	0	0
К2	1.40(8)	2.13(6)	B ₂₂	0	0	0
Si1	1.03(8)	0.98(6)	B ₂₂	0	0	0

	8	{ 5.2 2.8	Si21/B Si22	3.164(3) 3.404(3)
K1		4.5	Si31	3.264(5)
	12	7.5	$\begin{cases} Si32_1 \\ Si32_2 \end{cases}$	3.156(3)
	4		Si1	3.5168(1)
	_	3.0	Si31	3.347(3)
	8	5.0	Si32 ₁	3.371(3) 3.590(3)
К2	8	∫ 5.2	Si21/B	3.698(3)
	0	2.8	Si22	3.631(3)
	4		∫Si32 ₁	2.741(2)
		2.5	∫Si32₂	3.741(3)
		ſ 1.5	Si31	2.337(5)
Si1	4	2.5	∫ Si32 ₁	2.423(3)
		l	[SI32 ₂	
	1	∫ 0.4	Si22	2.046(4)
Si21/B		(0.6 (1.1	Si21/B Si31	2.287(4) 2.301(4)
,-	3	1 1 9	∫ Si32 ₁	2.063(4)
			Si32 ₂	2.319(4)
	1	∫ 0	Si22	1.806(4)
5:22	-	[1	B 5i21	2.046(4)
5122	3	1.1	∫Si32 ₁	2.154(4)
		[1.9	∫Si32₂	2.418(4)
	r	∫ 1.3	Si21/B	2.301(4)
	2	l 0.7	Si22	2.388(4)
Si31	T	∫ 0.4	Si1 Si31	2.337(5) 2.308(7)
	1	0.6	∫Si32 ₁	2.422(6)
		l	∫Si32 ₂	(*)
		1.3	Si21/B	∫ 2.063(4)
	2	ſ	,	2.319(4) 2.154(4)
Si32		0.7	Si22	2.418(4)
51521,2	1		Si1	2.423(3)
	1		5:22	∫2.515(5)
		0.0	3132	2.533(5)

Table S-3d. Interatomic distances for crystal 3 (in Å).

5. Crystallographic data for crystal 4: K_{7.08(1)}B_{6.8(3)}Si_{39.2(3)}

Table S-4a. Experim	nental details for the s	single-crystal XRD m	neasurement of crystal 4.

Chemical formula	K _{7.08(1)} B _{6.8(3)} Si _{39.2(3)}
Space group	Pm ³ n
a	9.952(1) Å
Calculated density	2.4368(8) g/cm ³
Data collection	Rigaku Spider
Radiation; λ / Å	AgK α radiation; λ = 0.56087 Å
Temperature	293 К
Reflections:	
measured	18587
unique	2001
Reflections with $F(hkl) > 4 \sigma(F(hkl))$	872
2θ and sinθ/ λ (max)	101.88; 1.388
Refined parameters	32
R(sig); R(eq)	0.0330
Goodness of fit	1.050
R _f ; R _w	0.0317; 0.0367

Table S-4b. Atomic coordinates and isotropic displacement parameter (in $Å^2$) for crystal 4.

Atom	Wyckoff Site	x/a	y/a	z/a	s.o.f.	B _{eq} *
K1	2a	0	0	0	0.538(7)	0.683(8)
К2	6 <i>d</i>	1/4	1/2	0	1	1.501(9)
Si1	6 <i>c</i>	1/4	0	1/2	1	0.596(8)
Si21	16 <i>i</i>	0.18286(7)	x	x	0.356(9)	0.640(7)
Si22	16 <i>i</i>	0.19668(7)	x	x	0.384(9)	0.580(6)
Si31	24 <i>k</i>	0	0.30357(8)	0.11802(8)	0.513(2)	0.69(1)
Si32	48/	0.0160(1)	0.28996(10)	0.1267(1)	0.239(1)	0.50(2)
* 0 _ 1/2[0		h* c* h c coc	~1	•	•	•

* $B_{eq} = 1/3[B_{11} a^{*2} a^2 + \dots 2 B_{23} b^* c^* b c \cos \alpha]$

Table S-4c. Anisotropic atomic displacement parameters (in Å ²) for cr	ystal 4.
---	-----------------	----------

Atom	B ₁₁	B ₂₂	B ₃₃	B ₁₂	B ₁₃	B ₂₃
K1	0.68(2)	B ₁₁	B ₁₁	0	0	0
К2	1.04(2)	1.73(2)	B ₂₂	0	0	0
Si1	0.63(2)	0.58(1)	B ₂₂	0	0	0
Si21	0.64(1)	B ₁₁	B ₁₁	0.03(2)	B ₁₂	B ₁₂
Si22	0.58(1)	B ₁₁	B ₁₁	0.07(1)	B ₁₂	B ₁₂
Si31	0.79(2)	0.61(2)	0.67(2)	0	0	-0.05(2)
Si32	0.46(5)	0.57(2)	0.48(2)	0.17(2)	-0.14(2)	-0.03(2)

	8	{ 4.9 { 3.1	Si21/B Si22	3.1520(8) 3.3901(7)
K1		6.2	Si31	3.2413(8)
	12	5.8	$\begin{cases} Si32_1 \\ Si32_2 \end{cases}$	3.153(1)
	Λ		Ci1	2 5196/2)
	4	∫ 4.1	Si31	3.3751(5)
	8	3.9	$\int Si32_1$	3.374(1)
К2		ι [4.9	LSI32 ₂ Si21/B	3.601(1) 3.7040(8)
	8	3.1	Si22	3.6367(7)
	Л	∫ ^{2.1}	Si31	3.8387(8)
	4	1.9	Si32 ₁	3.739(1)
		2.1	Si31	2.3552(8)
Si1	4	1.9	$\int Si32_1$	2.429(1)
		l	[5132 ₂	
	1	∫ 0.4	Si22	2.077(1)
Si21/B		(0.6 (1.6	Si21/B Si31	2.315(1) 2.2740(9)
	3	14	∫ Si32 ₁	2.051(1)
			L Si32 ₂	2.316(1)
	1	∫ 0	Si22	1.838(1)
Si22		[1]	B Si31	2.077(1) 2.3612(8)
5122	3		∫Si32 ₁	2.140(1)
		[1.4	Si32 ₂	2.414(1)
	2	∫ 1.2	Si21/B	2.2740(9)
	1	L 0.8	Si22	2.3612(8)
Si31	T	∫ 0.5	Si31	2.3352(8)
	1	0.5	$\int Si32_1$	2.445(1)
		l	(3132 ₂	
		1.2	Si21/B	$\begin{cases} 2.051(1) \\ 2.216(1) \end{cases}$
	2		5:22	$\int 2.140(1)$
Si32 _{1.2}] 0.8	5122	2.414(1)
-,-	1	0.5	Si1 Si31	2.429(1) 2.445(1)
	1	0.5	Si32	∫2.522(1)
			0132	2.543(1)

Table S-4d. Interatomic distances for crystal 4 (in Å).

6. Crystallographic data for crystal 5: K_{6.80(2)}B_{6.4(5)}Si_{39.6(5)}

 Table S-5a.
 Experimental details for the single-crystal XRD measurement of crystal 5.

Chemical formula	K _{6.80(2)} B _{6.4(5)} Si _{39.6(5)}
Space group	Pm ³ n
a	9.968(1) Å
Calculated density	2.4192(8) g/cm ³
Data collection	Rigaku Saturn724+, CCD detector
Radiation; λ / Å	MoKα radiation; λ =0.71073 Å
Temperature	293 К
Reflections:	
measured	15714
unique	267
Reflections with $F(hkl) > 4 \sigma(F(hkl))$	263
2 $ heta$ and sin $ heta/\lambda$ (max)	58.35; 0.686
Refined parameters	29
R(sig); R(eq)	0.0120; 0.0767
Goodness of fit	1.100
R _f ; R _w	0.0380; 0.0416

Table S-5b. Atomic coordinates and isotropic displacement parameter (in $Å^2$) for crystal 5.

Atom	Wyckoff Site	x/a	y/a	z/a	s.o.f.	B _{eq} *
K1	2 <i>a</i>	0	0	0	0.40(1)	1.43(12)
К2	6 <i>d</i>	1/4	1/2	0	1	2.16(5)
Si1	6 <i>c</i>	1/4	0	1/2	1	1.29(5)
Si21	16 <i>i</i>	0.18286(7)	x	x	0.507(7)	1.16(6)
Si22	16 <i>i</i>	0.199(2)	x	x	0.256(7)	1.25(7)
Si31	24 <i>k</i>	0	0.309(2)	0.1137(15)	0.309(7)	1.21(7)
Si32	48/	0.0147(8)	0.2926(10)	0.1253(7)	0.339(4)	1.12(6)
D = 1/2[D]		h c* h c coc	പ			

* $B_{eq} = 1/3[B_{11} a^{*2} a^2 + ... 2 B_{23} b^* c^* b c \cos \alpha]$

Table S-5c. Anisotropi	ic atomic disp	lacement p	parameters (ir	n Ų)	for cr y	stal 5.
------------------------	----------------	------------	----------------	------	-----------------	---------

Atom	B ₁₁	B ₂₂	B ₃₃	B ₁₂	B ₁₃	B ₂₃
K1	1.4(2)	B ₁₁	B ₁₁	0	0	0
К2	1.61(9)	2.43(7)	B ₂₂	0	0	0
Si1	1.33(10)	1.27(7)	B ₂₂	0	0	0

	8	{ 6.0 2.0	Si21/B Si22	3.184(10) 3.44(2)
K1		3.8	Si31	3.28(2)
	12	8.2	∫ Si32 ₁ Si32 ₂	3.176(9)
		L	(31322	
	4	() E	Si1	3.5242(2)
	8		∫Si32 ₁	3.367(9)
K2		5.5	ີໄSi32₂	3.577(9)
KZ	8	2.0	SIZ1/B Si22	3.702(10) 3.63(2)
		1.3	Si31	3.896(15)
	4	2.7	∫ Si32 ₁ Si32 ₂	3.762(7)
			(2	
Si1	4	∫ 1.3	Si31	2.34(2)
511	-	2.7	Si32 ₁	2.417(9)
		(03	5i22	2 ()1(2)
	1	0.7	Si21/B	2.265(14)
Si21/B	2	0.9	Si31	2.329(15)
	5	2.1	$\int Si32_1$ $\int Si32_2$	2.091(13)
		()	6:22	4 75(2)
	1		B	2.01(2)
Si22		0.9	Si31	2.42(2)
	3	2.1	Si32 ₁	2.19(2) 2.44(2)
		(
	2	0.5	Si21/B Si22	2.329(15) 2.42(2)
Si31	1		Si1	2.34(2)
	1	∫ 0.3	Si31 ∫Si32₁	2.27(2)
	-	0.7	Si32 ₂	2.39(2)
				(2,091(13)
	2	0.5	Si21/B	2.334(13)
		1.5	Si22	2.19(2) 2 44(2)
Si32 _{1,2}	1		Si1	2.417(9)
	1	0.3	Si31	2.39(2)
	Т	0.7	Si32	2.515(10)
		l		

Table S-5d. Interatomic distances for crystal 5 (in Å).

Chemical formula	K _{7.85(2)} B _{7.8(1)} Si _{38.2(1)}
Space group	Pm ³ n
a	9.9050(2) Å
Calculated density	2.5018(2) g/cm ³
Data collection	
Radiation; λ / Å	Synchrotron radiation; λ =0.20720 Å
Temperature	293 К
Reflections:	
Reflections used	145
2θ and sinθ/ λ (max)	13.31; 0.559
Refined parameters	15
Berar's factor:	3.16
R _I ; R _p	0.0230; 0.0731

Table S-6a. Experimental details for the XRPD measurement.

Table S-6b. Atomic coordinates and isotropic displacement parameter (in $Å^2$) for $K_{7.85(2)}B_{7.8(1)}Si_{38.2(1)}$.

Atom	Wyckoff Site	x/a	y/a	z/a	s.o.f.	B _{eq} *
K1	2 <i>a</i>	0	0	0	1	1.04(3)
К2	6 <i>d</i>	1/4	1/2	0	0.976(3)	1.67(4)
Si1	6 <i>c</i>	1/4	0	1/2	1	1.33(5)
Si2	16;	0.1009(1)			0.581(5)	1 20(2)
B2	10/	0.1898(1)	X	X	0.419(5)	1.29(3)
Si3	246	0	0.2091(1)	0 1 2 2 9 (1)	0.954(4)	1 52(2)
B3	Z4K	0	0.2981(1)	0.1228(1)	0.046(4)	1.53(3)

* $B_{eq} = 1/3[B_{11} a^{*2} a^2 + \dots 2 B_{23} b^* c^* b c \cos \alpha]$

Table S-6c. Anisotropic atomic displacement parameters in (in Å²) for $K_{7.85(2)}B_{7.8(1)}Si_{38.2(1)}$.

Atom	B ₁₁	B ₂₂	B ₃₃	B ₁₂	B ₁₃	B ₂₃
K1	1.04(5)	B ₁₁	B ₁₁	0	0	0
К2	1.43(9)	1.79(6)	B ₂₂	0	0	0
Si1	1.10(11)	1.44(7)	B ₂₂	0	0	0
Si2/B2	1.29(4)	B ₁₁	B ₁₁	0.28(5)	B ₁₂	B ₁₂
Si3/B3	1.91(6)	1.38(6)	1.30(6)	0	0	-0.15(6)

V 1	8	{ 4.6 3.4	Si2 B2	3.257(1)
KI	12	$\left\{\begin{array}{c} 11.4\\ 0.6\end{array}\right.$	Si3 B3	3.193(1)
	4		Si1	3.5019(1)
	8	7.6 { 0.4	Si3 B3	3.4072(8)
К2	8	{ 4.6 { 3.4	Si2 B2	3.651(1)
	4	3.8 { 0.2	Si3 B3	3.767(1)
		L		
Si1	4	{ 3.8 { 0.2	Si3 B3	2.364(1)
		Ĺ		
	1	{ 0.6 0.4	Si2 B2	2.065(2)
Si2/B2	3	$\left\{\begin{array}{c} 2.9\\ 0.1 \end{array}\right.$	Si3 B3	2.264(1)
	2	{ 1.2 0.8	Si2 B2	2.264(1)
Si3/B3	1		Si1	2.364(1)
	1	{ 0.95 { 0.05	Si3 B3	2.432(2)

Table S-6d. Interatomic distances (in Å) for $K_{7.85(2)}B_{7.8(1)}Si_{38.2(1)}$.

8. Crystal structure models for quantum chemical calculations

Atom	Wyckoff Site	x/a	y/a	z/a
K1	2 <i>a</i>	0	0	0
К2	6 <i>d</i>	1/4	0	1/2
Si1	6 <i>c</i>	1/4	1/2	0
Si2	8e	0.19666	0.19666	0.19666
B2	8e	0.31711	0.31711	0.31711
Si3	24 <i>i</i>	0.298	0	0.123

Table S-7a. Model 1 with composition $K_8B_8Si_{38}$ (space group $P4^3n$; a = 9.963 Å)

Table S-7b. Model 2 with composition	n K ₈ B ₈ Si ₃₈ (space gro	up P4 ³ n; a = 9.963 Å)
--------------------------------------	---	------------------------------------

Atom	Wyckoff Site	x/a	y/a	z/a
K1	2 <i>a</i>	0	0	0
K2	6 <i>d</i>	1/4	0	1/2
Si1	6 <i>c</i>	1/4	1/2	0
B2	8e	0.19666	0.19666	0.19666
Si2	8e	0.31711	0.31711	0.31711
Si3	24 <i>i</i>	0.298	0	0.123

The calculations have revealed that the energy of model 1 is lower than for than model 2.

9. Quantitative evaluation of the ¹¹B NMR signals

Table S-8. Boron mass fraction in the clathrate $K_{8-x}B_ySi_{46-y}$ determined by structure refinement and by quantitative evaluation of the ¹¹B NMR signals. The sample number is related to table 1 (main text).

	Crystal stru	¹¹ B NMR		
No(i)	composition	w(B) in %	w _i (B)/w ₁ (B)	<i>w</i> _i (B)/ <i>w</i> ₁ (B)
1	$K_{7.18(2)}B_{7.2(5)}Si_{38.8(5)}$	5.37	1	1
3	$K_{6.98(4)}B_{6.4(5)}Si_{39.6(5)}$	4.68	0.87	1.13
5	$K_{6.80(2)}B_{6.4(5)}Si_{39.6(5)}$	4.78	0.89	0.87

ESI

Table S-9. Comparison of the diamagnetic contributions to the measured magnetic susceptibility χ_0 and the sum of diamagnetic increments $\Sigma \chi$ Dia for the refined clathrate compositions. The sample number is related to table 1 (main text).

No	composition	χ_0 / emu mol ⁻¹	$\Sigma \chi_{\text{Dia},}$ / emu mol ⁻¹
1	$K_{7.18(2)}B_{7.2(5)}Si_{38.8(5)}$	-3.18×10^{-4}	-3.48×10^{-4}
3	$K_{6.98(4)}B_{6.4(5)}Si_{39.6(5)}$	-3.65 × 10 ⁻⁴	-3.42 × 10 ⁻⁴
5	$K_{6.80(2)}B_{6.4(5)}Si_{39.6(5)}$	-1.55 × 10 ⁻⁴	-3.48 × 10 ⁻⁴