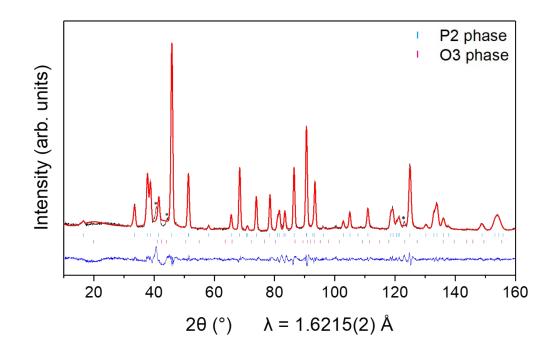
Supplementary data:

Biphasic P2/O3-Na_{2/3}Li_{0.18}Mn_{0.8}Fe_{0.2}O₂: A Structural Investigation.

Jennifer H. Stansby^{a,b}, Maxim Avdeev^b, Helen E. A. Brand^c, Elena Gonzalo^d, Nicholas E. Drewett^d, Nagore Ortiz-Vitoriano^{d,e}, Neeraj Sharma^{a,*}, and Teófilo Rojo^{e,f}

^a School of Chemistry, UNSW Australia, Sydney, NSW 2052, Australia


^b Australian Centre for Neutron Scattering, Australia Nuclear Science and Technology Organisation, Kirrawee, DC NSW 2253, Australia.

^c Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia

^d Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain

^e Ikerbasque, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain

^f Departamento de Química Inorgánica. Universidad del País Vasco UPV/EHU. P.O. Box 664, 48080 Bilbao, Spain

Figure S1. Neutron diffraction data collected at room temperature for the pristine P2/O3- $Na_{2/3}Li_{0.18}Mn_{0.8}Fe_{0.2}O_2$ powder, indexed with a P2 and O3 phase (Le Bail fit). Observed, calculated and difference are shown by a solid black, red and blue line, respectively. Asterisks indicate reflection intensity around $2\theta = 40^\circ$, 43° and 125° which are not accounted for by the model. The peak around $2\theta = 40^\circ$ is later accounted for upon introducing Li to Rietveld-refined model, while the origin of the peaks around $2\theta = 43^\circ$ and 125° are unknown.

Table S1. Concentration (in ppm) of the experimental and theoretical molar ratio (fixing Mn content) of the elements detected in the sample by ICP-OES measurement.

Element	ICP Concentration (ppm)	Experimental molar ratio*	Theoretical molar ratio
Na	6.61	0.62(1)	0.67
Mn	20.4	0.80	0.8
Fe	4.82	0.19(1)	0.2
Li	0.574	0.18(2)	0.18

*Errors calculated based on a 10% variation in ICP concentrations. No error is given for Mn since the Mn content is fixed to perform the calculations.

Atom	Wyckoff	x	У	Z	SOF ^a	lsotropic ADP ^a (×100/Å ²)
Na _e	2b	0	0	0.25	0.30(1) *	7.2(3)
Na _f	2d	1/3	2/3	0.75	0.37(1) *	6.8(3)
Mn	2a	0	0	0	0.8	0.29(9)
Fe	2a	0	0	0	0.2	0.27(9)
0	4f	1/3	2/3	0.0909(1)	1	1.3(1)

Table S2. Crystallographic parameters for P2-Na_{2/3}Mn_{0.8}Fe_{0.2}O₂ as determined from Rietveld analysis of neutron powder diffraction data ($P6_3/mmc$), see also Figure 4.

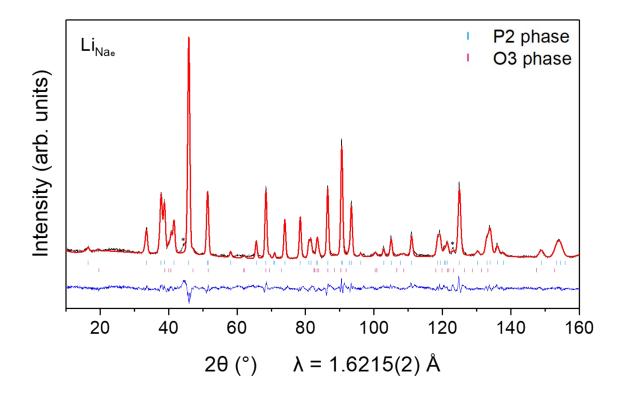

^a Atomic displacement parameter (ADP), site occupancy factor (SOF).* Total Na content constrained to be 0.67. Space group P6₃/mmc, $R_p = 4.4\%$, $wR_p = 5.6\%$, a = 2.8816(1) Å, c =11.2060(4) Å. Weight fraction = 93.83(2)%.

Table S3. Crystallographic parameters for O3-Li $Mn_{0.8}Fe_{0.2}O_2$ as determined from Rietveld analysis

of neutron powder diffraction data (*R*-3*m*), see also Figure 4.

Atom	Wyckoff	х	У	Z	SOF ^a	Isotropic ADP ^a (×100/Å ²)
Li	За	0	0	0	1	5.2(11)
Mn	3b	0	0	0.5	0.8	1.0*
Fe	3b	0	0	0.5	0.2	1.0*
0	6c	0	0	0.2358(5)	1	0.42(9)

^a Atomic displacement parameter (ADP), site occupancy factor (SOF). * Values fixed. Space group
 R-3m, R_p = 4.4%, wR_p = 5.6%, a = 2.8419(6) Å, c =14.198(6) Å. Weight fraction = 6.17(1)%.

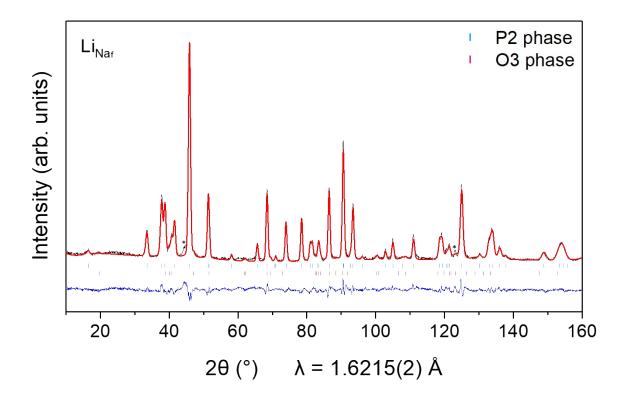


Figure S2. Rietveld analysis of neutron diffraction data collected at room temperature for the pristine P2/O3-Na_{2/3}Li_{0.18}Mn_{0.8}Fe_{0.2}O₂ powder, indexed with O3-LiMn_{0.8}Fe_{0.2}O₂ and P2-Na_{2/3}Li_{0.12}Mn_{0.8}Fe_{0.2}O₂ whereby Li is introduced onto the Na_e site. Observed, calculated and difference are shown by a solid black, red and blue line, respectively. The asterisks indicate small peaks around $2\theta = 43^{\circ}$ and 125° which are not accounted for by the model; the origin of these reflections is unknown.

Atom	Wyckoff	х	У	Z	SOF ^a	Isotropic ADP ^a (×100/Å ²)
Na _e	2b	0	0	0.25	0.32(1) *	4.6(2)
Na _f	2d	1/3	2/3	0.75	0.39(1) *	7.4(3)
Li	2b	0	0	0.25	0.12	3.5(7)
Mn	2a	0	0	0	0.8	0.71(4)
Fe	2a	0	0	0	0.2	0.78(6)
0	4f	1/3	2/3	0.0907(1)	1	1.4(1)

Table S4. Crystallographic parameters for P2-Na_{0.71}Li_{0.12}Mn_{0.8}Fe_{0.2}O₂ with Li on the Na_e site (model 1) as determined from Rietveld analysis of neutron powder diffraction data ($P6_3/mmc$).

^a Atomic displacement parameter (ADP), site occupancy factor (SOF).* Total Na content constrained to be 0.71. Space group P6₃/mmc, $R_p = 4.4\%$, $wR_p = 5.5\%$, a = 2.8816(1) Å, c = 11.2057(4) Å.

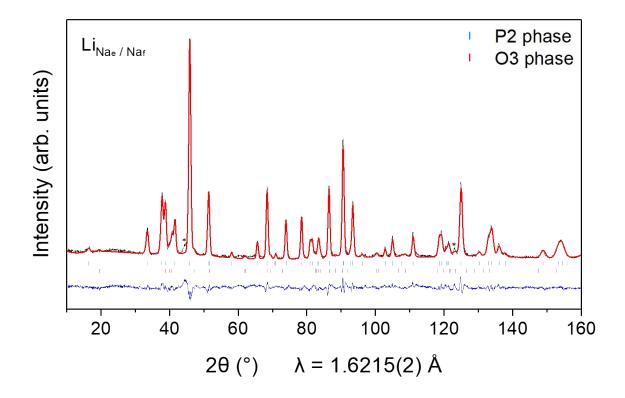


Figure S3. Rietveld analysis of neutron diffraction data collected at room temperature for the pristine P2/O3-Na_{2/3}Li_{0.18}Mn_{0.8}Fe_{0.2}O₂ powder, indexed with O3-LiMn_{0.8}Fe_{0.2}O₂ and P2-Na_{2/3}Li_{0.12}Mn_{0.8}Fe_{0.2}O₂ whereby Li is introduced onto the Na_f site. Observed, calculated and difference are shown by a solid black, red and blue line, respectively. The asterisks indicate small peaks around $2\theta = 43^{\circ}$ and 125° which are not accounted for by the model; the origin of these reflections is unknown.

Atom	Wyckoff	х	У	Z	SOF ^a	Isotropic ADP ^a (×100/Å ²)
Na _e	2b	0	0	0.25	0.32(1) *	7.7(3)
Na _f	2d	1/3	2/3	0.75	0.39(1) *	5.8(2)
Li _f	2d	1/3	2/3	0.75	0.12	2.5(9)
Mn	2a	0	0	0	0.8	0.26(3)
Fe	2a	0	0	0	0.2	0.17(5)
0	4f	1/3	2/3	0.0908(1)	1	1.4(1)

Table S5. Crystallographic parameters for P2-Na_{0.71}Li_{0.12}Mn_{0.8}Fe_{0.2}O₂ with Li on the Na_f site (model 2) as determined from Rietveld analysis of neutron powder diffraction data (*P*6₃/*mmc*).

^a Atomic displacement parameter (ADP), site occupancy factor (SOF). * Total Na content constrained to be 0.71. Space group P6₃/mmc, $R_p = 4.4\%$, $wR_p = 5.5\%$, a = 2.8816(1) Å, c = 11.2057(4) Å.

Figure S4. Rietveld analysis of neutron diffraction data collected at room temperature for the pristine P2/O3-Na_{2/3}Li_{0.18}Mn_{0.8}Fe_{0.2}O₂ powder, indexed with O3-LiMn_{0.8}Fe_{0.2}O₂ and P2-Na_{2/3}Li_{0.12}Mn_{0.8}Fe_{0.2}O₂ whereby Li is introduced onto both the Na_e and Na_f site. Observed, calculated and difference are shown by a solid black, red and blue line, respectively. The asterisks indicate small peaks around $2\theta = 43^{\circ}$ and 125° which are not accounted for by the model; the origin of these reflections is unknown.

Table S6. Crystallographic parameters for P2-Na_{0.71}Li_{0.12}Mn_{0.8}Fe_{0.2}O₂ with Li on both the Na_e and Na_f site (model 3) as determined from Rietveld analysis of neutron powder diffraction data ($P6_3/mmc$).

Atom	Wyckoff	х	У	Z	SOF ^a	Isotropic ADP ^a (×100/Å ²)
Na _e	2b	0	0	0.25	0.32(1) *	6.3(2)
Na _f	2d	1/3	2/3	0.75	0.39(1) *	6.5(2)
Li _e	2b	0	0	0.25	0.06	5.3(2)
Li _f	2d	1/3	2/3	0.75	0.06	3.2(2)
Mn	2a	0	0	0	0.8	0.48(3)
Fe	2a	0	0	0	0.2	0.47(5)
0	4f	1/3	2/3	0.0908(1)	1	1.4(1)

^a Atomic displacement parameter (ADP), site occupancy factor (SOF). * Total Na content constrained to be 0.71. Space group P6₃/mmc, $R_p = 4.4\%$, $wR_p = 5.5\%$, a = 2.8816(1) Å, c = 11.2057(4) Å.

Calculation for the distribution of alkali ions in the P2 phase:

Overall composition: P2/O3-Na_{2/3}Li_{0.18}Mn_{0.8}Fe_{0.2}O₂

Composition of O3 phase: LiMn_{0.8}Fe_{0.2}O₂

Relative phase fractions: P2 = 93.83 %; O3 = 6.17 %

Remaining Li that must occupy the P2 phase: 0.18 - 1*6.17%/100 = 0.12

Na present in P2 phase: 0.67/0.9383 = 0.71