Supplementary Material

Contents	Page
Figure S1. Optimized geometries of 2, 3 and 4 in DMF	S2
Figure S2. Calculated (B3LYP and CAM-B3LYP functionals) UV-vis absorption spectra of the compound 2 in DMF.	\$3
Figure S3. Experimental and calculated UV-vis absorption spectra of 4 in DMF	S3
Table S1. Electronic transitions (λ_{ex}) corresponding to vertical excitation energies (ΔE) , transition dipole moments (μ_{tr}) , oscillator strengths (f), excitation character, molecular orbitals and their % contributions of 2 in DMF calculated with TD-DFT at CAM-B3LYP/6-31G(d,p) and LANL2DZ (for Zn) level	S4
Figure S4. Selected molecular orbitals of 2 in DMF	S5
Table S2. Electronic transitions (λ_{ex}) corresponding to vertical excitation energies (ΔE) , transition dipole moments (μ_{tr}) , oscillator strengths (f), excitation character, molecular orbitals and their % contributions of 3 in DMF calculated with TD-DFT at CAM-B3LYP/6-31G(d,p) and LANL2DZ (for Co) level	S6
Figure S5. Selected molecular orbitals of 3 in DMF	S7
Table S3. Electronic transitions (λ_{ex}) corresponding to vertical excitation energies (ΔE) , transition dipole moments (μ_{tr}) , oscillator strengths (f), excitation character, molecular orbitals and their % contributions of 4 in DMF calculated with TD-DFT at CAM-B3LYP/6-31G(d,p) and LANL2DZ (for Cu) level	S9
Figure S6. Selected molecular orbitals of 4 in DMF	S10
Figure S7. Frontier orbital energies (E_{H} , E_{L}) and energy gaps (ΔE_{H-L}) of investigated compounds at CAM-B3LYP/6-31G(d,p)/LANL2DZ level in DMF	S12
Figure S8 . Effect of the metal atom on the HOMO and LUMO energy gaps in DMF	S12
Table S4. The average dipole moment μ (D), the linear polarizability α_0 , the total polarizability α_{tot} (x10 ⁻²⁴ esu), and the first-order hyperpolarizability β_{tot} (x10 ⁻³⁰ esu) of urea calculated at B3LYP/6-31G(d,p)/LANL2DZ in gas.	S13

Figure S1. Optimized geometries of 2, 3 and 4 in DMF. (Hydrogens were excluded for simplicity for a more clarity)

Figure S2. Calculated (B3LYP and CAM-B3LYP functionals) UV-vis absorption spectra of the compound **2** in DMF.

Figure S3. Experimental and calculated UV-vis absorption spectra of 4 in DMF

state	ΔE (eV)	λ_{ex} (nm)	f	Character ^a	Predominant Transitions	%
S_1	1.76	705.5	0.8177	LE Pc1, π-π*	$H\rightarrow L+2$	69
S_2	1.77	699.0	0.6450	LE Pc1	$H \rightarrow L+3$	68
S ₃	1.78	697.8	1.2384	LE Pc2	H-1→L	68
S ₄	1.785	694.3	1.2027	LE Pc2	H-1→L+1	69
S ₅	2.86	432.5	0.000	CT1	H→L	71
$\overline{S_9}$	3.46	358.2	0.0359	LCT2	H-2→L	60
S ₁₀	3.53	351.0	0.0807	LCT1	H-3→L+3	55
S ₁₁	3.56	348.1	0.0482	LCT1, LE Pc1 LCT1	$\begin{array}{c} H-4 \rightarrow L+2 \\ H-3 \rightarrow L+3 \end{array}$	42 24
S ₁₂	3.65	339.9	0.0167	LCT2 LCT2	H-6→L+1 H-6→L	42 18
S ₁₃	3.66	338.3	0.2036	LCT2 LE Pc2	H-2→L+1 H-11→L+1	34 31
S ₁₄	3.69	335.4	0.1635	LCT1, CT2	H-7→L+2	46
S ₁₅	3.70	334.6	0.1711	LCT1, CT2 LCT1, CT1	H-7→L+3 H-4→L+4	38 28
S ₁₆	3.71	334.4	0.1835	LE Pc2 LCT2	H-11→L H-6→L	32 32
S ₁₇	3.77	328.9	0.0194	LE Pc1	$H \rightarrow L+5$	56
S_{18}	3.78	328.4	0.0069	LE Pc2	H-1→L+4	59
S ₁₉	3.85	321.4	1.1453	LE Pc2, LCT2 LE Pc2	H-9→L H-11→601L	45 26
S ₂₀	3.87	320.3	1.2643	LCT1, LE Pc1 LCT1, LE Pc1	$ \begin{array}{c} H-8 \rightarrow L+2 \\ H-4 \rightarrow L+2 \end{array} $	41 33
S ₂₁	3.88	319.1	1.3304	LE Pc2, LCT2 LCT2	H-9→L+1 H-6→L+1	34 30
S ₂₂	3.89	318.5	1.6136	LCT1, LE Pc1 LE Pc1	$\begin{array}{c} H-8 \rightarrow L+3 \\ H-10 \rightarrow L+3 \end{array}$	50 35
S_{23}	3.96	313.0	0.1562	LCT2	H-2→L+1	43
S ₂₄	3.97	311.7	0.1635	LCT1 LCT1	$\begin{array}{c} H-3 \rightarrow L+2 \\ H-4 \rightarrow L+2 \end{array}$	42 27
S ₂₅	4.04	306.4	0.0278	LCT1	H-4→L+3	50
S ₂₇	4.11	301.2	0.0055	LE Pc2	H-19→L+1	54
	4 1 0	201 1	0.0000		11.20 .1	4 4

Table S1. Electronic transitions (λ_{ex}) corresponding to vertical excitation energies (ΔE), oscillator strengths (f), excitation character, molecular orbitals and their % contributions of **2** in DMF calculated with TD-DFT at CAM-B3LYP/6-31G(d,p) and LANL2DZ (for Zn) level

^aLE Pc1: local excitation of Pc1, π - π ^{*}; LE Pc2: local excitation of Pc2, π - π ^{*}; CT1: charge transfer from Pc1 to Pc2, π - π ^{*}; CT2: charge transfer from Pc2 to Pc1, π - π ^{*}; LCT1: charge transfer from O to Pc1, n- π ^{*}, π - π ^{*}; LCT2: charge transfer from O to Pc2; MLCT: charge transfer from Zn to Pc; MLCT2: charge transfer from Zn to Pc2

Figure S4. Selected molecular orbitals of 2 in DMF

state	AE (eV)	λ (nm)	f	Character ^a	Predominant	%
		Mex (IIII)	1	Character	Transitions	/0
<u>S₁₃</u>	1.60	772.9	0.0651	LE Co1, LE Pc1	<u>H-4→L+1</u>	66
S14	1.66	748.2	0.0007	LE Co2,	H-2→L+4	36
				LE Pc2 LE Pc2	$H-1 \rightarrow L+3$	<u>35</u>
<u>S15</u>	1.67	741.3	0.0492	LE Co1, LE Pc1	H-4→L+2	_44_
S_16	1.85	669.7	0.1368	LE Co1, LE Pc1	<u>H-13→L</u>	41
S_{17}	2.03	609.1	0.1078	LE Co1, MLCT1	H-6→L+2	47
S ₁₈	2.04	607.1	1.000	LE Pc2	H→L+3	69
S ₁₉	2.05	605.3	0.9610	LMCT2, LE Pc2	$H\rightarrow L+4$	69
				LE Col, MLCT1	H-6→L+2	32
S_{20}	2.06	602.6	0.2027	LE Co1, MLCT1	H-15→L	29
				LE Co1, MLCT1	H-6→L+1	28
S ₂₁	2.09	594.1	0.0088	LE Co1, MLCT1	H-6→L+1	52
	216	574.0	0.20(5	LE Co1, LE Pc1	H-13→L	32
S_{22}	2.16	574.9	0.3065	LE Co1, LE Pc1	H-5→L+2	16
			0 1 4 7 2	LE Co1, LE Pc1	H-4→L+2	34
S_{28}	2.34	528.5	0.1473	LE Co1, LE Pc1	H-5→L+1	16
			0.2500	LE Col, LCT1	H-19→L	48
S_{29}	2.39	519.2	0.3500	LE Co1, LE Pc1	H-5→L+2	40
				LE Col. LCT1	 H-18→L	32
S ₃₂	2.45	504.3	0.0078	LE Col, LCT1	H-19→L	31
52				LE Co1, LE Pc1	H-15→L	26
	·		0.550	LE Pc1, LCT1	H-38→L	46
S_{40}	2.77	446.6	0.5526	LE Col, LCT1	H-5→L+1	31
S ₄₂	2.84	436.9	0.5872	LCT1,LE1,LECo1	H-37→L	40
	2 01	495.0		LCT1, LE Pc1, LECo1	H-23→L	38
S_{44}	2.91	425.8	0.2006	LCT1	H-30→L	15
S45	2.94	421.2	0.1182	LECo1, LE Pc1	H-5→L+1	49
	• • • •			LECo1, LE Pc1	H-61→L	50
S_{46}	2.97	416.9	0.0045	LECo1, LE Pc1	H-53→L	29
S ₅₂	3.13	396.0	0.0042	LMCT1, LE Pc1	H-55→L	57
S56	3.20	386.7	0.0028	LECo1. LE Pc1	H-53→L	57
S ₆₁	3.43	360.8	0.0061	LMCT1. LE Pc1	 H-49→L	58
S ₆₂	3.79	326.8	0.0024	LMCT1. LE Pc1	H-29→L	37
S62	3 81	325.2	0.0031	LCT1	H-47→I	39
<u>Sea</u>	3 82	324.2	0.0084	LE Pc2	$H \rightarrow L+10$	$\frac{-5}{53}$
<u>Sco</u>	3.86	320.8	0.0058	LE Pc2	$H \rightarrow I + 10$	$\frac{-33}{42}$
<u>S₆₉</u>	3.92	316.4	0.0149	MICT1 IF Pc1	$H_4 \rightarrow I + 5$	$-\frac{12}{27}$
			0.0147		$H_{50} \rightarrow I$	$\frac{2}{42}$
S_{78}	3.99	310.8	0.1431	LECol LE Pcl	H-4→L	18
See	4 02	308.0	0 2594	MLCT1 I F Pc1	H-4→I +6	$\frac{10}{41}$
<u>Sar</u>	4 00	303.0	0 1567	$\frac{\text{MECT1, EETC1}}{\text{MECT2 IF Pc2}}$	$H_2 \rightarrow I + 11$	36
<u>Sac</u>	<u> </u>	302.2	0.0542	MICT1 IF Pc1	$H_4 \rightarrow I + 5$	$\frac{30}{27}$
<u> </u>	<u></u> <u></u>	301.6	0 1568	ΙΕ Γ ΩΛ	$H_1 \rightarrow I + 11$	- <u>'</u> 36
<u>S</u>	<u> </u>	201.0	1 9/11	$\frac{DD102}{MICT2 IED02}$	$H_2 \rightarrow I + 11$	30
1 94	т.∠∪	ムノマ.ソ	1.7411	$\mathbf{W} = \mathbf{U} + $	11 ⁻ 4 /L/11	59

Table S2. Electronic transitions (λ_{ex}) corresponding to vertical excitation energies (ΔE), oscillator strengths (f), excitation character, molecular orbitals and their % contributions of **3** in DMF calculated with TD-DFT at CAM-B3LYP/6-31G(d,p) and LANL2DZ (for Co) level

^aLE Pc1: local excitation of Pc1, π - π *; LE Pc2: local excitation of Pc2, π - π *; LE Co1: d-d transition of Co in Pc1; LE Co2: d-d transition of Co in Pc2; LCT1: charge transfer from O and ligand to Pc1; LCT2: charge transfer from O and ligand to Pc2; MLCT1: charge transfer from Co to Pc1; MLCT2: charge transfer from Co to Pc2; LMCT1: charge transfer from Pc1 to Co; LMCT2: charge transfer from Pc2 to Co.

Figure S5. Selected molecular orbitals of 3 in DMF

Table S3. Electronic transitions (λ_{ex}) corresponding to vertical excitation energies (ΔE), oscillator strengths (f), excitation character, molecular orbitals and their % contributions of 4 in DMF calculated with TD-DFT at CAM-B3LYP/6-31G(d,p) and LANL2DZ (for metals) level

state $\Delta E (eV)$		$\lambda_{ex}\left(nm\right)$	f	Character	Predominant	0/_
				Character	Transitions	70
<u>S</u> 8	1.74	713.4	0.3118	LE Pc2, LE Cu2	H-2→L+1	66
S ₉	1.75	709.1	0.2622	LE Pc2, LE Cu2	H-2→L+2	66
с С	1.04	(747	0 1207	LE Pc2, LE Cu2, LCT2	H-12→L	55
S ₁₀	1.84	0/4./	0.1297	LE Pc2, LE Cu2, LCT2	H-2→L+1	14
S ₁₁	1.89	654.2	1.0106	LE Pc1, LMCT	H-1→L+3	68
S ₁₂	1.91	648.6	1.0248	LE Pc1, LMCT	H-1→L+4	68
S ₁₃	1.94	638.6	0.1370	LCT2, LE Pc2, LECu2	H-13→L	54
S ₁₉	2.13	580.9	0.0198	LCT2, LE Pc2, LECu2	H-15→L	49
с С		520.0	0.0200	LCT2, LE Pc2, LECu2	H-18→L	46
S ₂₁	2.38	520.0	0.0208	LCT2, LE Pc2, LECu2	H-15→L	30
ç	274	452.0	0.0025	MLCT1	$H \rightarrow L+10$	37
3 ₂₆	2.74 	432.0	0.0023	LE Pc1, LE Cu1	H-4→L+13	35
<u>S₂₇</u>	2.76	449.5	0.0060	MLCT1	$H \rightarrow L+10$	58
See	2.81	440.9	0 5055	LE Pc2, LECu2	H-23→L	40
	2.01			LE Pc2, LECu2	<u>H-96→L</u>	31
Saa	2 81	440 5	0 3499	LE Pc2, LECu2	H-96→L	37
				LE Pc2, LECu2, LCT2	<u>H-87→L</u>	
<u>S₃₇</u>	2.96	418.6	0.0071	MLCT1	$H \rightarrow L+11$	65
<u>S₃₈</u>	3.03	409.2	0.0109	LMCT2, LE Pc2	<u>H-33→L</u>	61
$\underline{S_{40}}$	3.13	396.2	0.0001	MLCT1, LE Co1	H-8→611L+3	61
<u>S₄₃</u>	3.26	380.9	0.0343	LMCT2, LE Pc2	<u>H-56→L</u>	56
S46	3.35	370.4	0.0657	LE Pc2, LECu2, LCT2	H-117→L	33
				LE Pcl, LECul	$H-23 \rightarrow L$	23
S_{57}	3.62	342.5	0.0279	LCT2, LE Pc2, LECu2	H-12→L+1	53
				LC12, LE Pc2, LECu2	$H-12 \rightarrow L+2$	<u>-29</u>
S_{62}	3.74	331.4	0.2024	LE PCI	$H-I \rightarrow L+10$	35
	276	220.4	0.2024	LE PCI, MLCII	$H-4 \rightarrow L+10$	$\frac{13}{27}$
<u>S₆₄</u>	3.76		0.3034	LCTT, LE PCI, LECUI	$H-9 \rightarrow L+3$	
S_{65}	3.77	328.4	0.1639	LE PCI	$H-I \rightarrow L+10$	48
<u>-</u>	2 70	227 /	0.0152	LCT1, LEFC1, LECu1	$\Pi - 9 \rightarrow L \mp 4$ $\Pi - 12 \rightarrow L \pm 2$	<u></u>
<u>S</u>	2 97	224.0	0.0132	LCT2, $LETC2$, $LECu2$	$H_{12} \rightarrow L_{2}$	- <u>47</u> 52
368			0.2448	LC12, LEFC2, LECU2	$H^{-12} \rightarrow L^{+2}$	<u>-35</u> 36
S_{69}	3.86	321.3	0.0196	$LE 1 C_2$, WILC 12 $LE C_0 2 L CT 2 LE P_0 2$	H_87→I	20
				LCT2 I F Pc2 I FCu2	$H_{-15} \rightarrow I + 1$	
S_{74}	3.92	316.1	0.1282	LCT2 LE Pc2 LECu2	H-18→L	16
S75	3 95	313 7	0 1 1 9 7	LCT2 LE Pc2 LECu2	H-15 \rightarrow L+2	$-\frac{10}{39}$
				LCT1 LE Pc1 LECu1	$H - 7 \rightarrow L + 3$	38
S ₇₆ 3.99	3.99	311.0	0.5947	LCT1, LE Pc1, LECu1	H-7→L+4	25
				LCT2. LE Pc2. LECu2	H-15→L+2	34
S_{80}	4.02	308.0	0.2931	LCT2, LE Pc2, LECu2	H-13→L+2	23
S ₈₁	4.03	307.9	0.0265	LCT2, LE Pc2, LECu2	H-13→L+1	28
S ₈₅	4.05	305.9	0.1586	LE Pc2, MLCT2	H-2→L+5	29
S ₈₇	4.06	304.9	0.1087	LE Pc1	H-1→L+11	60
S ₉₃	4.105	302.0	0.0400	LE Pc1, LMCT1	H-1→L+12	43

^aLE Pc1: local excitation of Pc1, π - π ^{*}; LE Pc2: local excitation of Pc2, π - π ^{*}; LE Cu1: d-d transition of Cu in Pc1; LE Cu2: d-d transition of Cu in Pc2; LCT1: charge transfer from O to Pc1; LCT2: charge transfer from O to Pc2; MLCT1: charge transfer from Cu to Pc1; MLCT2: charge transfer from Cu to Pc2; LMCT1: charge transfer from Pc1 to Cu; LMCT2: charge transfer from Pc2 to Cu.

Figure S6. Selected molecular orbitals of 4 in DMF

Figure S7. Frontier orbital energies (E_{H}, E_{L}) and energy gaps (ΔE_{H-L}) of investigated compounds at CAM-B3LYP/6-31G(d,p)/LANL2DZ level in DMF

Figure S8. Effect of the metal atom on the HOMO and LUMO energy gaps in DMF

Table S4. The average dipole moment μ (D), the linear polarizability α_0 , the total polarizability α_{tot} (x10⁻²⁴ esu), and the first-order hyperpolarizability β_{tot} (x10⁻³⁰ esu) of investigated compounds and urea calculated at CAM-B3LYP/6-31G(d,p)/LANL2DZ in gas.

Parameters*	2	3	4	Urea
μ _x	0.1522444	0.1547704	0.1865939	0.0655518
μ _v	1.3828598	1.3065812	1.6572147	-1.582445
μ _z	-0.2666025	-0.0229275	0.0360732	0.5690172
¹ μ (D)	3.60	3.34	4.24	4.28
α_{xx}	2418.2878236	3527.2520537	3507.5274316	30.9434131
α_{xy}	29.3557189	-274.1488539	-218.7980891	-0.1561491
α_{vv}	2471.6048408	2666.1863175	2461.2345114	32.2703456
α _{xz}	-307.3082558	1344.2259407	1444.5533517	-0.0118468
$\alpha_{\rm vz}$	99.1030709	-409.9746463	-310.0769631	-0.3310014
α _{zz}	1081.5507743	3848.5614032	3695.2477047	13.0787555
$^{2}\alpha_{0}$	1990.6625	3347.3332	3221.3365	25.4308
$^{2}\alpha_{0}(\text{\AA}^{3})$	294.6624	495.5251	476.8721	2.7474
$^{3}\alpha_{tot}$ (esu)	217.02	379.06	408.20	2.75
β _{xxx}	455.6715957	30827.3974035	7427.9616525	-0.9104766
β _{xxv}	-171.1435118	-12209.1587551	-3498.194352	45.3866137
β _{xvv}	-647.0401925	-4613.2837181	1698.3432821	0.4295117
β _{vvv}	909.941483	-4739.8581059	-437.1544143	-78.8128089
β _{xxz}	57.8776807	27449.463535	20400.2159987	19.759337
β _{xvz}	-15.4000814	-10705.9483464	-4677.9856253	2.4390382
β _{vvz}	328.9479065	7478.4412302	2508.5463107	17.3091149
β _{xzz}	-29.6301811	15399.2021211	31134.5188086	-0.5055633
β _{yzz}	159.7906988	13344.4496164	-1912.4736496	-5.247455
β _{zzz}	48.2495413	-21868.8804735	24164.0138759	1.5866581
${}^{4}\beta_{tot}$ (esu)	8.92	117.06	409.81	0.46

*All values are given in a.u. unless otherwise stated.

(for α : 1 a.u.= 0.1482x10⁻²⁴ esu; for β : 1 a.u.= 8.6393x10⁻³³ esu) ¹ $\mu_{tot} = (\mu_{a} + \mu_{a} + \mu_{a})^{1/2}$.

$${}^{T}\mu_{tot} = (\mu_{x} + \mu_{y} + \mu_{z})^{-1};$$

$${}^{2}\alpha_{o} = (\alpha_{xx} + \alpha_{yy} + \alpha_{zz})/3;$$

$${}^{3}\alpha_{tot} = 2^{-1/2} \Big[(\alpha_{xx} - \alpha_{yy})^{2} + (\alpha_{yy} - \alpha_{zz})^{2} + (\alpha_{zz} - \alpha_{xx})^{2} + 6\alpha_{xz}^{2} \Big]^{1/2};$$

$${}^{4}\beta_{tot} = \Big[(\beta_{xxx} + \beta_{xyy} + \beta_{xzz})^{2} + (\beta_{yyy} + \beta_{yzz} + \beta_{yxx})^{2} + (\beta_{zzz} + \beta_{zxx} + \beta_{zyy})^{2} \Big]^{1/2}$$