Promising lanthanide-doped BiVO₄ phosphor for highly efficient

upconversion luminescence and temperature sensing

Yuwei Liu^[a], Hong Wang^{*[a]}, Lingshun Meng^[a], Jianxin Jiao^[a], Mingming Xing^[a], Xixian Luo^[a] and Ying

Tian*^[a]

^[a] Physics Department, Dalian Maritime University, Dalian, Liaoning 116026, PR China

E-mail: tianying@dlmu.edu.cn (Y. Tian), hongwang@dlmu.edu.cn (H. Wang)

Supporting information

Figure S1. Absolute quantum yield (QY) measurements of the BiVO₄:8%Yb³⁺,18%Er³⁺ sample at excitation of 980 nm laser (power density: 38 W/cm²) by using the fluorescence spectrometer (Edinburgh FS5) equipped with an integrating sphere. The standard BaSO₄ was used as the reference sample. Blue line: sample emission (E_{sam}), green line: reference sample emission (E_{ref}), yellow line: sample excitation scattering (L_{sam}), violet line: reference sample excitation

scattering (L_{ref}). The QY was calculated based on the equation of QY= [$E_{sam} - E_{ref}$] / [$L_{ref} - L_{sam}$]

Figure S2. Logarithmic curves of luminescence integrated intensity (I) of BiVO₄ doped with Yb³⁺/Tm³⁺, Yb³⁺/Er³⁺ and Er³⁺/Tm³⁺ samples as a function of excitation power (P) under 980 nm pumping.

Figure S3. The UCL emission spectra of (a) BiVO₄:a%Er³⁺,1%Tm³⁺ (a = 5, 8, 10, 15, 30, 40, 50) and (b) BiVO₄:b%Yb³⁺,0.3%Tm³⁺ (b = 40, 50, 60, 70, 80, 90, 99) (The inset is the enlarged view of

blue emission) at 980 nm excitation.

As shown in Figure S3a, the UCL intensity of the Er^{3+}/Tm^{3+} ions doped BiVO₄ sample increases gradually to a maximum value as the increasing of Er^{3+} doping concentration with Tm^{3+} concentration fixed at 1%, and then decreases after Er^{3+} doping content more than 30% at excitation of 980 nm. Similarly, the blue emission of Yb^{3+}/Tm^{3+} co-doped sample increases first and then decreases when increasing Yb^{3+} concentration at a fixed Tm^{3+} concentration of 1%, and the optimized doping concentrations of Yb^{3+} is found to be 70% as shown in Figure S3b.

Figure S4. Dependence of FIR values on 980 nm and 1550 nm laser irradiation times for BiVO₄:30%Er³⁺,0.8%Tm³⁺ samples.

The dependence of the FIR values of the two green emissions for $BiVO_4:30\% Er^{3+}, 0.8\% Tm^{3+}$ sample on the laser irradiation times is shown in Figure S4. The low excitation power densities of 19 mW/mm² and 23 mW/mm² for 980 nm and 1550 nm lasers, respectively, were chosen to obtain

UCL spectra. The FIR curves of the two samples are relatively flat within the irradiation time of one hour, meaning that the effect of irradiation power densities used in this work on the FIR measurements can be neglected.

 [1] J. C. de Mello, H. F. Wittmann, R. H. Friend, An improved experimental determination of external photoluminescence quantum efficiency, Adv Mater. 9 (1997) 230–232. https://doi.org/10.1002/adma.19970090308.

[2] R. E. de Araujo, C. T. Dominguez, Absolute and relative methods for fluorescence quantum yield evaluation of quantum dots, Methods Mol Biol. 2 (2020) 37–51. https://doi.org/10.1007/978-1-0716-0463-2_2.