Supporting Information

Engineering Ligand conformation by substituent manipulation towards various copper-tricarboxylate frameworks with tuned gas adsorption properties

Tingting Xu[#], Minghui He[#], Lihui Fan, Ping Zhou, Zhenzhen Jiang, and Yabing He^{*} Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China. E-mail: <u>heyabing@zjnu.cn</u>

Fig. S1 Electronic photographs of the as-synthesized (a) ZJNU-109, and (c) ZJNU-110.

Fig. S2 Experimental and simulated PXRD patterns of (a) ZJNU-109, and (b) ZJNU-110.

Fig. S3 PXRD patterns for the as-synthesized (a) **ZJNU-109** and (b) **ZJNU-110** immersed in different organic solvents for 24 h at room temperature.

Fig. S4 TGA curves of the as-synthesized (a) ZJNU-109, and (b) ZJNU-110 under N_2 atmosphere with a heating rate of 5 K min⁻¹.

Fig. S5 Comparisons of FTIR spectra of (a) ZJNU-109 and its ligand H_3L1 , and (b) ZJNU-110 and its ligand H_3L2 .

 $S_{\text{BET}} = 1/(1.64284 \times 10^{-6} + 0.00209)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 2081 \text{ m}^2 \text{ g}^{-1}$ $S_{\text{Langmuir}} = (1/0.00188)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 2316 \text{ m}^2 \text{ g}^{-1}$ BET constant $C = 1 + 0.00209/1.64284 \times 10^{-6} = 1273$

$$(p / p_o)_{n_m} = \frac{1}{\sqrt{C} + 1} = 0.02726$$

Fig. S6 The consistency plot (a), BET surface area plot (b), and Langmuir surface area plot (c) for **ZJNU-109**.

 $S_{\text{BET}} = \frac{1}{(8.39125 \times 10^{-7} + 0.00509)}{22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 855 \text{ m}^2 \text{ g}^{-1}}$ $S_{\text{Langmuir}} = \frac{(1/0.00457)}{22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 953 \text{ m}^2 \text{ g}^{-1}}$ BET constant $C = 1 + 0.00509/8.39125 \times 10^{-7} = 6067$

$$(p / p_o)_{n_m} = \frac{1}{\sqrt{C} + 1} = 0.01268$$

Fig. S7 The consistency plot (a), BET surface area plot (b), and Langmuir surface area plot (c) for **ZJNU-110**.

Fig. S8 Comparison of the pure-component isotherm data for (a) C_2H_2 , (b) CO_2 , and (c) CH_4 in **ZJNU-109** with the fitted isotherms at 278 K, 288 K, and 298 K.

Fig. S9 Comparison of the pure-component isotherm data for (a) C_2H_2 , (b) CO_2 , and (c) CH_4 in **ZJNU-110** with the fitted isotherms at 278 K, 288 K, and 298 K.

Fig. S10 IAST selectivities for the equimolar (a) C_2H_2/CH_4 and (b) C_2H_2/CO_2 gas mixtures in ZJNU-109 at three different temperatures of 278 K, 288 K, and 298 K.

Fig. S11 IAST selectivities for the equimolar (a) C_2H_2/CH_4 and (b) C_2H_2/CO_2 gas mixtures in **ZJNU-110** at three different temperatures of 278 K, 288 K, and 298 K.

Fig. S12 ¹H and ¹³C NMR spectra.

Adsorbates	BP (K)	Т _с (К)	p _c (bar)	Kinetic diameter (Å)	Molecular dimension (Å)	Polarizability (×10 ²⁵ cm ³)	Dipole moment (×10 ¹⁸ esu cm)	Quadruple moment (×10 ²⁶ esu cm ²)
C_2H_2	188.40	308.30	61.14	3.3	3.3×3.3×5.7	33.3-39.3	0	+7.5
CO ₂	216.55	304.12	73.74	3.3	3.2×3.3×5.4	29.11	0	-4.3
CH_4	111.66	190.56	45.99	3.758	3.7×3.7×3.7	25.93	0	0

Table S1. Summarizes of physical parameters of C₂H₂, CO₂, and CH₄

BP: normal boiling point; T_c : critical temperature; p_c : critical pressure

MOFs	ZJNU-109	ZJNU-110	
Empirical formula	$C_{84}H_{122}Cu_5N_{12}O_{39}$	$C_{53}H_{44}Cu_4N_6O_{28}$	
Formula weight	2241.63	1467.10	
Temperature (K)	150(2)	150(2)	
λ (Å)	1.54178	0.71073	
Crystal system	Monoclinic	Trigonal	
Space group	<i>C</i> 2/ <i>c</i>	R -3 m :H	
	a = 32.031(6) Å	a = 18.3936(7) Å	
	b = 18.235(5) Å	b = 18.3936(7) Å	
Unit call dimensions	c = 41.925(10) Å	c = 36.5323(14) Å	
Unit cen dimensions	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	
	$\beta = 95.246(12)^{\circ}$	$\beta = 90^{\circ}$	
	$\gamma = 90^{\circ}$	$\gamma = 120^{\circ}$	
$V(\text{\AA}^3)$	24385(10)	10703.9(9	
Ζ	8	6	
$D_{\rm c}~({\rm g~cm^{-3}})$	1.221	1.366	
$\mu (\mathrm{mm}^{-1})$	1.605	1.255	
F(000)	9336	4464	
Crystal size (mm)	$0.270 \times 0.210 \times 0.090$	$0.250 \times 0.240 \times 0.220$	
θ range for data collection (°)	2.116 to 68.409	2.214 to 30.512	
	$-36 \le h \le 38$	$-25 \le h \le 25$	
Limiting indices	$-21 \le k \le 21$	$-24 \le k \le 25$	
	$-50 \le l \le 50$	$-51 \le l \le 49$	
Reflections collected / unique	120037 / 22189	35345 / 3885	
R _{int}	0.0937	0.0272	
Max. and min. transmission	0.7531 and 0.5265	0.2657 and 0.2075	
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2	
Data/restraints/parameters	22189 / 647 / 812	3885 / 395 / 269	
Goodness-of-fit on F^2	1.097	1.021	
Einel D indians $[I > 2\sigma(I)]$	$R_1 = 0.0940$	$R_1 = 0.0768$	
Final K indices $[I > 20(I)]$	$wR_2 = 0.2337$	$wR_2 = 0.1767$	
Dindiana (all data)	$R_1 = 0.1177$	$R_1 = 0.0896$	
	$wR_2 = 0.2487$	$wR_2 = 0.1837$	
Largest diff. peak and hole (e [·] Å ⁻³)	2.084 and -1.329	1.030 and -0.952	
CCDC	2035071	2035070	

Table S2 Crystal data and structure refinement for ZJNU-109, and ZJNU-110.

Adsorbates	$q_{\rm sat}$ (mmol g ⁻¹)	b_0 (kPa) ^{-ν}	E (kJ mol ⁻¹)	v	R^2
C_2H_2	19.01133	1.91495×10 ⁻⁵	16.559	0.65755	0.99966
CO ₂	12.90022	4.16121×10 ⁻⁷	21.495	1	0.99996
CH ₄	9.53946	1.53902×10 ⁻⁶	15.037	1	0.99968

Table S3 Langmuir-Freundlich parameters for adsorption of C_2H_2 , CO_2 , and CH_4 in **ZJNU-109**.

Adsorbates	$q_{\rm sat}$ (mmol g ⁻¹)	b_0 (kPa) ^{-ν}	E (kJ mol ⁻¹)	v	R^2
C_2H_2	5.49258	5.87531×10 ⁻⁷	26.744	0.90145	0.99979
CO ₂	7.40873	1.33615×10 ⁻⁶	21.616	0.92265	0.99996
CH_4	3.78056	1.64136×10 ⁻⁶	18.287	1	0.99992

Table S4 Langmuir-Freundlich parameters for adsorption of C_2H_2 , CO_2 , and CH_4 in **ZJNU-110**.

MOFs		ZJNU-109	ZJNU-110
$S_{\text{BET}}/S_{\text{Langmuir}} (\text{m}^2 \text{g}^2)$	¹)	2081/2316	855/953
$V_{\rm p} ({\rm cm}^3{\rm g}^{-1})$		0.8257	0.3403
C II untolvo ^{a}	298 K	104.6	79.5
$C_2 \Pi_2$ uptake $(2m^3 a^{-1} STD)$	288 K	125.4	90.0
(chi g , STP)	278 K	150.2	99.5
CO units $leaa$	298 K	60.0	63.2
CO_2 uptake	288 K	75.4	75.6
(cm g, STP)	278 K	94.9	88.6
CII untelse ^a	298 K	14.3	18.6
CH_4 uptake	288 K	17.0	22.8
(cm g, STP)	278 K	21.2	27.4
C ₂ H ₂ /CH ₄	298 K	21.6	15.3
(v/v = 1/1)	288 K	23.3	18.9
IAST selectivity ^a	278 K	25.6	24.0
C_2H_2/CO_2	298 K	3.8	2.3
(v/v = 1/1)	288 K	3.7	2.4
IAST selectivity ^a	278 K	3.6	2.4

Table S5 Summary of pore textural and gas adsorption properties of **ZJNU-109** and**ZJNU-110**.

 $S_{\text{BET}}/S_{\text{Langmuir}} = \text{BET}$ and Langmuir surface areas; $V_{\text{p}} = \text{total pore volume;}^{a}$ at 1 atm;

STP = standard temperature and pressure