SUPPORTING INFORMATION

Ce(OH)₂Cl and Lanthanide-Substituted Variants as Precursors to Redox- Active CeO₂ Materials

Alexander J.A. Dunn,[†] James Annis,[†] Janet M. Fisher,[‡] David Thompsett[‡] and Richard I. Walton,^{†*}

[†]Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK. *Email r.i.walton@warwick.ac.uk

[‡]Johnson Matthey Technology Centre, Sonning Common, Reading, RG4 9NH, UK

<u>S1: Further analysis of Ce_{1-x}Ln_x(OH)₂Cl materials</u>

Figure S1.1 Le Bail fits to Powder XRD data ($\lambda = 1.5405 \text{ Å}$) of Tb(OH)₂Cl, Pr(OH)₂Cl and Gd(OH)₂Cl.

Figure S1.2: Le Bail fits to Powder XRD data ($\lambda = 1.5405 \text{ Å}$) of $Ce_{1-x}La_x(OH)_2Cl$ ($0.1 \le x \le 0.2$). (* contamination on XRD slit).

Table S1.1: Results of Le Bail fitting to powder XRD data of $Ce_{1-x}La_x(OH)_2Cl$ (0.1 $\leq x \leq 0.2$).

Sample	<i>a</i> (Å)	<i>b</i> (Å)	<i>c</i> (Å)	β (Å)	Volume (Å ³)
Ce0.9La0.1(OH)2Cl	6.2925 (1)	6.8802 (1)	3.95446 (7)	113.542 (1)	156.952 (3)
Ce _{0.8} La _{0.2} (OH) ₂ Cl	6.29485 (11)	6.88596 (11)	3.95854 (6)	113.585 (1)	157.254 (3)

Table S1.2: Measured values of x from SEM EDXA elemental analysis of $Ce_{1-x}La_x(OH)_2Cl$.

Comple	Atom	CTDEV	
Sample	Ce	La	SIDEV
$Ce_{0.9}La_{0.1}(OH)_2Cl$	90	10	0.4
Ce _{0.8} La _{0.2} (OH) ₂ Cl	78.6	21.4	0.7

Figure S1.3: Le Bail fits to Powder XRD data ($\lambda = 1.5405 \text{ Å}$) of $Ce_{1-x}Gd_x(OH)_2Cl$ ($0.1 \le x \le 0.5$).

Table S1.3: Results of Le Bail fitting to powder XRD data of $Ce_{1-x}Gd_x(OH)_2Cl (0.1 \le x \le l)$.

Sample	<i>a</i> (Å)	<i>b</i> (Å)	<i>c</i> (Å)	β (Å)	Volume (Å ³)
$Ce_{0.9}Gd_{0.1}(OH)_2Cl$	6.27420 (14)	6.86038 (14)	3.93040 (8)	113.317 (1)	155.361 (7)
Ce _{0.8} Gd _{0.2} (OH) ₂ Cl	6.2599 (2)	6.8466 (2)	3.91150 (16)	113.139 (2)	154.157 (7)
Ce _{0.7} Gd _{0.3} (OH) ₂ Cl	6.2469 (2)	6.8328 (2)	3.89483 (14)	112.963 (2)	153.073 (7)
Ce _{0.6} Gd _{0.4} (OH) ₂ Cl	6.2330 (4)	6.8182 (7)	3.8769 (3)	112.776 (4)	151.914 (2)
Ce _{0.5} Gd _{0.5} (OH) ₂ Cl	6.2194 (4)	6.8013 (4)	3.8501 (4)	112.494 (5)	150.468 (15)

Table S1.4 Measured values of x from SEM EDXA elemental analysis of $Ce_{1-x}Gd_x(OH)_2Cl$.

Comple	Aton	CTDEV	
Sample	Ce	Gd	SIDEV
$Ce_{0.9}Gd_{0.1}(OH)_2Cl$	89.9	10.1	1.2
Ce _{0.8} Gd _{0.2} (OH) ₂ Cl	78.7	21.3	3.4
Ce _{0.7} Gd _{0.3} (OH) ₂ Cl	73.6	26.4	2.8
Ce _{0.6} Gd _{0.4} (OH) ₂ Cl	59.6	40.4	3.2
Ce _{0.5} Gd _{0.5} (OH) ₂ Cl	53.7	46.3	1.9

Figure S1.4: Le Bail fits to Powder XRD data ($\lambda = 1.5405 \text{ Å}$) of $Ce_{1-x}Pr_x(OH)_2Cl$ ($0.1 \le x \le 0.5$).

Table S1.5: Results of Le Bail fitting to powder XRD data of $Ce_{1-x}Pr_x(OH)_2Cl$ (0.1 $\leq x \leq l$).

Sample	<i>a</i> (Å)	<i>b</i> (Å)	<i>c</i> (Å)	β (Å)	Volume (Å ³)
$Ce_{0.9}Pr_{0.1}(OH)_2Cl$	6.2843 (2)	6.87381 (18)	3.94754 (13)	113.502 (2)	156.378 (6)
Ce _{0.8} Pr _{0.2} (OH) ₂ Cl	6.28042 (11)	6.8716(1)	3.94320 (7)	113.491 (1)	156.070 (3)
Ce _{0.7} Pr _{0.3} (OH) ₂ Cl	6.27653 (15)	6.86907 (13)	3.93933 (9)	113.482 (1)	155.774 (4)
Ce _{0.6} Pr _{0.4} (OH) ₂ Cl	6.27272 (14)	6.86629 (13)	3.93577 (8)	113.460(1)	155.503 (4)
Ce _{0.5} Pr _{0.5} (OH) ₂ Cl	6.2712 (2)	6.8673 (2)	3.93342 (13)	113.457 (2)	155.397 (6)
Pr(OH) ₂ Cl	6.24778 (17)	6.85337 (17)	3.9132 (1)	113.416 (2)	153.756 (5)

Table S1.6: Measured values of x from SEM EDX elemental analysis of $Ce_{1-x}Pr_x(OH)_2Cl$.

Course 1 o	Aton	CTDEV	
Sample	Ce	Pr	SIDEV
Ce _{0.9} Pr _{0.1} (OH) ₂ Cl	89.4	10.6	0.3
$Ce_{0.8}Pr_{0.2}(OH)_2Cl$	79.7	20.3	0.6
Ce _{0.7} Pr _{0.3} (OH) ₂ Cl	69.3	30.7	0.6
Ce _{0.6} Pr _{0.4} (OH) ₂ Cl	58.7	41.3	0.4
Ce _{0.5} Pr _{0.5} (OH) ₂ Cl	51.5	48.5	0.5

Figure S1.5: Le Bail fits to Powder XRD data ($\lambda = 1.5405 \text{ Å}$) of $Ce_{1-x}Tb_x(OH)_2Cl$ ($0.1 \le x \le 0.5$).

Table S1.7: Results of Le Bail fitting to powder XRD data of $Ce_{1-x}Tb_x(OH)_2Cl (0.1 \le x \le 1)$.

Sample	a (Å)	<i>b</i> (Å)	<i>c</i> (Å)	β (Å)	Volume (Å ³)
Ce _{0.9} Tb _{0.1} (OH) ₂ Cl	6.2726 (3)	6.8570 (3)	3.92680 (14)	113.244 (2)	155.187 (12)
Ce _{0.8} Tb _{0.2} (OH) ₂ Cl	6.2581 (3)	6.8395 (2)	3.90568 (16)	112.976 (2)	153.910 (7)
Ce _{0.7} Tb _{0.3} (OH) ₂ Cl	6.2493 (3)	6.8259 (4)	3.89468 (17)	112.811 (2)	153.142 (15)
Ce _{0.6} Tb _{0.4} (OH) ₂ Cl	6.2401 (6)	6.8100 (8)	3.8716 (4)	112.526 (4)	151.97 (3)
Ce0.5Tb0.5(OH)2Cl	6.2232 (2)	6.7851 (3)	3.83724 (16)	112.072 (2)	150.153 (12)
Tb(OH) ₂ Cl	6.1790 (4)	6.6749 (6)	3.7102 (3)	109.956 (6)	143.835 (14)

Table S1.8: Measured values of x from SEM EDXA elemental analysis of $Ce_{1-x}Tb_x(OH)_2Cl$.

Commla	Aton	CTDEV	
Sample	Ce	Tb	SIDEV
Ce _{0.9} Tb _{0.1} (OH) ₂ Cl	88.6	11.4	1.5
Ce _{0.8} Tb _{0.2} (OH) ₂ Cl	78.3	21.7	2.0
Ce _{0.7} Tb _{0.3} (OH) ₂ Cl	69.5	30.5	1.8
$Ce_{0.6}Tb_{0.4}(OH)_2Cl$	58.5	41.5	2.1
Ce _{0.5} Tb _{0.5} (OH) ₂ Cl	51.8	48.2	1.4

Figure S2.1: SEM images of Ce_{0.9}Ln_{0.1}(OH)₂Cl as-made (a) and after heating at 700 °C (b)

Figure S2.2: SEM images of $Ce_{1-x}Pr_x(OH)_2Cl$ as-made (left) and after heating at 700 °C (right) heating for (a) and (b) x = 0.1, (c) and (d) x = 0.2, (e) and (f) x = 0.3, (g) and (h) x = 0.4.

Figure S2.3: SEM images of $Ce_{1-x}Gd_x(OH)_2Cl$ as-made (left) and after heating at 700 °C (right) heating for (a) and (b) x = 0.1, (c) and (d) x = 0.2, (e) and (f) x = 0.3, (g) and (h) x = 0.4.

Figure S2.4: SEM images of $Ce_{1-x}Tb_x(OH)_2Cl$ as-made (left) and after heating at 700 °C (right) heating for (a) and (b) x = 0.1, (c) and (d) x = 0.2, (e) and (f) x = 0.3, (g) and (h) x = 0.4.

S3: Powder XRD analysis of Ce_{1-x}Ln_xO₂₋₈ oxides

Figure S3.1: Profile fits of Ce_{1-x}La_xO_{2-δ} oxides

Figure S3.2: Profile fits of Ce_{1-x}Pr_xO_{2-δ} oxides

Figure S3.3: Profile fits of Ce_{1-x}Gd_xO_{2-δ} oxides

Figure S3.4: Profile fits of Ce_{1-x}Tb_xO_{2-δ} oxides

Williamson-Hall analysis was performed using Equation S1:

Figure S3.5: Williamson-Hall plot for CeO₂

Figure S3.6: Williamson-Hall plots for Ce_{1-x}La_xO_{2-δ} oxides

Figure S3.7: Williamson-Hall plots for $Ce_{1-x}Pr_xO_{2-\delta}$ oxides

Figure S3.8: Williamson-Hall plots for Ce_{1-x}Gd_xO_{2-δ} oxides

Figure S3.9: Williamson-Hall plots for $Ce_{1-x}Tb_xO_{2-\delta}$ oxides

Figure S3.10: XRD patterns after two TPR cycles for Ce_{1-x}Ln_xO_{2-δ} oxides

S4: Synthesis of CeCO₃(OH)

Figure S4.1: Powder XRD of CeCO₃(OH) prepared using Ce(NO₃)₃· $6H_2O$ in PEG $M_n = 200$. The calculated patterns is from the published structure of Michiba *et al.*¹

1. Michiba, K.; Miyawaki, R.; Minakawa, T.; Terada, Y.; Nakai, I.; Matsubara, S., Crystal structure of hydroxylbastnäsite-(Ce) from Kamihouri, Miyazaki Prefecture, Japan. *Journal of Mineralogical and Petrological Sciences* **2013**, *108*, 326-334.