Supporting information

Proton transfer in polyamine-P₂Mo₅ model adducts: exploring the effect of polyamine cations on their proton conductivity

Shan Zhang, Ying Lu, * Xiuwei Sun, Zhuo Li, Tianyi Dang and Shuxia Liu * Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024 (China).

*Corresponding author. E-mail address: <u>liusx@nenu.edu.cn</u>, <u>luy968@nenu.edu.cn</u>

Content

Fig. S1 The IR spectrum of P₂Mo₅-TETA.

Fig. S2 The IR spectrum of P₂Mo₅-DETA.

Fig. S3 The IR spectrum of P₂Mo₅-EN.

Fig. S4. Arrhenius plots of the proton conductivity of **P₂Mo₅-EN**, cycle 1 (black); cycle 2 (red); cycle 3 (blue).

Fig. S5 The original and after proton conduction IR spectra of P2Mo5-TETA.

Fig. S6 The original and after proton conduction IR spectra of P2Mo5-DETA.

Fig. S7 The original and after proton conduction IR spectra of P₂Mo₅-EN.

- Fig. S8 PXRD profiles of single crystal data simulation for P₂Mo₅-TETA; as-synthesized of P₂Mo₅-TETA; P₂Mo₅-TETA after proton conduction test.
- Fig. S9 PXRD profiles of single crystal data simulation for P₂Mo₅-DETA; as-synthesized of P₂Mo₅-DETA; P₂Mo₅-DETA after proton conduction test.
- Fig. S10 PXRD profiles of single crystal data simulation for P2M05-EN; as-synthesized of P2M05-EN; P2M05-EN after proton conduction test.
- Fig. S11 The possible proton transport pathway of A and B in adduct P₂Mo₅-DETA along the b-axis.
- Fig. S12 The possible proton transport pathway of A and B in adduct P₂Mo₅-TETA along the b-axis.

Table S1 X-ray crystallographic data for P₂Mo₅-TETA and P₂Mo₅-DETA.

Table S2 Hydrogen bond distances (Å) and angles (°) for P2M05-TETA.

Table S3 Hydrogen bond distances (Å) and angles (°) for P2M05-DETA.

Table S4 Hydrogen bond distances (Å) and angles (°) for P2M05-EN.

Table S5 The short $O \cdots O$ distances between adjacent P_2Mo_5 anions in **P2Mo5-EN**.

- Table S6 Compare proton conductivity of P2Mo5-EN with that of other conductors under similar conditions.
- **Table S7** The relatively short $O \cdots O$ distances between adjacent P_2Mo_5 anions in the A pathway of **P_2Mo_5-TETA**, where the oxygen atoms involved can provide potential proton hop sites.

Fig. S1 The IR spectrum of P2M05-TETA.

Fig. S2 The IR spectrum of P2M05-DETA.

Fig. S3 The IR spectrum of P2Mo5-EN.

Fig. S4. Arrhenius plots of the proton conductivity of P₂Mo₅-EN, cycle 1 (black); cycle 2 (red); cycle 3 (blue).

Fig. S5 The original and after proton conduction IR spectra of P₂Mo₅-TETA.

Fig. S6 The original and after proton conduction IR spectra of P₂Mo₅-DETA.

Fig. S7 The original and after proton conduction IR spectra of P2Mo5-EN.

Fig. S8 PXRD profiles of single crystal data simulation for **P2Mo5-TETA**; as-synthesized of **P2Mo5-TETA**; **P2Mo5-TETA** after proton conduction test.

Fig. S9 PXRD profiles of single crystal data simulation for **P2M05-DETA**; as-synthesized of **P2M05-DETA**; **P2M05-DETA** after proton conduction test.

Fig. S10 PXRD profiles of single crystal data simulation for **P₂Mo₅-EN**; as-synthesized of **P₂Mo₅-EN**; **P₂Mo₅-EN** after proton conduction test.

Fig. S11 The possible proton transport pathway of A and B in adduct P2Mo5-DETA along the b-axis.

Fig. S12 The possible proton transport pathway of A and B in adduct P_2Mo_5 -TETA along the b-axis.

Compound	P ₂ Mo ₅ -TETA	P ₂ Mo ₅ -DETA			
Empirical formula	$C_{6}H_{26}Mo_{5}N_{4}O_{24}P_{2}$	$C_8H_{40}Mo_5N_6O_{27}P_2$			
Formula weight	1079.95	1194.10			
Temperature (K)	238.0	113.0			
Crystal system	Triclinic	Triclinic			
Space group	P-1	P-1			
<i>a</i> (Å)	9.9361(8)	10.3242(14)			
<i>b</i> (Å)	10.0331(7)	10.9734(15)			
<i>c</i> (Å)	14.4174(12)	15.718(2)			
α (°)	84.088(4)	95.654(6)			
eta (°)	77.796(4)	95.813(5)			
γ (°)	65.153(3)	111.470(4)			
Volume (Å ³)	1274.59(18)	1630.9(4)			
Ζ	2	2			
$D_{\rm calc}/{ m gcm}^{-3}$	2.814	2.432			
μ/mm^{-1}	2.630	2.076			
F(000)	1044	1172			
Reflections collected	35964	41817			
Independent reflections	8751 [R _{int} = 0.0559]	6454 [Rint = 0.0384]			
GOOF	1.023	1.091			
Final <i>R</i> indexes $[I \ge 2\sigma(I)]^{al}$	^b $R_1 = 0.0394, wR_2 = 0.0664$	$R_1 = 0.0255, wR_2 = 0.0622$			
Final <i>R</i> indexes [all data] $R_1 = 0.0798, wR_2 = 0.0767$ $R_1 = 0.0306, wR_2 = 0.0656$					
Final <i>R</i> indexes [all data] $R_1 = 0.0798, wR_2 = 0.0767 R_1 = 0.0306, wR_2 = 0.065$ ${}^{a}R_1 = \Sigma F_o - F_c / \Sigma F_o ; {}^{b}wR_2 = \{ \Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2] \}^{1/2} $					

 Table S1 X-ray crystallographic data for P2M05-TETA and P2M05-DETA.

	0	0	0	
D–H···A	D-H / A	H···A / A	D····A / A	D–H···A/°
O1(W)–H1B…O1	0.86	2.737	2.745	141.60
O1(W)–H1A…O6	0.86	2.361	2.922	123.20
O1(W)–H1A…O14	0.86	2.376	2.946	140.56
O8−H8····O12	0.83	2.059	2.816	151.56
$N3-H3C\cdotsO1(W)$	0.90	1.778	2.590	148.78
N1–H1A····O5	0.90	1.991	2.857	160.81
N1-H1C…O2	0.90	2.313	2.977	130.30
N1–H1C…O19	0.90	2.234	3.028	146.80
N1–H1B…O15	0.90	2.076	2.874	147.21
N2–H2A····O7	0.90	1.999	2.842	155.50
N2–H2B····O18	0.90	2.531	2.933	107.74
N2-H2B····O13	0.90	1.957	2.841	166.65
N3-H3D…011	0.90	2.022	2.777	140.63
N3–H3E····O20	0.90	1.950	2.771	150.80
N3-H3C…O1(W)	0.90	1.778	2.590	148.78
N4–H4B…O20	0.90	2.409	2.968	120.45
N4–H4B…O1	0.90	19.84	2.813	152.46
N4–H1A…O23	0.90	2.042	2.963	164.31

Table S2 Hydrogen bond distances (Å) and angles (°) for P2M05-TETA.

Table S3 Hydrogen bond distances (Å) and angles (°) for P2M05-DETA.

D–H···A	D–H / Å	H…A∕Å	D…A/Å	D–H····A / °
N1–H1B····O21	1.003	2.092	3.008	150.97
$N1-H1C\cdots O2(W)$	0.703	2.028	2.739	161.60
N1–H1A····O22	0.934	1.879	2.807	172.26
N2-H2A····O10	0.910	2.068	2.782	134.37
N2–H2A····O22	0.910	2.021	2.893	159.97
N2–H2B····O22	0.910	2.543	2.927	105.89
N3–H3B····O22	0.909	1.808	2.705	168.64
N3-H3A····O12	0.910	2.245	2.859	124.26
N3-H3C…O13	0.911	2.173	2.931	140.20
N4–H4A····O23	0.910	1.850	2.724	160.39
N4–H4B…O16	0.910	2.327	2.984	128.95
N4–H4C…O18	0.910	2.536	2.963	109.22
N5–H5C···O23	0.823	1.871	2.677	166.08
N5−H5D···O6	0.868	1.942	2.808	176.39
N6–H6C…O7	0.909	2.016	2.849	151.61
N6–H6C…O4(W)	0.909	2.586	2.970	106.11
N6–H6D…014	0.910	2.245	2.848	123.34
N6–H6C…O17	0.911	1.874	2.784	178.14
N6–H6D…O1(W)	0.910	2.234	2.908	130.46
O1W–H1WB…O14	0.869	2.068	2.996	165.77
01W-H1WA…013	0.870	2.083	2.877	151.35

O1W–H1WA…O18	0.870	2.485	2.966	115.60
O2(W)-H2WA···O3(W)	0.870	1.847	2.674	158.23
O3W-H3WA…O11	0.870	2.151	2.878	140.78
O3W-H3WB····O20	0.872	2.478	2.880	108.84
O4W–H4WA…O8	0.830	1.939	2.765	173.79

Table S4 Hydrogen bond distances (Å) and angles (°) for P2M05-EN.

D–H···A	D–H / Å	H…A∕Å	D…A/Å	$D-H-A/^{o}$
N1-H1A…012	0.89	1.956	2.085	159.07
N1–H1B····O2	0.89	1.954	2.829	167.58
N1–H1C····O7	0.89	2.495	2.952	112.42
N1-H1C…O11	0.89	2.149	3.017	164.92
N2-H2A····O4	0.89	2.207	2.937	139.12
N2–H2A····O9	0.89	2.169	2.957	147.41
N2–H2B…O11	0.89	2.168	2.912	140.70
N2-H2C····O6	0.89	2.017	2.904	174.18
01–H1···O4	0.82	1.868	2.26	153.03

Table S5 The short O \cdots O distances between adjacent P₂Mo₅ anions in P₂Mo₅-EN.

Atoms involved	Length (Å)	Atoms involved	Length (Å)
0104	2.626	011011	2.915
O7…O10	2.943		

Table S6 Compare proton conductivity of P₂Mo₅-EN with that of other conductors under similar conditions.

POM-based conductors	σ (S cm ⁻¹)	Tested conditions	Ref.
P ₂ Mo ₅ -EN	1.13×10^{-2}	65 °C and 95% RH	This work
$[H_3O][(VO_2)_3(SeO_3)_2]$	2.95×10^{-2} [100] direction	60 °C and 98% RH	1
$[H_3O][(VO_2)_3(SeO_3)_2]$	4.07×10^{-2} [001] direction	60 °C and 98% RH	1
$[Cu(en)_2(H_2O)]_2\{[Cu(en)]_4[Cu-$	1.35×10^{-3}	85 °C and 98% RH	2
$(en)_{2}_{5}[Cu(en)_{2}KNb_{24}O_{72}H_{10}]_{2}$			
6en·70H2O			
[Cd(H ₂ O) ₂ DABT] ₄ [Cd(H ₇ P ₄ Mo ₆ -	1.35×10^{-3}	60 °C and 98% RH	3
O ₃₁) ₂]·19H ₂ O			
$(C_{2}H_{5}OH)(C_{3}H_{5}N_{2})_{6}[Co_{3}(H_{6}P_{4}Mo_{6}-$	3.78×10^{-3}	60 °C and 98% RH	3
$O_{31}_2] \cdot H_2O$			
$[Cu_2(H_2O)_2(L1)_3][PMo^{VI}_{11}Mo^VO_{40}]$	2.8×10 ⁻⁴	65°C, 95% RH	4
$(H_2L_2)_{0.5}[(Cu^IL_2)_2(PM_{012}O_{40})] \cdot H_2O$	1.9×10 ⁻⁴	65°C, 95% RH	4
[Sr(DMPhH ₂ IDC) ₂]n	0.92 × 10-3 S⋅cm-1	100 °C and 98% RH	5
$H_3[(CH_3)_4N]_{14}[NaSm(PW_{11}O_{39})_3] \cdot 18$	4.7×10^{-3}	85°C, 98% RH	6
H ₂ O		00 0, 200 Hui	Ŭ
$(TMA)_{14}H_2[Ce^{III}(H_2O)_6]{[Ce^{IV}_7Ce^{III}_3]$	2		
$O_6(OH)_6(CO_3)(H_2O)_{11}][(P_2W_{16}-$	2.65×10 ⁻³	100°C, 98% RH	7

O59)]3}·41H2O			
$[{Cu(pip)_2}_2{La_{29}Ge_{10}W_{106}O_{406}-(OH)_4(H_2O)_{28}}]^{49-}$	5.3×10 ⁻³	85°C, 98% RH	8
$[Co(4,4'-bipy)(H_2O)_4][Co(4,4'-bipy H)_2(H_2O)_4] \cdot 2(H_3bmt) \cdot 6H_2O$	9.87×10 ⁻³	85°C, 98% RH	9
$[Nd_3(H_2O)_{22}][P_2W_{15}Ta_3O_{62}] \cdot nH_2O$	9.88×10 ⁻³	95°C, 98% RH	10
JUK13-SO ₃ H	3.80×10 ⁻⁵	65°C, 90% RH	11
[Zn(Hssa)(1,4-bib)·H ₂ O]n	3.45×10 ⁻⁵	60°C, 95% RH	12
$(C_5H_{10}NO_2)Ga_4(PO_4)4F \cdot 3H_2O$	8.89×10 ⁻⁴	85°C, 95% RH	13

- 1 H. Y. Sun, S. H. Sun, B. Hu, L. K. Gong, Y. M. Zou, J. L. Li, M. L. Feng and X. Y. Huang, Anisotropic proton conduction realized by a layered vanadium selenite single crystal, Inorg. Chem. Front., 2020, 7, 1699–1703.
- 2 Z. K. Zhu, L. D. Lin, J. Zhang, X. X. Li, Y. Q. Sun and S. T. Zhen, A rare 4-connected neb-type 3D chiral polyoxometalate framework based on {KNb₂₄O₇₂} clusters, 10.1039/d0qi00927j.
- 3 Z. Y. Du, Z. Chen, R. K. Kang, Y. M. Han, J. Ding, J. P. Cao, W. Jiang, M. Fang, H. Mei and Y, Xu, Two 2D Layered P4Mo6 Clusters with Potential Bifunctional Properties: Proton Conduction and CO₂ Photoreduction, org/10.1021/acs.inorgchem.0c01941.
- 4 K. Lu, A. L. Pelaez, L. C. Wu, Y. Cao, C. H. Zhu, and H. Fu, Ionothermal Synthesis of Five Keggin-Type Polyoxometalate-Based Metal–Organic Frameworks, *Inorg. Chem.*, 2019, 58, 1794–1805.
- 5 X. X. Xie, Z. H. Zhang, J. Zhang, L. F. Hou, Z. F. Li and G. Li, Impressive Proton Conductivities of Two Highly Stable Metal–Organic Frameworks Constructed by Substituted Imidazoledicarboxylates, *Inorg. Chem.* 2019, 58, 5173–5182.
- 6 Z. Li, L. D. Lin, D. Zhao, Y. Q. Sun, and S. T. Zheng, A Series of Unprecedented Linear Mixed-Metal-Substituted Polyoxometalate Trimers: Syntheses, Structures, Luminescence, and Proton Conductivity Properties, Eur. J. Inorg. Chem. 2019, 437–441.
- 7 P. T. Ma, R. Wan, Y. Y. Wang, F. Hu, D. D. Zhang, J. Y. Niu, and J. P. Wang, Coordination-Driven Self-Assembly of a 2D Graphite-Like Framework Constructed from High-Nuclear Ce₁₀ Cluster Encapsulated Polyoxotungstates, *Inorg. Chem.* 2016, 55, 918–924.
- 8 Z. Li, X. X. Li, T. Yang, Z. W. Cai, S. T. Zheng, Four-Shell Polyoxometalates Featuring High-Nuclearity Ln₂₆ Clusters: Structural Transformations of Nanoclusters into Frameworks Triggered by Transition-Metal Ions, Angew. Chem. 2017, **129**, 2708 – 2713; Angew. Chem. Int. Ed. 2017, **56**, 2664.
- 9 L. Feng, Z. Q. Pan, H. Zhou, M. Zhou and H. B. Hou, Water-mediated proton conduction in Ni(ii) and Co(ii) benzenetriphosphonates, *Dalton Trans.*, 2019, 48, 16493–16496.
- 10 Q. P. Peng, S. J. Li, R. Y. Wang, S. S. Xia, L. H. Xie, J. X. Zhai, J. Zhang, Q. Y. Zhao and X. N. Chen, Lanthanide derivatives of Ta/W mixed-addendum POMs as proton-conducting materials, *Dalton Trans.*, 2017, 46, 4157–4160.
- 11 M. Szufla, K. Roztocki, A. Krawczuk and D. Matoga, One-step introduction of terminal sulfonic groups into a proton-conducting metal-organic framework by concerted deprotonation-metalation-hydrolysis reaction, *Dalton Trans.*, 2020, 49, 9953–9956.
- 12 T. Y. Xu, H. J. Nie, J. M. Li and Z. F. Shi, Highly selective sensing of Fe³⁺/Hg²⁺ and proton conduction using two fluorescent Zn(ii) coordination polymers, *Dalton Trans.*, 2020,**49**, 11129–11141.
- 13 L. J. Huang, L. Wang, Y. Zhao, L. Huang, J. Bi, G. H. Zou, Z. E. Lin and D. J. Gao, Two amino acid-templated metal phosphates: surfactant-thermal synthesis, water stability, and proton conduction, *Dalton Trans.*, 2020, 49, 5440–5444.

Table S7 The relatively short O…O distances between adjacent P₂Mo₅ anions in the A pathway of P₂Mo₅-TETA, where the oxygen atoms involved can provide potential proton hop sites.

Atoms	Length (Å)	Atoms involved	Length (Å)
involved			
O1…O20	2.882	O19··O2	2.936
O18····O19	3.025		