Dendrite-free Zn Anodes Enabled by Functional Nitrogen-Doped Carbon Protective Layers for Aqueous Zinc-Ion Batteries

Cuiping Wu, Kaixuan Xie, Kaixin Ren, Shun Yang,* Qinghong Wang*

School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China.

*Corresponding author. E-mail addresses: wangqh@jsnu.edu.cn

Fig.S1 (a) XRD patterns. (b and c) SEM and HRTEM images of the N-C networks materials. (d) XPS survey spectra of the N-C networks. High-resolution (e) C 1S and (f) N 1s spectra of N-C networks.

Fig. S2 Voltage-time profiles of the N-C/Zn anodes with different coating amount at a current density of 2 mA cm⁻² with a fixed capacity of 2 mAh cm⁻².

Fig. S3 Coulombic efficiencies of Zn plating/stripping on Cu foil with/without N-C coating at 1 mA cm⁻².

Fig. S4 Voltage-time profiles (a and b) at a current density of 4 mA cm⁻² with a fixed capacity of 4 mAh cm⁻².

Fig. S5 (a and b) Nyquist plots of the N-C networks coated Zn electrode before cycling and after 60 h at 1 mA cm⁻². (the inset is the relevant equivalent circuit)

Table S1 The simulated impendence results of the N-C networks coated Zn foil and bare Zn electrodes before and after 60 h at 1 mA cm⁻².

Sample	N-C networks coated Zn foil	Bare Zn
R _{ct} (ohm) (Before cycle)	451.7	846
Rct (ohm) (60th cycle)	7.797	10.16

Table S2 Comparison of the cycling performances of different coated-Zn anodes

Coating Materials	Current Densities	Capacity	Cycle life	Ref.
3D CNTs	2 mA cm^{-2}	2 mAh cm^{-2}	200h	[1]
Al ₂ O ₃ coating	1 mA cm^{-2}	1 mAh cm ⁻²	500h	[2]
TiO ₂ layer	1 mA cm^{-2}	1 mAh cm ⁻²	150h	[3]
Porous kaolin coating	4.4 mA cm^{-2}	$1.1 \text{ mA h} \ \mathrm{cm}^{-2}$	800 h	[4]
Nanoporous CaCO3	0.25 mA cm^{-2}	0.05 mA h cm ⁻²	836 h	[5]
Reduced graphene oxide	2 mA cm^{-2}	2 mA h cm^{-2}	200 h	[6]
Nitrogen-Doped				Thia
Carbon Protective	2 mA cm^{-2}	2 mAh cm^{-2}	800 h	work
Layers				

References

[1] Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang, D. Zheng, Y. Tong and X. Lu, Adv. Mater., 2019, **31**, 1903675.

[2] H. He, H. Tong, X. Song, X. Song and J. Liu, J. Mater. Chem. A, 2020, 8, 7836-7846.

[3] K. Zhao, C. Wang, Y. Yu, M. Yan, Q. Wei, P. He, Y. Dong, Z. Zhang, X. Wang and L. Mai, Adv. Mater. Interfaces, 2018, 5, 1800848.

[4] C. Deng, X. Xie, J. Han, Y. Tang, J. Gao, C. Liu, X. Shi, J. Zhou and S. Liang, Adv. Funct. Mater., 2020, **30**, 2000599.

[5] L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo, J. Liu, W. Liang and C. Zhi, Adv. Energy Mater., 2018, **8**, 1801090.

[6] C. Shen, X. Li, N. Li, K. Xie, J.G. Wang, X.R. Liu and B. Wei, ACS Appl. Mater. Interfaces, 2018, **10**, 25446–25453.