# Solvent responses and substituent effects upon magnetic properties of

# mononuclear Dy<sup>III</sup> compounds

Sheng Zhang,<sup>\*a</sup> Nan Shen,<sup>a</sup> Jiangwei Zhang,<sup>\*b</sup> Fang Xu,<sup>a</sup> Jin Zhang,<sup>a</sup> Jiamin Tang,<sup>a</sup> Dengwei Hu,<sup>a</sup> Bing Yin,<sup>\*c</sup> Sanping Chen<sup>\*c</sup>

### **AUTHOR ADDRESS**

- a. Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Phytochemistry of Shaanxi Province, Baoji University of Arts and Sciences, 1 Hi-Tech Avenue, Baoji, Shaanxi, 721013, China
- b. State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) Dalian 116023, P.R.China
- c. Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710069, China

**Corresponding Authors** 

- \*E-mail: zhangsheng19890501@163.com. (S. Zhang)
- \*E-mail: jwzhang@dicp.ac.cn. (J.-W. Zhang)
- \*E-mail: rayinyin@nwu.edu.cn. (B. Yin)
- \*E-mail: sanpingchen@126.com (S.-P. Chen)

|      |                  | ingens und bond dingre. | 5 101 1.         |
|------|------------------|-------------------------|------------------|
| Atom | Atom             | Length/Å                |                  |
| Dy1  | 01               | 2.239(3)                |                  |
| Dy1  | O2               | 2.315(3)                |                  |
| Dy1  | O3               | 2.326(3)                |                  |
| Dy1  | O4               | 2.275(3)                |                  |
| Dy1  | N1               | 2.531(3)                |                  |
| Dy1  | N2               | 2.666(3)                |                  |
| Dy1  | N3               | 2.658(3)                |                  |
| Dy1  | N4               | 2.565(3)                |                  |
| Atom | Atom             | Atom                    | Angle/°          |
| O1   | Dy1              | O2                      | 79.10(10)        |
| O1   | Dy1              | O3                      | 103.11(11)       |
| O1   | Dy1              | O4                      | 150.72(10)       |
| 01   | Dy1              | N1                      | 74.62(10)        |
| O1   | Dy1              | N2                      | 89.83(10)        |
| O1   | Dy1              | N3                      | 74.23(10)        |
| 01   | Dy1              | N4                      | 131.62(11)       |
| 02   | Dy1              | 03                      | 71.95(10)        |
| O2   | Dy1              | N1                      | 137.28(11)       |
| 02   | Dy1              | N2                      | 146.15(10)       |
| 02   | Dy1              | N3                      | 77.27(10)        |
| O2   | Dy1              | N4                      | 69.59(11)        |
| O3   | Dy1              | N1                      | 81.90(11)        |
| O3   | Dy1              | N2                      | 141.89(11)       |
| O3   | Dy1              | N3                      | 148.99(11)       |
| O3   | Dy1              | N4                      | 101.08(11)       |
| O4   | Dy1              | 02                      | 127.14(10)       |
| O4   | Dy1              | 03                      | 77.45(12)        |
| O4   | Dy1              | N1                      | 76.53(10)        |
| O4   | Dv1              | N2                      | 74.36(10)        |
| O4   | Dy1              | N3                      | 120.14(11)       |
| O4   | Dy1              | N4                      | 75.51(11)        |
| N1   | Dy1              | N2                      | 67.04(11)        |
| N1   | Dv1              | N3                      | 125.17(10)       |
| N1   | Dv1              | N4                      | 150.45(11)       |
| N3   | Dy1              | N2                      | 68.92(11)        |
| N4   | Dv1              | N2                      | 96.14(11)        |
| N4   | Dv1              | N3                      | 63.72(11)        |
|      | Table S2 Bond le | engths and bond angles  | s for <b>2</b> . |
| Atom | Atom             | Length/Å                |                  |
| Dv1  | 01               | 2.330(3)                |                  |
| Dv1  | 02               | 2.308(3)                |                  |
| Dv1  | 03               | 2.226(3)                |                  |
|      |                  | ======(=)               |                  |

Table S1 Bond lengths and bond angles for 1.

| Dy1  | O4              | 2.269(4)               |                |  |
|------|-----------------|------------------------|----------------|--|
| Dy1  | N1              | 2.647(4)               |                |  |
| Dy1  | N2              | 2.595(4)               |                |  |
| Dy1  | N3              | 2.598(4)               |                |  |
| Dy1  | N4              | 2.633(4)               |                |  |
| Atom | Atom            | Atom                   | Angle/°        |  |
| 01   | Dy1             | N1                     | 77.45(13)      |  |
| 01   | Dy1             | N2                     | 141.57(13)     |  |
| O1   | Dy1             | N3                     | 69.67(13)      |  |
| O1   | Dy1             | N4                     | 147.27(13)     |  |
| O2   | Dy1             | 01                     | 71.73(12)      |  |
| O2   | Dy1             | N1                     | 147.98(13)     |  |
| O2   | Dy1             | N2                     | 77.68(13)      |  |
| O2   | Dy1             | N3                     | 112.06(14)     |  |
| O2   | Dy1             | N4                     | 140.84(13)     |  |
| O3   | Dy1             | 01                     | 121.92(13)     |  |
| O3   | Dy1             | O2                     | 81.38(13)      |  |
| O3   | Dy1             | O4                     | 150.31(13)     |  |
| O3   | Dy1             | N1                     | 123.52(13)     |  |
| O3   | Dy1             | N2                     | 74.38(13)      |  |
| O3   | Dy1             | N3                     | 74.86(13)      |  |
| O3   | Dy1             | N4                     | 76.66(14)      |  |
| O4   | Dy1             | 01                     | 82.97(13)      |  |
| O4   | Dy1             | O2                     | 93.16(14)      |  |
| O4   | Dy1             | N1                     | 74.38(14)      |  |
| O4   | Dy1             | N2                     | 75.94(14)      |  |
| O4   | Dy1             | N3                     | 133.17(13)     |  |
| O4   | Dy1             | N4                     | 90.31(14)      |  |
| N2   | Dy1             | N1                     | 125.29(14)     |  |
| N2   | Dy1             | N3                     | 145.73(13)     |  |
| N2   | Dy1             | N4                     | 65.41(14)      |  |
| N3   | Dy1             | N1                     | 63.25(14)      |  |
| N3   | Dy1             | N4                     | 93.02(14)      |  |
| N4   | Dy1             | N1                     | 69.90(14)      |  |
|      | Table S3 Bond l | engths and bond angles | for <b>3</b> . |  |
| Atom | Atom            | Length/Å               |                |  |
| Dy1  | 01              | 2.249(3)               |                |  |
| Dy1  | O2              | 2.298(3)               |                |  |
| Dy1  | O3              | 2.277(3)               |                |  |
| Dy1  | O4              | 2.328(3)               |                |  |
| Dy1  | N1              | 2.647(3)               |                |  |
| Dy1  | N2              | 2.662(3)               |                |  |
| Dy1  | N3              | 2.521(3)               |                |  |
| Dy1  | N4              | 2.574(3)               |                |  |
| -    |                 |                        |                |  |

| Atom | Atom             | Atom                       | Angle/°       |
|------|------------------|----------------------------|---------------|
| 01   | Dy1              | 02                         | 78.61(10)     |
| 01   | Dy1              | 03                         | 151.05(10)    |
| 01   | Dy1              | 04                         | 103.92(11)    |
| 01   | Dy1              | N1                         | 74.10(10)     |
| 01   | Dy1              | N2                         | 89.20(10)     |
| 01   | Dy1              | N3                         | 74.30(10)     |
| 01   | Dy1              | N4                         | 131.40(10)    |
| O2   | Dy1              | O4                         | 71.89(10)     |
| O2   | Dy1              | N1                         | 77.74(10)     |
| O2   | Dy1              | N2                         | 146.47(10)    |
| O2   | Dy1              | N3                         | 136.09(11)    |
| O2   | Dy1              | N4                         | 69.88(10)     |
| O3   | Dy1              | O2                         | 127.60(10)    |
| O3   | Dy1              | O4                         | 77.52(11)     |
| O3   | Dy1              | N1                         | 119.33(10)    |
| O3   | Dy1              | N2                         | 74.31(10)     |
| O3   | Dy1              | N3                         | 77.36(10)     |
| O3   | Dy1              | N4                         | 75.22(10)     |
| O4   | Dy1              | N1                         | 149.24(10)    |
| O4   | Dy1              | N2                         | 141.65(11)    |
| O4   | Dy1              | N3                         | 81.85(11)     |
| O4   | Dy1              | N4                         | 100.32(11)    |
| N1   | Dy1              | N2                         | 68.87(11)     |
| N3   | Dy1              | N1                         | 125.15(11)    |
| N3   | Dy1              | N2                         | 67.06(11)     |
| N3   | Dy1              | N4                         | 151.27(11)    |
| N4   | Dy1              | N1                         | 63.88(11)     |
| N4   | Dy1              | N2                         | 97.09(11)     |
|      | Table S4 Bond le | engths and bond angles for | or <b>4</b> . |
| Atom | Atom             | Length/Å                   |               |
| Dy1  | 01               | 2.309(4)                   |               |
| Dy1  | O2               | 2.279(4)                   |               |
| Dy1  | O3               | 2.321(4)                   |               |
| Dy1  | O4               | 2.244(4)                   |               |
| Dy1  | N1               | 2.663(5)                   |               |
| Dy1  | N2               | 2.651(5)                   |               |
| Dy1  | N3               | 2.533(5)                   |               |
| Dy1  | N4               | 2.563(5)                   |               |
| Atom | Atom             | Atom                       | Angle/°       |
| 01   | Dy1              | O3                         | 72.04(14)     |
| 01   | Dy1              | N1                         | 142.46(15)    |
| 01   | Dy1              | N2                         | 148.42(15)    |
| 01   | Dy1              | N3                         | 82.79(15)     |

| 01 | Dy1 | N4 | 101.12(16) |
|----|-----|----|------------|
| O2 | Dy1 | 01 | 77.20(17)  |
| O2 | Dy1 | O3 | 127.13(14) |
| O2 | Dy1 | N1 | 74.67(14)  |
| O2 | Dy1 | N2 | 120.71(15) |
| O2 | Dy1 | N3 | 76.66(15)  |
| O2 | Dy1 | N4 | 75.45(16)  |
| 03 | Dy1 | N1 | 145.49(14) |
| 03 | Dy1 | N2 | 76.62(14)  |
| 03 | Dy1 | N3 | 137.81(15) |
| 03 | Dy1 | N4 | 69.80(16)  |
| O4 | Dy1 | 01 | 102.58(16) |
| O4 | Dy1 | O2 | 151.12(15) |
| O4 | Dy1 | O3 | 78.40(15)  |
| O4 | Dy1 | N1 | 90.73(14)  |
| O4 | Dy1 | N2 | 74.37(14)  |
| O4 | Dy1 | N3 | 74.68(15)  |
| O4 | Dy1 | N4 | 131.62(16) |
| N2 | Dy1 | N1 | 68.89(14)  |
| N3 | Dy1 | N1 | 66.95(15)  |
| N3 | Dy1 | N2 | 124.74(14) |
| N3 | Dy1 | N4 | 150.15(16) |
| N4 | Dy1 | N1 | 95.36(15)  |
| N4 | Dy1 | N2 | 63.61(15)  |

| Configuration                                         | ABOXIY,<br>1 | ABOXIY,<br>2 | ABOXIY,<br><b>3</b> | ABOXIY,<br>4 |
|-------------------------------------------------------|--------------|--------------|---------------------|--------------|
| Octagon(D8h)                                          | 31.968       | 32.232       | 31.892              | 32.093       |
| Heptagonal pyramid(C7v)                               | 22.017       | 21.727       | 22.324              | 21.957       |
| Hexagonal bipyramid(D6h)                              | 13.011       | 12.493       | 12.889              | 13.216       |
| Cube(Oh)                                              | 7.245        | 8.261        | 7.027               | 7.340        |
| Square antiprism $(D_{4d})$                           | 3.247        | 2.611        | 3.035               | 3.374        |
| Triangular dodecahedron $(D_{2d})$                    | 0.601        | 1.108        | 0.613               | 0.572        |
| Johnson gyrobifastigium J26 (D <sub>2d</sub> )        | 15.342       | 12.635       | 15.225              | 15.513       |
| Johnson elongated triangular bipyramid J14 $(D_{3h})$ | 28.233       | 26.817       | 28.071              | 28.483       |
| Biaugmented trigonal prism J50 ( $C_{2v}$ )           | 3.271        | 2.076        | 3.507               | 3.194        |
| Biaugmented trigonal prism $(C_{2v})$                 | 3.196        | 2.061        | 3.109               | 3.152        |
| Snub siphenoid J84 ( $D_{2d}$ )                       | 3.779        | 4.099        | 3.929               | 3.691        |
| Triakis tetrahedron(Td)                               | 8.014        | 9.032        | 7.761               | 8.126        |
| Elongated trigonal bipyramid(D3h)                     | 24.200       | 24.404       | 24.029              | 24.164       |

Table S5 Dy<sup>III</sup> ion geometry analysis by SHAPE 2.1 software.



Fig. S1 The crystal structure of compound 1 (a) showing general ligand configurations. Local coordination geometry of the  $Dy^{III}$  ion for compound 1 (b) (hydrogen atoms are omitted for clarity).



Fig. S2 The crystal structure of compound 2 (a) showing general ligand configurations. Local coordination geometry of the  $Dy^{III}$  ion for compound 2 (b) (hydrogen atoms are omitted for clarity).



Fig. S3 The crystal structure of compound 3 (a) showing general ligand configurations.

Local coordination geometry of the  $Dy^{III}$  ion for compound **3** (b) (hydrogen atoms are omitted for clarity).



Fig. S4 The crystal structure of compound 4 (a) showing general ligand configurations. Local coordination geometry of the  $Dy^{III}$  ion for compound 4 (b) (hydrogen atoms are omitted for clarity).



**Fig. S5** The hydrogen bonding interactions in compound **1**. The yellow dotted lines represent  $C-H\cdots O$  hydrogen bonding interactions.



**Fig. S6** The hydrogen bonding interactions in compound **2**. The yellow dotted lines represent  $C-H\cdots O$  hydrogen bonding interactions.



**Fig. S7** The hydrogen bonding interactions in compound **3**. The yellow dotted lines represent  $C-H\cdots O$  hydrogen bonding interactions.



Fig. S8 The hydrogen bonding interactions in compound 4. The yellow dotted lines



represent C-H···O hydrogen bonding interactions.



(c) (d) Fig. S10 Temperature dependence of  $\chi_M T$  for 1-4 (a-d). The red lines represent the simulation from ab initio calculation.



**Fig. S11** M(H) plots for 1-4 (a-d) between 0 and 70 kOe and at temperature of 2.0 K, respectively. The red lines represent the simulation from *ab initio* calculation.



**Fig. S12** Temperature dependence of the in-phase ( $\chi'$ , a) and out-of-phase ( $\chi''$ , b) ac susceptibility signals under 0 Oe dc field for 1.



**Fig. S13** Temperature dependence of the in-phase ( $\chi'$ , a) and out-of-phase ( $\chi''$ , b) ac susceptibility signals under 0 Oe dc field for **2**.



**Fig. S14** Temperature dependence of the in-phase ( $\chi'$ , a) and out-of-phase ( $\chi''$ , b) ac susceptibility signals under 0 Oe dc field for **3**.



**Fig. S15** Temperature dependence of the in-phase ( $\chi'$ , a) and out-of-phase ( $\chi''$ , b) ac susceptibility signals under 0 Oe dc field for 4.



**Fig. S16** Plots of the frequency-dependent in-phase (a) and out-of-phase (b) ac susceptibility at indicated temperatures for **1**.



Fig. S17 Plots of the frequency-dependent in-phase (a) and out-of-phase (b) ac susceptibility at indicated temperatures for 2.



Fig. S18 Plots of the frequency-dependent in-phase (a) and out-of-phase (b) ac susceptibility at indicated temperatures for 3.



Fig. S19 Plots of the frequency-dependent in-phase (a) and out-of-phase (b) ac susceptibility at indicated temperatures for 4.



**Fig. S20** Cole–Cole plots for 1-4 (a-d) using the ac susceptibility data under a zero applied dc field. The solid lines are guides for the eyes.



Fig. S21 Fitting of frequency dependence of relaxation time under 0 Oe dc field for 1, 3 and 4.

### 4. Relaxation fitting parameters of 1-4

The magnetic susceptibility data of **1-4** under a zero dc field were described by the modified Debye functions:

$$\chi'(\omega) = \chi_{\rm S} + (\chi_{\rm T} - \chi_{\rm S}) \frac{1 + (\omega\tau)^{1-\alpha} \sin(\frac{\pi}{2}\alpha)}{1 + 2(\omega\tau)^{1-\alpha} \sin(\frac{\pi}{2}\alpha) + (\omega\tau)^{(2-2\alpha)}}$$
$$\chi''(\omega) = (\chi_{\rm T} - \chi_{\rm S}) \frac{(\omega\tau)^{1-\alpha} \cos(\frac{\pi}{2}\alpha)}{1 + 2(\omega\tau)^{1-\alpha} \sin(\frac{\pi}{2}\alpha) + (\omega\tau)^{(2-2\alpha)}}$$
$$\chi''_{\omega=\tau^{-1}} = (\chi_{\rm T} - \chi_{\rm S}) \frac{\cos(\frac{\pi}{2}\alpha)}{2 + 2\sin(\frac{\pi}{2}\alpha)} = \frac{1}{2} (\chi_{\rm T} - \chi_{\rm S}) \tan\frac{\pi}{4} (1-\alpha)$$

**Table S6** Relaxation fitting parameters from Least-Squares Fitting of  $\chi(\omega)$  data for 1 under a zero applied dc field.

|  | Т | $\Delta \chi_1 \text{ (cm}^3 \text{mol}^{-1}\text{)}$ | $\Delta \chi_2 (\mathrm{cm}^3\mathrm{mol}^{-1})$ | $\tau(s)$ | α |
|--|---|-------------------------------------------------------|--------------------------------------------------|-----------|---|
|--|---|-------------------------------------------------------|--------------------------------------------------|-----------|---|

| 2.0 | 0.689507E+00 | 0.330175E+01 | 0.272019E-03 | 0.121927E+00 |
|-----|--------------|--------------|--------------|--------------|
| 2.1 | 0.654505E+00 | 0.313673E+01 | 0.269514E-03 | 0.121753E+00 |
| 2.2 | 0.622448E+00 | 0.298931E+01 | 0.267417E-03 | 0.121643E+00 |
| 2.3 | 0.592090E+00 | 0.285226E+01 | 0.265310E-03 | 0.120750E+00 |
| 2.4 | 0.565953E+00 | 0.272934E+01 | 0.263504E-03 | 0.120347E+00 |
| 2.5 | 0.545876E+00 | 0.261635E+01 | 0.262002E-03 | 0.120185E+00 |
| 2.6 | 0.524118E+00 | 0.251238E+01 | 0.260193E-03 | 0.120534E+00 |
| 2.7 | 0.506196E+00 | 0.241579E+01 | 0.258999E-03 | 0.119724E+00 |
| 2.8 | 0.486381E+00 | 0.232655E+01 | 0.257279E-03 | 0.120004E+00 |
| 2.9 | 0.469421E+00 | 0.224416E+01 | 0.255909E-03 | 0.120125E+00 |
| 3.0 | 0.463331E+00 | 0.222649E+01 | 0.256353E-03 | 0.123747E+00 |
| 3.2 | 0.425470E+00 | 0.202691E+01 | 0.252088E-03 | 0.119711E+00 |

**Table S7** Relaxation fitting parameters from Least-Squares Fitting of  $\chi(\omega)$  data for 2under a zero applied dc field.

| Т   | $\Delta \chi_1 \text{ (cm}^3 \text{mol}^{-1}\text{)}$ | $\Delta \chi_2 \text{ (cm}^3 \text{mol}^{-1}\text{)}$ | $\tau(s)$    | α            |
|-----|-------------------------------------------------------|-------------------------------------------------------|--------------|--------------|
| 2   | 0.487257E+00                                          | 0.735784E+01                                          | 0.208471E-02 | 0.151705E+00 |
| 2.2 | 0.440066E+00                                          | 0.669337E+01                                          | 0.209213E-02 | 0.152937E+00 |
| 2.4 | 0.401882E+00                                          | 0.612943E+01                                          | 0.209446E-02 | 0.153523E+00 |
| 2.6 | 0.369632E+00                                          | 0.565707E+01                                          | 0.209694E-02 | 0.154151E+00 |
| 2.8 | 0.341931E+00                                          | 0.525148E+01                                          | 0.209997E-02 | 0.154876E+00 |
| 3   | 0.318101E+00                                          | 0.490092E+01                                          | 0.210146E-02 | 0.155440E+00 |
| 3.2 | 0.298343E+00                                          | 0.459249E+01                                          | 0.210082E-02 | 0.155537E+00 |
| 3.4 | 0.279624E+00                                          | 0.431970E+01                                          | 0.210131E-02 | 0.156265E+00 |
| 3.6 | 0.261977E+00                                          | 0.407928E+01                                          | 0.210172E-02 | 0.156895E+00 |
| 3.8 | 0.243227E+00                                          | 0.386213E+01                                          | 0.209794E-02 | 0.158117E+00 |
| 4   | 0.230564E+00                                          | 0.366825E+01                                          | 0.209686E-02 | 0.158139E+00 |
| 4.3 | 0.213398E+00                                          | 0.340864E+01                                          | 0.209319E-02 | 0.158686E+00 |
| 4.6 | 0.198145E+00                                          | 0.318466E+01                                          | 0.208735E-02 | 0.159188E+00 |
| 4.9 | 0.185115E+00                                          | 0.299028E+01                                          | 0.208514E-02 | 0.159973E+00 |
| 5.2 | 0.173465E+00                                          | 0.281515E+01                                          | 0.207706E-02 | 0.160248E+00 |
| 5.5 | 0.161730E+00                                          | 0.266260E+01                                          | 0.206837E-02 | 0.161158E+00 |
| 5.8 | 0.153274E+00                                          | 0.252350E+01                                          | 0.205841E-02 | 0.160860E+00 |
| 6.1 | 0.143769E+00                                          | 0.239805E+01                                          | 0.204477E-02 | 0.161354E+00 |
| 6.4 | 0.137590E+00                                          | 0.228530E+01                                          | 0.203123E-02 | 0.160399E+00 |
| 6.7 | 0.130304E+00                                          | 0.218429E+01                                          | 0.201194E-02 | 0.160687E+00 |
| 7   | 0.125371E+00                                          | 0.208876E+01                                          | 0.199124E-02 | 0.158726E+00 |
| 7.3 | 0.119306E+00                                          | 0.200377E+01                                          | 0.196948E-02 | 0.158262E+00 |
| 7.6 | 0.114118E+00                                          | 0.192365E+01                                          | 0.194000E-02 | 0.156620E+00 |
| 7.9 | 0.109318E+00                                          | 0.184996E+01                                          | 0.190796E-02 | 0.154824E+00 |
| 8.2 | 0.104367E+00                                          | 0.178343E+01                                          | 0.187154E-02 | 0.153233E+00 |
| 8.6 | 0.998976E-01                                          | 0.169725E+01                                          | 0.181358E-02 | 0.148098E+00 |
| 9   | 0.946468E-01                                          | 0.162214E+01                                          | 0.175181E-02 | 0.144359E+00 |

| 9.4  | 0.889242E-01 | 0.155238E+01 | 0.167984E-02 | 0.140552E+00 |
|------|--------------|--------------|--------------|--------------|
| 9.8  | 0.844830E-01 | 0.148779E+01 | 0.160357E-02 | 0.135471E+00 |
| 10.2 | 0.792711E-01 | 0.142929E+01 | 0.152352E-02 | 0.131205E+00 |
| 10.6 | 0.743353E-01 | 0.137250E+01 | 0.143256E-02 | 0.125345E+00 |
| 11   | 0.697022E-01 | 0.132312E+01 | 0.134722E-02 | 0.121015E+00 |
| 11.5 | 0.630159E-01 | 0.126413E+01 | 0.123706E-02 | 0.115771E+00 |
| 12   | 0.565298E-01 | 0.121025E+01 | 0.112727E-02 | 0.110440E+00 |
| 12.5 | 0.499300E-01 | 0.116173E+01 | 0.102007E-02 | 0.105819E+00 |
| 13   | 0.433379E-01 | 0.111643E+01 | 0.917631E-03 | 0.101812E+00 |
| 13.5 | 0.365184E-01 | 0.107380E+01 | 0.821622E-03 | 0.983315E-01 |
| 14   | 0.291307E-01 | 0.103385E+01 | 0.729979E-03 | 0.951945E-01 |
| 14.5 | 0.213466E-01 | 0.998656E+00 | 0.647059E-03 | 0.943072E-01 |
| 15   | 0.134180E-01 | 0.965166E+00 | 0.570363E-03 | 0.931482E-01 |
| 16   | 0.493932E-13 | 0.906072E+00 | 0.440738E-03 | 0.911922E-01 |
| 17   | 0.659887E-13 | 0.851564E+00 | 0.340675E-03 | 0.819669E-01 |
| 18   | 0.120494E-12 | 0.804728E+00 | 0.258896E-03 | 0.763472E-01 |
| 19   | 0.232322E-12 | 0.761652E+00 | 0.193433E-03 | 0.714606E-01 |
| 20   | 0.271291E-12 | 0.724095E+00 | 0.142986E-03 | 0.709857E-01 |
| 22   | 0.360185E-12 | 0.657850E+00 | 0.769629E-04 | 0.668911E-01 |
| 24   | 0.521998E-12 | 0.603270E+00 | 0.442440E-04 | 0.503988E-01 |
| 26   | 0.137017E-11 | 0.557161E+00 | 0.293909E-04 | 0.115979E-01 |

**Table S8** Relaxation fitting parameters from Least-Squares Fitting of  $\chi(\omega)$  data for **3** under a zero applied dc field.

| Т   | $\Delta \chi_1 \text{ (cm}^3 \text{mol}^{-1}\text{)}$ | $\Delta \chi_2 \text{ (cm}^3 \text{mol}^{-1}\text{)}$ | $\tau(s)$    | α            |
|-----|-------------------------------------------------------|-------------------------------------------------------|--------------|--------------|
| 2.0 | 0.834159E+00                                          | 0.337502E+01                                          | 0.131152E-03 | 0.111392E+00 |
| 2.1 | 0.791676E+00                                          | 0.320984E+01                                          | 0.130192E-03 | 0.110862E+00 |
| 2.2 | 0.757520E+00                                          | 0.306267E+01                                          | 0.129734E-03 | 0.110311E+00 |
| 2.3 | 0.719100E+00                                          | 0.292484E+01                                          | 0.128720E-03 | 0.110278E+00 |
| 2.4 | 0.688381E+00                                          | 0.280102E+01                                          | 0.128085E-03 | 0.109449E+00 |
| 2.5 | 0.658837E+00                                          | 0.268752E+01                                          | 0.127444E-03 | 0.109528E+00 |
| 2.6 | 0.632367E+00                                          | 0.258242E+01                                          | 0.126836E-03 | 0.109557E+00 |
| 2.7 | 0.607762E+00                                          | 0.248505E+01                                          | 0.126219E-03 | 0.109398E+00 |
| 2.8 | 0.585965E+00                                          | 0.239482E+01                                          | 0.125754E-03 | 0.108948E+00 |
| 2.9 | 0.564873E+00                                          | 0.231101E+01                                          | 0.125190E-03 | 0.108947E+00 |
| 3.0 | 0.590341E+00                                          | 0.240599E+01                                          | 0.106969E-03 | 0.916067E-01 |

**Table S9** Relaxation fitting parameters from Least-Squares Fitting of  $\chi(\omega)$  data for 4 under a zero applied dc field.

| T   | $\Delta \chi_1 \text{ (cm}^3 \text{mol}^{-1}\text{)}$ | $\Delta \chi_2 (\mathrm{cm}^3\mathrm{mol}^{-1})$ | $\tau(s)$    | α            |
|-----|-------------------------------------------------------|--------------------------------------------------|--------------|--------------|
| 2   | 0.606521E+00                                          | 0.334572E+01                                     | 0.303655E-03 | 0.130584E+00 |
| 2.1 | 0.577853E+00                                          | 0.317966E+01                                     | 0.301756E-03 | 0.130156E+00 |

| 2.2 | 0.551388E+00 | 0.302868E+01 | 0.299631E-03 | 0.129566E+00 |
|-----|--------------|--------------|--------------|--------------|
| 2.3 | 0.526246E+00 | 0.289145E+01 | 0.297687E-03 | 0.129580E+00 |
| 2.4 | 0.504961E+00 | 0.276676E+01 | 0.296305E-03 | 0.129424E+00 |
| 2.5 | 0.485592E+00 | 0.265247E+01 | 0.294747E-03 | 0.128587E+00 |
| 2.6 | 0.466579E+00 | 0.254819E+01 | 0.293166E-03 | 0.128560E+00 |
| 2.7 | 0.449172E+00 | 0.245100E+01 | 0.291822E-03 | 0.128374E+00 |
| 2.8 | 0.433951E+00 | 0.236096E+01 | 0.290716E-03 | 0.127888E+00 |
| 2.9 | 0.417505E+00 | 0.227728E+01 | 0.289111E-03 | 0.128103E+00 |
| 3   | 0.380786E+00 | 0.210350E+01 | 0.287470E-03 | 0.101634E+00 |
| 3.2 | 0.379904E+00 | 0.205760E+01 | 0.285969E-03 | 0.126676E+00 |

**Table S10** The fitting parameters of different relaxation mechanisms for eqn (1).

| The fitting parameters | Meanings Values                 |                                  |  |
|------------------------|---------------------------------|----------------------------------|--|
| τ                      | the inverse of the ac frequency | /                                |  |
| Т                      | the temperature of the          | 2.0–26.0 K                       |  |
|                        | maximum in the ac signal        |                                  |  |
| $U_{ m eff}$           | the effective energy barrier    | 200.89 K                         |  |
| k                      | Boltzmann's constant            | 1.380649 × 10 <sup>-23</sup> J/K |  |
| $	au_{ m QTM}$         | the fitting parameter of the    | 0.00 <b>2</b> 1 s                |  |
|                        | QTM process                     | 0.0021 5                         |  |
| п                      | the fitting parameter of the    | 4.86                             |  |
|                        | Raman process                   |                                  |  |
| С                      | the fitting parameter of the    | $0.002 \text{ s}^{-1} V^{-4.86}$ |  |
|                        | Raman process                   | 0.002 5 K                        |  |
| <b>T</b> .             | the fitting parameter of the    | $2.50 \times 10^{-8}$ s          |  |
| ιO                     | Orbach process                  | $2.50 \times 10^{-5}$ S          |  |

## Theoretical methods and computational details

This section is supposed to be included in ESI.

Multiconfigurational *ab initio* calculations, including spin-orbit coupling (SOC), were performed on the experimental structures of the complexes here to explore their SMM properties. This type of calculation includes two steps: <sup>1</sup> 1) a set of spin eigenstates, are obtained by the state-averaged (SA) CASSCF method; <sup>2</sup> 2) the low-lying SOC states, i.e., Kramers doublets (KD) herein, are obtained by state interaction which is the diagonalization of the SOC matrix in the space spanned by the spin eigenstates from the first step. In the CASSCF step, the active space consisted of 9 electrons in 7 orbitals and all the spin eigenstates of 21 sextets were included. Due to the hardware limitation, other highly excited quartets and doublets were not considered. The step of state

interaction were performed by the RASSI-SO module<sup>3</sup> with the SOC integrals from the AMFI method.<sup>4</sup> The ANO-RCC basis sets,<sup>5–7</sup> including VTZP for Dy, VDZ for C and H as well as VDZP for other atoms, were used. All the calculations were carried out with the MOLCAS@UU, a version of MOLCAS 8.0<sup>8,9</sup> which is freely distributed for academic users. The SINGLE ANISO module,<sup>10,11</sup> developed by Chibotaru and et al, was used to obtain the g-tensors, transition magnetic moments and other parameters characterizing the magnetic anisotropy.

Table S11 Experimental and theoretically calculated  $\tau_{\text{QTM}}$  (in s) of the compounds here.

|        | $	au_{QTM\mathrm{a}}^{exp}$                                                 | $	au_{QTM^{\mathrm{b}}}^{Zee}$                                 | ∆log∘        |
|--------|-----------------------------------------------------------------------------|----------------------------------------------------------------|--------------|
| 1 2    | 2.72×10 <sup>-4</sup> (-3.56) <sup>d</sup><br>2.10×10 <sup>-3</sup> (-2.86) | 3.34×10 <sup>-4</sup> (-3.48)<br>6.47×10 <sup>-3</sup> (-2.19) | 0.08 0.49    |
| 3<br>4 | 1.31×10 <sup>-4</sup> (-3.88)<br>3.04×10 <sup>-4</sup> (-3.52)              | 1.52×10 <sup>-4</sup> (-3.82)<br>3.52×10 <sup>-4</sup> (-3.45) | 0.06<br>0.07 |

 $a \tau_{QTM}^{exp}$  of **1**, **3** and **4** are taken as the relaxation time at 2 K.  $^{b} B_{ave}$  is set to be 50 mT.

<sup>*c*</sup>  $\Delta log = log(\tau_{QTM}^{Zee}) - log(\tau_{QTM}^{exp})$ . <sup>*d*</sup> logarithmic values are shown in parentheses.

### REFERENCES

[1] Javier Luzón and Roberta Sessoli. Lanthanides in molecular magnetism: so fascinating, so challenging. *Dalton Trans*, 41:13556–13567, 2012.

[2] Björn O. Roos, Peter R. Taylor, and Per. E. M. Siegbahn. A COMPLETE ACTIVE SPACE SCF METHOD (CASSCF) USING A DENSITY MATRIX FORMULATED SUPER-CI APPROACH. *Chem Phys*, 48:157–173, 1980.

[3] Per-åke Malmqvist, Björn O. Roos, and Bernd Schimmelpfennig. The restricted active space (RAS) state interaction approach with spin-orbit coupling. *Chem Phys Lett*, 357:230–240, 2002.

[4] Bernd A Hess, Christel M Marian, Ulf Wahlgren, and Odd Gropen. A mean-field spin-orbit method applicable to correlated wavefunctions. *Chem Phys Lett*, 251:365–371, 1996.

[5] Björn O. Roos, Roland Lindh, Per-åke Malmqvist, Valera Veryazov, and Per-Olof Widmark. Main Group Atoms and Dimers Studied with a New Relativistic ANO Basis Set. *J Phys Chem A*, 108(15):2851–2858, 2004.

[6] Björn O. Roos, Roland Lindh, Per-åke Malmqvist, Valera Veryazov, and Per-Olof Widmark. New Relativistic ANO Basis Sets for Transition Metal Atoms. *J Phys Chem A*, 109(29):6575–6579, 2005.

[7] Björn O. Roos, Roland Lindh, Per-åke Malmqvist, Valera Veryazov, Per-Olof Widmark, and Antonio Carlos Borin. New Relativistic Atomic Natural Orbital Basis Sets for Lanthanide Atoms with Applications to the Ce Diatom and  $LuF_3$ . *J Phys Chem* 

#### *A*, 112(45):11431–11435, 2008.

[8] HAMILTONIANS OF ANISOTROPIC MAG- NETIC COMPLEXES. *Adv Chem Phys*, 153:397–519, 2013.

[9] Francesco Aquilante, Luca De Vico, Nicolas Ferré, Giovanni Ghigo, Per-åke Malmqvist, Pavel Neogrády, Thomas Bondo Pedersen, Michal Pitoňák, Markus Reiher, Björn O. Roos, Luis Serrano-Andrés, Miroslav Urban, Valera Veryazov, and Roland Lindh. Molcas 7: The next generation. *J Comput Chem*, 31(1):224–247, 2010.

[10] Francesco Aquilante, Jochen Autschbach, Rebecca K. Carlson, Liviu F. Chibotaru, Mickael G. Delcey, Luca De Vico, Igna- cio Fdez. Galván, Nicolas Ferré, Luis Manuel Frutos, Laura Gagliardi, Marco Garavelli, Angelo Giussani, Chad E. Hoyer, Giovanni Li Manni, Hans Lischka, Dongxia Ma, Per-åke Malmqvist, Thomas Müller, Artur Nenov, Massimo Olivucci, Thomas Bondo Pedersen, Daoling Peng, Felix Plasser, Ben Pritchard, Markus Reiher, Ivan Rivalta, Igor Schapiro, Javier Segarra-Martií, Michael Stenrup, Donald G. Truhlar, Liviu Ungur, Alessio Valentini, Steven Vancoillie, Valera Veryazov, Victor P. Vysotskiy, Oliver Weingart, Felipe Zapata, and Roland Lindh. Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table. *J Comput Chem*, 37(5):506–541, 2016.

[11] Liviu F Chibotaru and Liviu Ungur. Ab initio calculation of anisotropic magnetic properties of complexes. I. Unique definition of pseudospin Hamiltonians and their derivation. *J Chem Phys*, 137:064112, 2012.