Supporting Information

Understanding the varying mechanisms between the conformal interlayer and overlayer in the silicon/hematite dual-absorber

photoanode for solar water splitting

Zhongyuan Zhou,^{a,b} Liujing Li,^b Yongsheng Niu,^a Haixiang Song,^a Xiu-Shuang Xing,^{*c}

Zhanhu Guo,^d and Shaolong Wu^{*b,e}

^aHenan Joint International Research Laboratory of Nanocomposite Sensing Materials, School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, China.

^bSchool of Optoelectronic Science and Engineering, Soochow University, Suzhou 215006, China. ^cSchool of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000,

China.

^dIntegrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering,

University of Tennessee, Knoxville, Tennessee 37996, USA.

eLight Industry Institute of Electrochemical Power Sources, Suzhou 215006, China.

*Email: xsxing0621@163.com; shaolong_wu@suda.edu.cn

Fig. S1 SEM images of the as-prepared SiNWs. (a and b) are the top-view and crosssection SEM images, (c and d) are the detailed views of the top and side regions, respectively.

Fig. S2 Reflectance spectrum of the as-prepared SiNWs with the length of \sim 3 μ m, and the insert is the corresponding SEM image.

Fig. S3 Detailed SEM images of the side regions in the prepared (a) SiNWs, (b) SiNWs/Sn@ α -Fe₂O₃, (c) SiNWs/Sn@ α -Fe₂O₃/Al₂O₃ and (d) SiNWs/Al₂O₃/Sn@ α -Fe₂O₃.

Fig. S4 TEM images of the Si/Sn@ α -Fe₂O₃ nanowire heterostructures scraped from the substrate.

Fig. S5 SEM images of the SiNWs/Al₂O₃ photoanodes with different thicknesses of Al₂O₃ film. (a–c) and (d–f) are the top-view and cross-section SEM images, respectively. (a and d), (b and e) and (c and f) represent the 10, 50 and 100 ALD-cycle Al₂O₃ coated on the SiNWs, respectively.

Fig. S6 STEM-HAADF analysis of the (a) SiNWs/Sn@ α -Fe₂O₃, (b) SiNWs/Sn@ α -Fe₂O₃/Al₂O₃ and (c) SiNWs/Al₂O₃/Sn@ α -Fe₂O₃ nanowire heterostructures, respectively.

Fig. S7. STEM-EDS comparison in the (a) SiNWs/Sn@ α -Fe₂O₃, (b) SiNWs/Sn@ α -Fe₂O₃/Al₂O₃ and (c) SiNWs/Al₂O₃/Sn@ α -Fe₂O₃ nanowire heterostructures, respectively.

Fig. S8 Reflectance spectra of the as-prepared SiNWs, SiNWs/Sn@ α -Fe₂O₃, SiNWs/Sn@ α -Fe₂O₃/Al₂O₃ and SiNWs/Al₂O₃/Sn@ α -Fe₂O₃ photoanodes. The corresponding digital photographs are shown in the insert.

Fig. S9 EDS comparison and corresponding SEM images in the (a) SiNWs/Sn@ α -Fe₂O₃, (b) SiNWs/Sn@ α -Fe₂O₃/Al₂O₃ and (c) SiNWs/Al₂O₃/Sn@ α -Fe₂O₃ photoanodes, respectively.

Fig. S10 XPS spectra of the SiNWs/Sn@ α -Fe₂O₃, SiNWs/Sn@ α -Fe₂O₃/Al₂O₃, SiNWs/Al₂O₃/Sn@ α -Fe₂O₃ photoanodes, respectively.

Fig. S11 Linear scan voltammograms of SiNWs in 1 M NaOH electrolyte in dark and under simulated AM 1.5G illumination.

Fig. S12 SEM images of the SiNWs/Sn@ α -Fe₂O₃ with different thicknesses of Sn@Fe₂O₃ film. (a–c) and (d–f) are top-view and cross-section SEM images, respectively. (a and d), (b and e) and (c and f) represent the Sn@ α -Fe₂O₃ films prepared with 0.01 M, 0.02 M and 0.03 M Fe(NO₃)₃ precursor solutions, respectively.

Fig. S13 *J-V* curves of the SiNWs/Sn@ α -Fe₂O₃ prepared with 0.01 M, 0.02 M and 0.03 M Fe(NO₃)₃ precursor solutions.

Fig. S14 SEM images of the SiNWs/Sn@ α -Fe₂O₃/Al₂O₃ with different thicknesses of Al₂O₃ overlayer. (a–c) and (d–f) are the top-view and cross-section SEM images, respectively. (a and d), (b and e) and (c and f) represent the 5, 10 and 20 ALD-cycle Al₂O₃ coated on the SiNWs/Sn@ α -Fe₂O₃, respectively.

Fig. S15 *J-V* curves of the SiNWs/Sn@ α -Fe₂O₃/Al₂O₃ photoanodes with 5, 10 and 20 ALD-cycle Al₂O₃.

Fig. S16 SEM images of the SiNWs/Al₂O₃/Sn@ α -Fe₂O₃ with different thicknesses of Al₂O₃ interlayer. (a–c) and (d–f) are the top-view and cross-section SEM images, respectively. (a and d), (b and e) and (c and f) represent the 70, 90 and 110 ALD-cycle Al₂O₃ coated on the SiNWs substrate and buried by the Sn@ α -Fe₂O₃ film, respectively.

Fig. S17 *J-V* curves of the SiNWs/Al₂O₃/Sn@ α -Fe₂O₃ photoanodes with 70, 90 and 110 ALD-cycle Al₂O₃.

Fig. S18 The employed equivalent circuit for EIS analysis.

Sample	$R_{\rm S}(\Omega)$	$R_{\rm trap}(\Omega)$	C _{bulk} (F)	$R_{\rm ct}(\Omega)$	C _{SS} (F)
SiNWs/Sn@a-Fe ₂ O ₃	4.8	100.2	3.5×10 ⁻⁷	4646.0	5.1×10 ⁻⁶
SiNWs/Sn@a-Fe ₂ O ₃ /Al ₂ O ₃	6.8	39.1	1.5×10 ⁻⁷	4610.0	5.2×10 ⁻⁶
SiNWs/Al ₂ O ₃ /Sn@a-Fe ₂ O ₃	5.4	93.1	1.6×10 ⁻⁷	1761.0	6.7×10 ⁻⁶

 Table S1 The fitted values of the simulation parameters.

Fig. S19 Incident photon-to-current conversion efficiency (IPCE) as a function of light power density of the SiNWs/Sn@ α -Fe₂O₃, SiNWs/Sn@ α -Fe₂O₃/Al₂O₃, SiNWs/Al₂O₃/Sn@ α -Fe₂O₃ photoanodes under (a) λ =365 nm and (b) λ =620 nm irradiation.