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Supporting Information Section 1 
 

Nine different within-ladder d1-d9 pairs of radicals were selected according to the 14.00 Å 
threshold. The intra-ladder pairs of radicals are: (a) five d1-d5 nearest neighbors (nn) and (b) 
four d6-d9 next-nearest neighbors (nnn) radical pairs. Notice that, as the copper atoms are not 
perfectly aligned within a rail of the ladder, the Cu···Cu distance for “nnn” d9 pair (namely, 
13.990Å at Troom) is slightly shorter than the sum of Cu···Cu distances for “nn” d3 and d5 pairs 
(namely, 6.996Å+7.002Å=13.998Å). All selected d1-d9 radical intra-ladder pairs are shown in 
Figure S1.1, and schematically shown in main text Figure 1d. 
 

 
   

d1 “nn” rung d2 “nn” rung d4 “nn” rung 

 
 

 
  

d3 “nn” rail d5 “nn” rail d9 “nnn” rail 

   
d6 “nnn” rung d7 “nnn” rung d8 “nnn” rung 

Figure S1.1. View of within ladder dimers. Each pair is classified in terms of being either “nn” (i.e. 
nearest neighbor) or “nnn” (i.e next nearest neighbor) (see schematic representation in Figure 1d). The 
distances shown correspond to the crystal structure obtained at room temperature. 
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We also selected fifteen pairs of radicals arising from four A-D different spatial 

arrangements between ladders, which depend on the orientation between Cu2(C5H12N2)2Cl4  
moieties along either a- or c-axes (see highlighted atoms in yellow in Figures S1.2a-d, 
respectively).  
 
 

(a) A-type (b) B-type 

  
 

(c) C-type 
 

(d) D-type 

  

Figure S1.2. View along the b-axis of the four different spatial arrangements between ladders: (a) A-
type, (b) B-type, (c) C-type, and (d) D-type. Each type is classified in terms of the orientation between 
Cu2(C5H12N2)2Cl4 moieties along either a- or c-axes (see highlighted atoms in yellow). Notice that some 
atoms are omitted for clarity. 
 
 
 

Dimers from the first spatial arrangement A are schematically illustrated in main text Figure 
1e. All selected d10-d24 radical pairs are classified in terms of Cu···Cu distances (see Figures 
S1.3-S1.4 for Cu···Cu distances using the crystal structure at Troom ). 
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d10 d11 

  
d12 d14 

 
d13 

 
d15 

 
d18 

 
d19 

 
 
Figure S1.3. View of inter-ladder dimers from spatial arrangement A (d10, d11, d12, d14), and B (d13, 
d15, d18, d19). The distances shown correspond to the crystal structure obtained at room temperature. 
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d16 d17 

  
d22 d24 

   
d20 d21 d23 

 
Figure S1.4. View of inter-ladder dimers from spatial arrangement C (d16, d17, d22, d24) and D (d20, 
d21, d23). The distances shown correspond to the crystal structure obtained at room temperature. 
 
 
 

Table S1.1 shows the Cu···Cu distances (in Å) for both intra- and inter-ladder pairs of 
radicals that show a non-negligible magnetic coupling, once the corresponding J(di) magnetic 
interaction has been computed using a tetramer cluster model. Complementarily, Table S1.2 
gives the Cu···Cu distance and corresponding J(di) value for each inter-ladder pair of radicals 
belonging to spatial arrangements B-D within the CuHpCl crystal packing. 
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Table S1.1. Cu···Cu distances in Å for d1-d7, d10-d12 and d14 obtained at (a) 4 K experimental crystal 
structure (from M.B. Stone, Y. Chen, J. Rittner, H. Yardimci, D.H. Reich, C. Broholm, D.V. Ferraris, 
and T. Lectka, Phys. Rev. B, 2002, 65, 064423); and (b) room temperature experimental crystal 
structure (from B. Chiari, O. Piovesana, T. Tarantelli, and P.F. Zanazzi, Inorg. Chem., 1990, 29, 1172). 
 

di pair of radicals (a) 4 K (b) Troom 

d1 3.376 3.422 
d2 5.757 5.774 
d3 6.987 6.996 
d4 5.814 5.822 
d5 7.000 7.002 
d6 9.328 9.358 
d7 9.344 9.380 
d10 7.026 6.998 
d11 7.059 7.033 
d12 7.156 7.206 
d14 7.504 7.552 

 
 
 

Table S1.2. Cu···Cu distances for the room temperature crystal structure (in Å) and corresponding 
J(di) values (in cm-1) of selected radical pairs connecting two nearby spin-ladders classified 
according to the B-D different spatial arrangements identified in the Cu2(C5H12N2)2Cl4  crystal. 

 
Spatial arrangement B Spatial arrangement C Spatial arrangement D 

di Cu···Cu  
/Å 

J(di)  
/cm-1 di Cu···Cu  

/Å 
J(di)  
/cm-1 di Cu···Cu  

/Å 
J(di)  
/cm-1 

d13 7.393 0.02 d16 8.686 0.00 d20 9.072 0.07 

d15 7.672 0.02 d17 8.758 0.00 d21 10.150 0.00 

d18 8.838 0.00 d22 10.259 0.00 d23 10.267 -0.04 

d19 8.890 0.00 d24 10.548 0.00    
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The calculation of J(di) requires some detailed discussion. If only two radicals are involved 
(see Figure S2.1a for d3), there is only one J(di) that characterizes the magnetic interaction 
between them. The calculation of J(di) requires the evaluation of the open-shell broken-symmetry 
singlet (BS,S) and triplet (T) energies. In this case, for: 

Ĥ = −2 J ABŜA ⋅ ŜB
A,B

N

∑  

and S=½ radicals with nearly zero overlap between SOMO orbitals, J(di) = EBS,S – ET . This is 
the procedure followed to obtain the J(di) value using a dimer model for both Troom and 4 K as 
listed in Table S2.1. 
 

(a) (b) (c) (d) 

  

 

 

Figure S2.1. Evaluation of J(d3) (in green) using as a cluster model: (a) a bare d3 dimer, (b) a 
tetramer-based model that explicitly accounts for the radical d3 pair under study and the point charges 
of its d1 counterparts [dimer/d3-d1PC], (c) an eight radical model consisting on a two radical d3 pair 
embedded in six radicals represented by point charges [dimer/d3-d1PC]-4PC, and (d) a tetramer (where 
d1 in red, d2 in grey & d7 in purple).  
 
Table S2.1. Magnetically non-negligible J(di) interactions (in cm-1) of selected radical pairs. Results 
using four different cluster models (namely, dimer, dimer with point charges and tetramer) for both intra- 
and inter-ladder J(di) are shown for the room temperature (Troom, HT) and 4K (LT) crystal structures. PC 
stands for point charges of a given radical pair. See Figure S2.1 for description of cluster models. 

  intra-ladder 
inter-ladder 

   --------- nn --------- ---- nnn ---- 
model T J(d1) J(d3) J(d5) J(d6) J(d7) J(d10) J(d11) J(d12) J(d14) 

dimer 
Troom +2.92 +2.39 -2.48 -0.97 -0.33 +0.31 -0.22 -1.16 -1.40 
4 K +3.13 +2.11 -3.12 - - - - -1.27 -1.64 

[dimer/di-d1PC]  4 K +3.13b +0.08 -4.31 -1.08 -0.42 +0.23 -0.42 -1.10 -1.38 
[dimer/di-d1PC]-4PC 4 K +2.02 +0.28 -3.68       

tetramer 
Troom +2.37a -0.13 -3.58 -0.29 -0.13 +0.33 -0.11 -1.01 -1.19 
4 K +2.30a -0.37 -3.88 -0.29 -0.12 +0.22 -0.31 -1.05 -1.38 

a Average value using J(d1) resulting from the calculations to obtain J(d3) and J(d5) using a tetramer. 
b J(d1) has been calculated with a modified dimer/d1-PC model which includes explicitly the d1 pair and 
the point charges of its nearest top and bottom d1 pairs, i.e. an hexamer model. See Figure S2.1 for models. 
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If four radicals are involved (see Figure S2.1d), there are (at least) 4 different J(di)’s among 

pairs of these four radicals. Therefore, the calculation of 4 different J(di)’s requires the 
evaluation of the energy of five different spin states. Within the tetramer approach, the spin 
states that have been evaluated are the high spin quintuplet (HS), two triplet (LS1, LS2) and 
two singlet (LS1/4, LS1/3) states. As an explicit example, Figure S2.2a-b shows how to obtain 
all J(di) interactions for two ‘intra-ladder’ models, and Figure S2.3 for an 'inter-ladder' model. 
This is thus the strategy followed to obtain the J(di) value using a tetramer model for both Troom 
and 4 K as listed in Table S2.1. Specifically Figure S2.2 shows the set of equations used to 
calculate the non-negligible intra-ladder magnetic interaction between CuHpCl radicals in 
dimers d1, d3, d5, d6, and d7. The inter-ladder significant magnetic interactions for radical 
dimers d10, d11, d12, and d14 are obtained using the set of equations shown in Figure S2.3.  
 
 

(a)  (b) 

  

      EHS − ELS1   =   -J(d1)-J(d3)-J(d7)          EHS − ELS1   =   -J(d1)-J(d5)-J(d6) 
      EHS − ELS2   =   -J(d1)-J(d2)-J(d3)          EHS − ELS2   =   -J(d1)-J(d4)-J(d5) 
      EHS − ELS1/4 = -2J(d1)-2J(d3)          EHS − ELS1/4 = -2J(d1)-2J(d5) 
      EHS − ELS1/3 = -2J(d1)-J(d2)-J(d7)          EHS − ELS1/3 = -2J(d1)-J(d4)-J(d6) 

 
 
 
Figure S2.2. 'Intra-ladder' tetramer models used to obtain (a) J(d1), J(d2), J(d3), J(d7) and (b) 
J(d1), J(d4), J(d5), J(d6). ELSi/j indicates that a single beta spin is located in radicals ‘i/j’ (see radical 
numbering inset in model). Note that only Cu atoms are shown in the tetramer schemes for clarity. 
 

 
EHS − ELS1  =  -J(d1) 
EHS − ELS2  =  -J(d1)-J(d10) 

 
Figure S2.3. 'Inter-ladder' tetramer model used to obtain J(d10), J(d11), J(d12) and J(d14). ELSi 
indicates that a single beta spin is located in radicals ‘i’ (see radical numbering inset in model). Note 
that only Cu atoms are shown in the tetramer scheme for clarity. 
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So far, a 4-radical cluster model explicitly accounting for the two Cu2(C5H12N2)2Cl4 units 

involved in any J(di) under study has been used to compute all the Cu···Cu magnetic 
interactions J(di) (see tetramer model for d3 in Figure S2.1d). In order to assess its validity, two 
additional models have been considered, together with the bare Cu(C5H12N2)Cl2···[Cu(C5H12N2)Cl2 
dimer di model (see Figure S2.1a). The first model is based again upon a tetramer, that consists 
of the radical pair to be studied and the point charges (PC) of the d1 radicals bonded to it 
(namely, [dimer/di-d1PC] in Figure S2.1b). The second model used considers eight radicals: 
two radicals are the specific dimer whose interaction one wants to evaluate and the remaining 
six radicals are represented by their point charges.[S2.1] Basically, the explicit dimer model is 
first connected through d1 to its Cu(C5H12N2)Cl2 point charge counterpart, and then embedded 
in the point charges of 4 further surrounding Cu-based radicals (namely, [dimer/di-d1PC]-4PC 
in Figure S2.1c).  

 
Let us consider the coupling between radicals giving rise to the d3 dimer pair. It is striking 

to realize that J(d3) converts from weakly AFM (-0.37 cm-1) when it is evaluated according to 
a tetramer model to FM if the environment is not well described. Accordingly, J(d3) is +0.08 
cm-1 using the [dimer/d3-d1PC] model, +0.28 cm-1 using the [dimer/d3-d1PC]-4PC model, and 
+2.11 cm-1 with a bare d3 dimer model. The dependency on the model is not that critical for all 
remaining radical···radical J(di) couplings. Yet, the J(di) values computed with the tetramer 
model are the most reliable since the radical environment is best described.  
 
 
 
 
 
 
_______________ 
[S2.1]	Electrostatic	potential-derived	charges	according	to	the	Merz-Singht-Kollman	scheme:	(a)	B.H.	Besler,	K.M.	Merz	
Jr.,	and	P.A.	Kollman,	J.	Comp.	Chem.,	1990,	11,	431;	(b)	U.C.	Singh,	and	P.A.	Kollman,	J.	Comp.	Chem.,	1984,	5,	129.	
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Given the relevance of the value of the calculated J(di) exchange interactions, JAB couplings 
have been also calculated using the CASSCF wavefunction-based method. The results show 
that J(d3)CAS = -0.15 cm-1 and J(d5)CAS = -1.03 cm-1 are one order of magnitude different at 
CASSCF(6,6) level, which fully supports our DFT/UB3LYP calculations (-0.37 cm-1 and -3.88 
cm-1, respectively). Note that same basis sets have been used in UB3LYP and CASSCF 
calculations, namely the standard 6-31+G(d,p) for carbon, chlorine, hydrogen and nitrogen, 
and Ahlrich-pVDZ for copper. 
 

Simulations of magnetic susceptibility χ(T), heat capacity Cp(T) and magnetization M(H) 
using a spin ladder as magnetic model (16 radicals) with the JAB values obtained at CASSCF 
level (namely, SP/JCAS: J(d1)CAS = +0.62 cm-1; J(d3)CAS = -0.15 cm-1; J(d5)CAS = -1.03 cm-1) 
show no agreement with experimental data (see empty square symbols in Figure S3.1a for 
χ(T), Figure S3.1b for Cp(T), and Figure S3.2a-b for M(H)). In fact, for SP/JCAS, not only the 
calculated dM/dH(H) data (Figure S3.2a) do not resemble its experimental counterpart 
signature to extract Hc1 and Hc2 values, but also there is a ca. 6.0 T shift when comparing 
calculated and experimental M/Msat data as a function of the magnetic field, H (Figure S3.2b). 
Note that here Msat is the saturated value of the magnetization. It is indeed the calculated data 
using a 3D magnetic model (16 radicals) with the JAB values at UB3LYP level (3D/JUB3LYP: 
J(d1) = +2.30 cm-1; J(d3) = -0.37 cm-1; J(d5) = -3.88 cm-1) that show good performance 
compared to experiment for both dM/dH and M/Msat representations (see Figures S3.3a and 
S3.3b, respectively). Notice that Figures S3.3a-b display magnetization data as a function of 
the singlet-triplet gap with zero applied field, Δ, which corresponds to Hc1. This representation 
has been chosen to highlight the good agreement between experimental and calculated 
magnetization data. 
 

 

(a) magnetic susceptibility (b) heat capacity 

  
 

Figure S3.1. Comparison between experimental data (full black circle) and calculated data using a 16-
radical spin ladder model with J(di) at CASSCF level (namely SP/JCAS, empty squares) and a 3D model 
(16-radicals) with J(di) at UB3LYP level (namely SP/JUB3LYP, empty circles) for (a) magnetic 
susceptibility and (b) heat capacity.  
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(a) dM/dH (using SP/JCAS) (b) magnetization as M/Msat (using SP/JCAS) 

 
 

 
Figure S3.2. Comparison between experimental data (full circle) and calculated data at different 
temperatures using a 16-radical spin ladder model with J(di) at CASSCF level (namely SP/JCAS, empty 
squares) for (a) dM/dH(H) and (b) M/Msat(H). Note that Msat is the saturated value of the magnetization. 
 

 

(a) dM/dH (using SP/JUB3LYP) (b) magnetization as M/Msat (using SP/JUB3LYP) 

  
 
Figure S3.3. Comparison between experimental data (full circle) and calculated data at different 
temperatures using a 3D model (16-radicals) with J(di) at UB3LYP level (namely SP/JUB3LYP, empty 
circles) for (a) dM/dH and (b) M/Msat as a function of the reduced magnetic field (H/Δ). Note that Msat 

is the saturated value of the magnetization. 
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SI Section 2 has already addressed the importance of the cluster model to extract the J(di) 
magnetic coupling between two CuHpCl radicals. It has been concluded that a tetramer model 
is more reliable since the radical environment is best described. At this level of modeling, the 
magnetic interactions J(d3) and J(d5) have remarkably different magnitude  but a very similar 
geometry (see Figure S4.1a for overlap of radical pairs).  
 

This apparent similarity does not hold when analyzing the atomic charges[S4.1a] of the 
Cl···H-N atoms involved in channeling the magnetic coupling for d3 and d5 (namely, 
Cl21···H36N84 and Cl22···H35N83 in Figure S4.1b). According to Table S4.1, it is possible 
to observe that there is a larger charge polarization of the atoms channeling the magnetic 
interaction for d3 than for d5, which can be taken as a signature for a larger degree of hydrogen 
bonding in d3. It is interesting to realize that the same conclusion is reached irrespective of 
using CM5[S4.2], Hirshfeld[S4.3] or Mulliken[S4.4] schemes to calculate atomic charges, namely, 
charges in the atoms interacting via a hydrogen bond in d3 are larger than in d5. It must be also 
stressed that the value of the CM5 atomic charges is more consistent with reality, and will be 
used in main text Table 3. The fact that hydrogen bonding enhances FM exchange coupling 
between radicals has previously been encountered and documented.[S4.5] Note that, 
academically, hydrogen bonding is defined as an intermolecular force that forms a special type 
of dipole-dipole attraction when a hydrogen atom bonded to a strongly electronegative atom 
exists in the vicinity of another electronegative atom with a lone pair of electrons. Usually the 
electronegative atom is oxygen, nitrogen, or fluorine, which has a partial negative charge. The 
hydrogen then has the partial positive charge. Accordingly, the more polarized the hydrogen 
atoms are (i.e. the larger their partial positive charge is), the stronger the hydrogen bond is (see 
orange arrows in schematic representation in Figure S4.2). It follows that a less AFM JAB value 
should be thus expected for radical pairs with a larger contribution from hydrogen bonding as 
realized in CuHpCl (J(d3) = -0.37 cm-1 vs. J(d5) = -3.88 cm-1). 
 
 

(a) (b) 

 

 
Figure S4.1 (a) Overlap of d3 and d5 pairs of radicals (red and green, respectively) using a dimer model. 
(b) Representation of Cu-Cl···H-N magnetic channel in d3 / d5 using either a tetramer cluster model. 
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Table S4.1. Atomic charges according to CM5, Hirshfeld and Mulliken schemes for Cu-Cl···H-N 
magnetic channel in  the d3 and d5 pairs of radicals. Spin density at Hirshfeld level is also given. Note 
that the atom numbering is in accordance with Figure S4.1b. 
  

    N83       
  Cu29   H35      
   Cl21       Cu32 
 Cu31       Cl22   
      H36   Cu30  
       N84    
           

charge CM5 
d3 0.4702 0.4707 -0.3013   +0.2908 -0.5566  0.4706 0.4698 
d5 0.4675 0.4735 -0.2877   +0.2898 -0.5515  0.4738 0.4678 

charge Hirshfeld 
d3 0.4069 0.4081 -0.3468   +0.1197 -0.1299  0.4081 0.4069 
d5 0.4047 0.4108 -0.3358   +0.1177 -0.1304  0.4108 0.4048 

charge Mulliken 
d3 0.3536 0.1004 -0.3888   +0.4518 -0.4213  0.3536 0.3684 
d5 0.3684 0.0400 -0.0616   +0.4473 -0.2942  0.1004 0.0400 

spin density Hirshfeld 
d3 0.5733 0.5733 0.084   0.0044 0.0955  0.5733 0.5791 
d5 0.5718 0.5808 0.090   0.0049 0.1007  0.5808 0.5718 

 
 

(a)   d3 (b)   d5 

  
Figure S4.2 Scheme to picture the relation between the strength of a hydrogen bond and the charge 
polarization of the atoms involved in (a) d3 and (b) d5. Color code: negative charge in pale red; positive 
charge in pale blue; Cl in light green; H in light pink; N in light blue; Cu in blue; C in black. 
 
 

In addition, we have also analyzed the spin density[S4.3] along the Cu-Cl···H-N-Cu path 
which couples Cu(C5H12N2)Cl2 radicals (see Table S4.1). Note that H36 of d3, which carries 
the largest partial charge, has smaller spin density than H36 of d5, as expected since hydrogen 
bonding in d3 is stronger than in d5. According to calculations, the spin density is larger in d5 
and, in turn, the interaction J(d5) is more strongly AFM. 
 
 
_______________ 
[S4.1]	 (a)	 Charge	 Model	 5,	 CM5:	 (a)	 A.V.	 Marenich,	 S.V.	 Jerome,	 C.J.	 Cramer,	 and	 D.G.	 Truhlar,	 J.	 Chem.	 Theory	 and	
Comput.	2012,	8,	527.	Hirshfeld	spin	density:	(b)	F.L.	Hirshfeld,	Theor.	Chem.	Acc.,	1977,	44,	129-38.	(c)	J.	P.	Ritchie	and	
S.	M.	Bachrach,	J.	Comp.	Chem.,	1987,	8,	499.	
[S4.2]	A.V.	Marenich,	S.V.	Jerome,	C.J.	Cramer,	and	D.G.	Truhlar,	J.	Chem.	Theory	and	Comput.	2012,	8,	527	
[S4.3]	(a)	F.L.	Hirshfeld,	Theor.	Chem.	Acc.,	1977,	44,	129.	(b)	J.P.	Ritchie	and	S.M.	Bachrach,	J.	Comp.	Chem.,	1987,	8,	499	
[S4.4]	R.	S.	Mulliken,	J.	Chem.	Phys.	1955,	23,	1833	
[S4.5]	(a)	F.	M.	Romero,	R.	Ziessel,	M.	Bonnet,	Y.	Pontillon,	E.	Ressouche,	J.	Schweizer,	B.	Delley,	A.	Grand,	and	C.	Paulsen,	
J.	Am.	Chem.	Soc.,	2000,	122,	1298.	(b)	D.	Maspoch,	L.	Catala,	P.	Gerbier,	D.	Ruiz-Molina,	J.	Vidal-Gancedo,	K.	Wurst,	C.	Rovira,	
and	J.	Veciana,	Chem.	Eur.	J.,	2002,	8,	3635.	(c)	J.	Choi,	J.D.	Woodward,	J.L.	Musfeldt,	C.P.	Landee,	and	M.M.	Turnbull,	Chem.	
Mater.,	2003,	15,	2797.	(d)	S.	Vela,	J.	Jornet-Somoza,	M.M.	Turnbull,	R.	Feyerherm,	J.J.	Novoa,	and	M.	Deumal,	Inorg.	Chem.,	
2013,	52,	12923. 	
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In order to compare our results with those reported in the literature, we studied the magnetic 
topology in terms of an isolated ladder model and, then, as a 3D model of interacting ladders. 
The first aim was, thus, to account for intra-ladder JAB interactions, neglecting J(d10, d11, d12, 
d14) interactions (see Figure S5.1a). This model has been widely used in the literature but 
always neglecting the Jrail alternation. The second model chosen accounted for inter-ladder JAB 
interactions and provided original results. This proposed model presents two 2-rung ladders 
that directly interact with one 4-rung ladder such that two inter-ladder J(d10, d11, 12, d14) set 
of interactions are taken into account (see Figure S5.1b).  

 
The results obtained are compared with the experimental behavior reported by Hagiwara et al.[S5.1] 

(black line, Figure S5.1c). It is observed that, although both cases behave antiferromagnetically 
(AFM) and the calculated magnetic susceptibility values reproduce the experimental data at 
high temperature (>60K), its intensity is overestimated. In fact, the calculated χ(T) shows a 
maximum value at 4.5 K rather than 8 K and its numerical value has an error larger than 100% 
with respect to the experimental data. Besides, the spin gap using cyclic spin-ladder magnetic 
topology based on JAB values obtained from dimer models is 2.6 cm-1, which differs from 
experimentally determined (7.5, 4.7 and 6.4 cm-1) and simulated using JAB values obtained 
from tetramer models (5.4 cm-1). It is clear that the dimer-based model does not provide an 
adequate description.  

 
The magnetic susceptibility χ(T) curve has been simulated considering the J(di) values 

obtained by means of the tetramer approach with a gyromagnetic g factor set to be 2.08 using 
two squared plaquette-based 3D models. Within the plaquette framework (see Figure S5.2a for 
magnetic building block), the magnetic models contemplated enable magnetic building blocks 
interact through antiferromagnetic (AFM) J(d12) and J(d14) interactions (Figures S5.2b-c).  
 

 
(a) (b) (c) 
 

 

 
 

 

 
 

Figure S5.1. Ladder-based models: (a) isolated ladder model, and (b) interacting-ladder model 
proposed to account for the 3D magnetic topology of the CuHpCl crystal. JAB values in cm-1. The J(di) 
indicated correspond to the tetramer cluster approach for the room temperature structure. (c) Simulated 
magnetic susceptibility χ(T) data using an isolated ladder and 3D interacting ladder models. 
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(a) (b) (c) 

 

  

Figure S5.2. Plaquette-based models: (a) isolated squared plaquette magnetic building block model 
with J(d1), J(d5) and J(d6) exchange coupling interactions; (b) and (c) two different 3D models 
consisting in plaquette magnetic building blocks connected through J(d12) and J(d14).  
 

(a) (b) 

 
 

Figure S5.3. Magnetic susceptibility curves for: (a) plaquette-based models using JAB values obtained 
by the tetramer approach at 4 K crystal structure (LT, model S5.2b in blue, and S5.2c in red), (b) 3D 
plaquette model using JAB values obtained by the tetramer approach at room temperature (HT) and 4 K 
(LT) compared to 3D ladder models using JAB values obtained by the dimer approach at HT.  

 
 

Comparison of calculated χ(T) with the experimental measurements (see Figure S5.3a) 
shows good agreement. The intensity of the peak reaches 0.035 emu mol-1 and appears at 6.5 
K, which is a value close to the experimental 8 K. As discussed in the main text, the magnetic 
topology is not affected by temperature: it is the magnitude of the magnetic exchange values 
that is slightly influenced by the thermal contraction. Note that the calculated and experimental 
magnetic susceptibility data perfectly agree at high temperature (>60K). 
 

Further, if the magnetic susceptibility is calculated using the J(di) exchange values obtained 
with a bare dimer radical pair model with either the same 3D magnetic model of interacting 
squared plaquettes (see Tetramer HT/LT-3D in Figure S5.3b) or ladders (see Dimer HT-3D in 
Figure S5.3b), the resulting χ(T) further supports the fact that the dimer cluster model does not 
provide an adequate description of the electronic environment to quantitatively compute J(di) 
magnetic interactions.  
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Finally, let us comment on the fact that the magnetization data is very sensitive to the 
magnetic model one uses to simulate it. In order to illustrate the very different response in 
magnetization we have selected the models displayed in Figure S5.4. Model 3Dm1 is the three-
dimensional (3D) minimal magnetic model used to reproduce the experimental magnetic 
response of CuHpCl in this paper (see Figure S5.2b). We have then selected two other 3D 
models (3Dm2, 3Dm3) that do not account correctly for the magnetic topology of the material. 
Last, we have considered a hypothetical spin-ladder model (hypotheticalSP) and a quasi spin-
ladder model (QSP). Notice that all models used contain 16 radicals and the corresponding JAB 
coupling interactions are those calculated at 4 K. 
 

As observed in Figure S5.5a, using the isotropic spin ladder magnetic model for simulation 
purposes, the shape of calculated M(H) (see turquoise symbols and model) is not compatible 
with the experimental data (black symbols). Calculated M(H) using the quasi spin ladder model  
 
 

3Dm1 

 

hypothetical 
SP quasi-SP 

  

3Dm2 
 

 

3Dm3 
 

 

 
Figure S5.4. Magnetic models used to show that the magnetization data is very sensitive to the model 
used for simulation purposes. Color code: J(d1) in red (+2.30 cm-1); J(d5) in deep green (−3.88 cm-1); 
J(d12) in yellow (−1.05 cm-1); J(d14) in orange (−1.38 cm-1); J(d3) in purple (−0.37 cm-1); J(d6) in 
magenta (−0.29 cm-1); J(d7) in light green (−0.12 cm-1); J(d10) in deep blue (+0.22 cm-1); J(d11) in light 
blue (−0.31 cm-1). 
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(see orange symbols and model) performs better but this performance is an artifact of the 
magnetic model. Here one has to realize that the quasi spin ladder model is basically a π-stack 
of four plaquettes (see Figure S5.5b for 3D magnetic model based on four connected plaquettes 
(highlighted in blue) and for the quasi spin ladder model (highlighted in orange). At this point, 
a reminder is in order: a plaquette which is defined by FM J(d1) and AFM J(d5) was identified 
as the magnetic building block of CuHpCl. Therefore, the quasi spin ladder model corresponds 
basically to four almost isolated plaquettes (since the inter-plaquette interaction is very weak, 
see Figure S5.5b). Comparison between calculated M(H) using this model (in orange) and the 
3D interacting plaquette model (in blue) shows that it is required to connect the plaquettes 
through J(d12) and J(14) to obtain a better accuracy of the M(H) data ranging from M/Msat 0.4 
to 0.7 (highlighted in lime green in Figure S5.5a). Note that, using the quasi spin ladder (in 
orange), M(H) has a plateau in this region, which is not exhibited by the experimental data 
(and neither by the 3D interacting plaquettes model). It thus corroborates the validity of the 
magnetic model used for simulation purposes. 

 
 

(a) (b) 

  
 
Figure S5.5. (a) Magnetization data using the different models shown in Figure S4.4 expressed in terms 
of its saturation value. Color code: 3Dm1 in blue; 3Dm2 in purple; 3Dm3 in green; hypothetical spin-
ladder SP in turquoise; quasi-spin-ladder QSP in orange; experimental in black. Note experimental data 
has been shifted by 2.7 T for comparison reasons (see further discussion in next SI Section 6). (b) View 
along the π-stacking to better realize the magnetic models: 3D  (in blue, 3Dm1) and quasi spin ladder 
(in orange, QSP). 
 
 

 
_______________ 
[S5.1]	M.	Hagiwara,	Y.	Narumi,	K.	Kindo,	T.	Nishida,	M.	Kaburagi,	and	T.	Tonegawa,	Physica	B,	1998,	246-247,	234	
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Supporting Information Section 6 
 

The inflection points in dM/dH show where the critical fields appear (see Figure S6.1a). 
From the lowest temperature M(H) curve at 0.42 K (Figure S6.1b), our data agree with a 
nonmagnetic solid below 5.2 T (Hc1,exp = 7.4±0.1 T) in a singlet ground state, whose magnetization 
remains zero. With increasing field, the magnetization increases until it reaches its saturation 
value at 10.4 T (Hc2,exp = 13.2±0.3 T), above which CuHpCl is fully polarized.  

 

 
(a) 

 
(b) 

  
Figure S6.1. Calculated (a) dM/dH and (b) M(H) at 0.42, 1.60, 2.44, 4.04, and 12.30 K using the 3D 
magnetic topology and the JAB values obtained by the tetramer approach at 4 K. See Hc1 and Hc2 
coersive fields shown inset.  
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Direct comparison between calculated and experimental data of magnetization as a function 
of the reduced magnetic field, M/Msat(H/Δ) (see Figure S6.2), shows very good qualitative 
agreement. Note that Msat and Δ stand for the value of the magnetization once saturation has 
been reached and singlet-triplet spin gap, respectively. Also we must point out that the reduced 
definition of magnetic field, i.e. H/Δ, has been used to compare our results to the experimental 
magnetization data, in line with Refs. [S6.1, S6.2]. Note that the experimental Δ value is Hc1,exp 
which is 7.4 T Although our results compare well with the experimental data and the 
appearance of three spin regimes is supported by the analysis of the magnetic wavefunction 
(see main text), it is a fact that our calculated data is shifted ca. 2.78 T towards lower magnetic 
fields, i.e. Hc1 = 5.2 T compared to Hc1,exp = 7.4 T and Hc2 = 10.4 T compared to Hc2,exp = 13.2 T.  

 

 
Figure S6.2. Raw calculated (empty colors) and experimental (filled symbols) data.   
 

 
Re-analyzing our results using data from 4K and room temperature, we have realized why 

there is a shift between the experimental Hc1 and Hc2 values and ours. The reason turns out to 
be simpler than expected: the crystallographic data plays a non-innocent role in determining 
the values of the critical field. For some time now, we are aware of how important is to study 
the dependence of the magnetic topology on the temperature.[S6.3] Therefore, we always assess 
that dependence using all available crystallographic data (if it has been determined at different 
temperatures). For CuHpCl, we used two sets of crystallographic data at 4 K and at room 
temperature (RT). We concluded that the magnetic topology was hardly affected by the 
temperature, i.e. the magnitude of the JAB magnetic exchange values were only slightly 
influenced by thermal contraction. Accordingly, all magnetic properties were calculated with 
the lowest temperature data set because the most interesting behavior of CuHpCl is observed 
ca. 0.42K. Unexpectedly, using the magnetic model with the JAB couplings obtained at RT, the 
value of Hc1 has a non-negligible dependence on the temperature at which the crystal structure 
of CuHpCl has been characterized (see Figure S6.3). Using calculated data at RT, Hc1 is ca. 4.7 
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T, at 4 K is ca. 5.2 T and at 0.42 K (experimental) 7.4 T. The magnetic field range between Hc1 
and Hc2 is also temperature dependent. It spans 4.7 T at RT, 5.2 T at 4 K and 5.8 T at 0.42 K. 
Therefore, if lower than 4 K crystal data was available, no doubt our estimated value of Hc1 
would be further improved. Also, in view of the high sensibility of Hc1, thermal fluctuations 
might play a role in fine tuning the estimated value of Hc1. Note that we did assume that 
thermal effects would not be important because we were working with CuHpCl crystallographic 
data at 4 K. Note also that the inclusion of thermal fluctuations is done by means of ab initio 
molecular dynamics (AIMD), which are out of the scope of this paper.  

 

 

 

Figure S6.3. Comparison between experimental (red filled symbols) and calculated (empty symblols) 
using a 3D magnetic model parameterized with JAB obtained at room temperature (RT, purple) and at 
4K (red). The magnetic field span is also indicated numerically and qualitatively by an arrow. 

 

 

 
 
 
_______________ 
[S6.1]	X.	Wang,	and	L.	Yu,	Phys.	Rev.	Lett.,	2000,	84,	5399		
[S6.2]	C.A.	Hayward,	D.	Poilblanc,	and	L.P.	Levy,	Phys.	Rev.	B,	1996,	54	R12	649	
[S6.3]	(a)	M.	Deumal	et	al.	Chem	Eur	J.	2004,	10,	6422;	(b)	M.	Deumal	et	al.	Chem	Eur	J.	2010,	16,	2741.	
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Supporting Information Section 7 
 

We have recently disclosed[S7.1] that the heat capacity Cp(T) measures the energy variation 
due to the 3D propagation of the interaction of two magnetically connected spins, that is, to 
short-range ordering. In addition we have proposed the magnetic capacity, Cs(T), as a measure 
of the thermal variation of the spin multiplicity of the system and, thus, reflects the importance 
of magnetically non-connected spin alignment and how the dominant effect of long-range spin 
correlation governs the magnetic behavior of molecule-based crystals (and in general of 
magnetic compounds). It was thus shown that the current definition of the critical temperature 
TC for magnetic systems, which is associated with a maximum in the heat capacity Cp(T), does 
not capture the magnetic nature of the system, because it excludes long-range magnetic order. 
Instead, a maximum in ∂[χT(T)]/∂T, which is related to the magnetic capacity Cs(T), that in 
turn includes changes in short- and long-range spin order/disorder, is a more broadly applicable 
definition of the magnetic transition temperature. It was also revealed that the analysis of the 
behavior of the critical temperature TC of both magnetic Cs(T) and heat Cp(T) capacities 
provides information on the importance of long-range spin correlation.  
 

For CuHpCl, we discover that TC calculated from either Cp(T) or Cs(T) is nearly equal (see 
Figure S7.1), which we know it is the case only in those molecule-based systems in which 
either the long-range spin correlation can be neglected, or there is no 3D propagation of the 
spin coupling. Since we have determined that the magnetic topology of CuHpCl is 3D, we 
must conclude that the long-range spin correlation is not significant. 
  

 
Figure S7.1. Calculated heat capacity Cp(T) (right axis) and magnetic capacity Cs(T) (left axis) for 
CuHpCl molecule-based system. 
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Figure S7.2. Temperature dependence of the magnetic correlation between all spin units at 0.40, 1.60, 
2.40, 4.00, 12.30 and 20.00 K (in accordance to the magnetization experimental data). <Pij(J)>T and 
<Pij(0)>T refer to short-range and long-range spin correlation between magnetic units, respectively. 
Notice that spins coupled are represented in red, and spins arranged parallel in blue. Note also that the 
thickness of the lines connecting radicals is proportional to the strength of the correlation between 
spins. 
 

 
The magnetic capacity Cs(T) is also useful because it can be interpreted in terms of the 

molecular structure of the crystal using the magnetic wavefunction for each magnetic 
microstate. For this interpretation, we have used a Valence Bond analysis of the magnetic 
wavefunction. This analysis provides information about the spin correlation between magnetic 
units, and enables to visualize the temperature dependence of the magnetic correlation between 
all spin units.  
 

We have performed this analysis at different temperatures in accordance to the 
magnetization experiments. Therefore, the short-range and long-range spin correlation between 
magnetic units (see <Pij(J)>T and <Pij(0)>T, respectively, in Figure S7.2)  has been studied at 
0.40 K, 1.60 K, 2.40 K, 4.00 K, 12.30 K and 20.00K. Clearly, the largest contribution from 
long-range spin correlation comes from the lowest 0.40K temperature, being practically zero 
both short- and long-range ordering at 20.00 K. It follows that for CuHpCl even at the lowest 
temperature the short-range magnetic correlation is the only meaningful contribution. It can 
thus be concluded that the long-range spin correlation can be neglected, which was also inferred 
from comparison between critical temperatures calculated from heat and magnetic capacities.   
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Table S7.1. Information regarding the ten lowest energy spin states extracted from the 3D magnetic 
model space (16 radical model shown inset in Figure S7.2); namely the state number and corresponding 
spin multiplicity (state #, S), and the normalized Boltzmann population at six different temperatures 
(0.40 K, 1.60 K, 2.40 K, 4.00 K, 12.30 K and 20.00 K)  

 State # , S Total 
% T /K 1, S=0 2, S=1 3, S=1 4, S=1 5, S=1 6, S=1 7, S=1 8, S=0 9, S=1 10, S=2 

0.40 100.0 0 0 0 0 0 0 0 0 0 100 

1.60 95.0 2.5 1.3 0.08 0.07 0.03 0.02 0 0.01 0.02 98.4 

2.40 72.0 9.3 5.8 4.3 3.8 0.45 0.36 0.10 0.29 0.47 95.1 

4.00 24.0 11.0 8.2 6.7 6.4 1.8 1.6 0.47 1.4 2.2 63.7 

12.30 0.21 0.34 0.31 0.29 0.28 0.19 0.18 0.06 0.17 0.29 2.3 

20.00 0.04 0.08 0.08 0.08 0.07 0.06 0.06 0.02 0.05 0.09 0.6 

 

 
Figure S7.3. Short-range <Pij(J)>T and long-range <Pij(0)>T spin correlations for pure singlet ground 
state GS configuration (left) and CuHpCl ground state GS configuration (right). Notice that spins 
coupled are represented in red, and spins arranged parallel in blue. 

 

 
It is also interesting to analyze the distribution of the Boltzmann population (see Table S7.1). 
As expected, at 0.40 K the only populated state is the singlet ground state (GS).[S7.2] Below 
2.4K, in addition to the singlet GS, there are four excited states of triplet spin multiplicity that 
also contribute to describe the behavior of CuHpCl. Strikingly, while at 4.00 K the first ten 
states carry 64% of the population, at 12.30 K these very same ten states only carry a 2.3% of 
the total Boltzmann population. 
 
Finally, comparison between the short-range <Pij(J)>T and long-range <Pij(0)>T spin 
correlations of a pure singlet AFM ground state and the CuHpCl ground state shows that in our 
case the singlet ground state is the collective result of singlet as well as higher multiplicity 
configurations (see Figure S7.3). 
 
 
_______________ 
[S7.1]	J.	Jornet-Somoza,	M.	Deumal,	J.	Borge,	and	M.A.	Robb,		J.	Phys.	Chem.	A,	2018,	122,	2168,	
[S7.2]	The	number	of	spin	states	comes	from	the	full	diagonalization	of	the	magnetic	model	made	of	N	radicals.	Note	
that	the	magnetic	model	must	be	constructed	to	reproduce	the	magnetic	topology	of	the	molecular	crystal.	Therefore,	
there	are	N!/[(N/2)!	(N/2)!]	spin	states.	Our	3D	magnetic	model	consists	of	16	radicals.	Therefore,	there	are	12870	spin	
states	of	spin	multiplicity	ranging	from	S=0	to	S=8.	Table	S7.1	only	shows	the	ten	lowest	energy	spin	states.	


