Supporting Information

Ringing the transformation associated with hydrazone changes of hexadecanuclear dysprosium phosphonates

Haiquan Tian,*a Fu-Ping Huang,^b Yongfei Li,^a Peiqiong Chen,^a Keyu Chai,^a Jing Lu,^a Hou-Ting Liu,^a Suyuan Zeng,^a Dacheng Li^a and Jianmin Dou^a

^aShandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China. E-mail: <u>tianhaiquan@lcu.edu.cn</u>

^bKey Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, 541004, P. R. China.

Complex 1								
Dy1–O1	2.496(5)	Dy4019	2.402(5)	Dy8–O28a	2.562(5)			
Dy1–O2	2.675(6)	Dy4–N6	2.476(6)	Dy8–N4	2.534(6)			
Dy1-022	2.260(5)	Dy5010	2.352(5)	Dy1…Dy2	3.780(9)			
Dy1O29	2.370(6)	Dy5016	2.259(6)	Dy1…Dy3	3.951(5)			
Dy1-O30	2.378(6)	Dy5018	2.438(6)	Dy1…Dy7	4.053(6)			
Dy1-O31	2.182(8)	Dy5023	2.281(5)	Dy2…Dy3	3.943(6)			
Dy1-O32	2.294(7)	Dy5–O7a	2.375(6)	Dy2…Dy8	4.055(6)			
Dy1-N16	2.502(8)	Dy5–O12a	2.446(5)	Dy4…Dy5	4.385(5)			
Dy2–O1	2.489(6)	Dy5–O14a	2.549(5)	Dy4…Dy6	4.029(5)			
Dy2–O3	2.577(5)	Dy6012	2.351(5)	Dy5…Dy6	3.983(8)			
Dy2-O25	2.444(6)	Dy6017	2.413(6)	Dy5…Dy7	3.888(2)			
Dy2026	2.350(6)	Dy6019	2.414(5)	Dy6…Dy8	4.037(6)			
Dy2-O29	2.355(4)	Dy6O20	2.195(6)	Dy7…Dy8	3.906(3)			
Dy2-O33	2.338(8)	Dy6028	2.287(5)	Dy4…Dy6a	5.820(3)			
Dy2-O34	2.501(7)	Dy6010a	2.431(5)	Dy5…Dy6a	3.983(2)			
Dy2–O2w	2.418(7)	Dy6011a	2.589(5)	Dy4…Dy4a	6.251(6)			
Dy2-N14	2.627(9)	Dy6–N8	2.510(6)	Dy1-O1-Dy2	98.6(2)			
Dy3-O21	2.375(5)	Dy7–O2	2.291(5)	Dy1-O2-Dy7	107.3(2)			
Dy3-O24	2.230(5)	Dy7–O4	2.363(6)	Dy1-O29-Dy2	106.2(2)			
Dy3-O25	2.359(6)	Dy7–O6	2.373(6)	Dy1-O29-Dy3	112.3(2)			
Dy3-O27	2.293(7)	Dy7–O8	2.284(5)	Dy2O29Dy3	112.5(2)			
Dy3-O29	2.388(5)	Dy7014	2.261(5)	Dy1-O30-Dy3	113.0(2)			
Dy3-O30	2.362(7)	Dy7–O22a	2.485(5)	Dy2-O3-Dy8	110.4(2)			
Dy3-N10	2.645(13)	Dy7–O23a	2.532(5)	Dy4-O18-Dy5	124.7(2)			
Dy3-N11	2.543(8)	Dy7–N2	2.561(9)	Dy4019Dy6	113.6(2)			
Dy4–O1w	2.340(5)	Dy8–O3	2.359(5)	Dy5-O12-Dy6	112.3(2)			
Dy4–O9	2.203(7)	Dy8–O4	2.374(6)	Dy5–O10–Dy6a	112.8(2)			
Dy4-013	2.429(5)	Dy8–O5	2.261(6)	Dy5–O14–Dy7a	107.7(2)			
Dy4015	2.314(6)	Dy8–O8	2.333(6)	Dy6–O11–Dy8a	111.2(1)			
Dy4017	2.419(5)	Dy8011	2.302(5)	Dy7–O4–Dy8	111.1(2)			
Dy4018	2.512(5)	Dy8–O26a	2.509(6)	Dy7–O8–Dy8	115.6(2)			
Symmetry code: a: 1-x, 1-y, 1-z.								

Table S1 Selected bond lengths (Å) and angles (°) for 1.

Complex 2								
Dy1–O2	2.233(19)	Dy3019	2.369(19)	Dy2…Dy4	5.171(2)			
Dy1-O6	2.222(19)	Dy3-O20	2.231(19)	Dy3…Dy4	5.449(2)			
Dy1–O7	2.258(58)	Dy3-O22	2.360(20)	Dy4…Dy4a	5.912(7)			
Dy1-O10	2.213(19)	Dy3-N3	2.530(30)	Dy4…Dy4b	8.360(5)			
Dy1-O18	2.364(19)	Dy3–O3a	2.220(19)	Dy1…Dy1a	9.975(2)			
Dy1–O24	2.330(20)	Dy4–O5	2.267(19)	Dy1…Dy1b	13.437(3)			
Dy209	2.209(19)	Dy4–O8	2.200(19)	Dy2…Dy2a	12.672(8)			
Dy2012	2.240(20)	Dy4016	2.238(16)	Dy2…Dy2b	17.899(5)			
Dy2013	2.260(20)	Dy4023	2.415(19)	Dy3…Dy3a	13.622(2)			
Dy2017	2.399(17)	Dy4–O1a	2.226(19)	Dy3…Dy3b	18.952(8)			
Dy2018	2.438(19)	Dy4–O4a	2.202(16)	Dy1-O18-Dy2	122.0(8)			
Dy2019	2.322(19)	Dy1…Dy2	4.200(4)	Dy2-O17-Dy3	107.7(7)			
Dy2-N1	2.540(30)	Dy1…Dy3	4.906(8)	Dy2-O19-Dy3	111.6(7)			
Dy3014	2.284(19)	Dy1…Dy3	7.101(2)					
Dy3017	2.407(16)	Dy2…Dy3	3.879(7)					
Symmetry code: a: (0.5-x, 0.5-y, z; l	o: y, 0.5-x, 1.5-z.						

Table S2 Selected bond lengths (Å) and angles (°) for 2.

Complex 1														
Geomet	ry Dy5	Geom	etry]	Dy1	I	Dy3	Dy4	Dy6	Dy7	Dy8	Ge	eometry	Dy2
(CN = 7))	(CN =	8)									(0	CN = 9)	
CTPR	-7 3.462	JBT	PR-8	2	2.071	27	7.865	4.237	3.417	7 25.910	26.349	JC	SAPR-9	22.535
PBPY	-7 4.004	BTP	'R-8	2	2.474	25	5.515	3.189	3.168	8 26.311	28.000	JT	CTPR-9	22.565
COC-	-7 5.735	JSI)-8	2	2.965	29	9.383	5.135	3.134	4 26.728	27.460	CS	SAPR-9	22.819
JPBPY	7.180	TD	D-8	3	6.460	25	5.614	2.060	3.486	6 26.608	27.399	T	CTPR-9	22.994
HPY-	.7 17.965	SAP	'R-8	3	6.644	27	7.519	4.574	4.685	5 26.664	28.893	Ν	MFF-9	23.063
JETPY	7 18.427	JGB	3F-8	8	8.690	27	7.350	12.653	9.037	7 31.380	32.964	į	JTC-9	26.971
HP-7	7 26.805	CU	J -8	9	.422	31	1.963	7.576	9.156	5 31.317	32.354	-	HH-9	27.863
		TT	-8	9	0.872	31	.201	8.154	9.963	3 29.814	30.662	(CCU-9	28.000
		HBP	•Y-8	1	1.510	31	1.987	11.578	11.02	8 31.312	30.274	J	CCU-9	28.046
		ETB	PY-8	2	0.871	39	9.036	23.359	21.27	2 39.473	39.626	J	FDIC-9	29.310
		JETB	PY-8	2.	3.616	40).257	26.583	23.31	8 42.393	43.318	Н	BPY-9	34.395
		HP	Y-8	24	4.322	35	5.727	22.955	24.62	6 37.838	38.770	(OPY-9	36.599
		OF	P-8	2	9.969	47	7.533	35.234	32.26	0 47.328	48.711		EP-9	45.789
							Cor	nplex 2						
Geo	Geometry (CN = 6)			1	Dy4			Geometr	y (CN :	= 7)	Dy2			Dy3
HP-6 50.			50.5	52	49.33	7		Н	P-7		42.993	3	4	4.176
	PPY-6		33.8	41	33.43	9		HI	PY-7		27.90	7	2	28.449
	OC-6		30.3	03	29.96	1		PB	PY-7		27.490	5	2	25.863
	TPR-6		39.4	56	39.67	3		CC	DC-7		28.91	1	3	0.255
	JPPY-6		38.4	99	37.72	1		СТ	PR-7		27.41	5	2	.162
								JPB	BPY-7		22.403	3	2	20.724
	1	1						JET	PY-7		35.013	3	3	8.132
Lable	Shape	Lable		Sha	ape		Lable	Shape		Lable	Shape		Lable	Shape
HP-6	Hexagon (D _{6h})	COC-7	, c	apped o	ctahedron _{3v})	s	SAPR-8	Square antipri	sm (D _{4d})	ETBPY-8	Elongated trigonal bipyramid (D _{3h})	0	CSAPR-9	Spherical capped square antiprism (C_{4v})
PPY-6	Pentagonal pyramid (C _{5V})	CTPR-	7 Caj	pped trig (C	gonal prism _{2v})	1	TDD-8	Triangu dodecahedro	lar n (D _{2d})	EP-9	Enneagon (D _{9h})	JI	ICTPR-9	Tricapped trigonal prism J51 (D _{3h})
OC-6	Octahedron (O _h)	JPBPY-	7 Jo bi	ohnson p pyramid	eentagonal I J13 (D _{5h})	1	IGBF-8	Johnso gyrobifastigi (D _{2d})	n um J26	OPY-9	Octagonal pyramid (C_{8v})	Т	CTPR-9	Spherical tricapped trigonal prism (D _{3h})
TPR-6	Trigonal prism (D _{3h})	JETPY-	7 EI	longated pyramid	triangular J7 (C _{3v})	JE	TBPY-8	Johnson elor triangular bip J14 (D ₃	ngated byramid	HBPY-9	Heptagonal bipyramid (D _{7h})	J	TDIC-9	Tridiminished icosahedron J63 (C _{3v})
JPPY-5	Johnson pentagonal pyramid (C _{5V})	OP-8		Octa	agon	JI	BTPR-8	Biaugmented prism J50	trigonal (C _{2v})	JTC-9	Johnson triangular cupola J3 (C _{3v})		НН-9	Hula-hoop (C_{2v})
HP-7	Heptagon	HPY-8	Н	eptagona	al pyramid _{7v})	E	BTPR-8	Biaugmented prism (C	trigonal C _{2v})	JCCU-9	Capped cube J8 (C _{4v})		MFF-9	Muffin (C _s)
HPY-7	Hexagonal pyramid (C _{6v})	HBPY-	8 He	exagonal (D	bipyramid _{6h})		JSD-8	Snub diphen (D _{2d})	oid J84	CCU-9	Spherical- relaxed capped cube (C _{4v})			
PBPY-7	Pentagonal bipyramid (D _{5h})	CU-8		Cube	: (O _h)		TT-8	Triakis tetral (T _d)	hedron	JCSAPR-9	Capped square antiprism J10 (C _{4v})			

Table S3 Dy^{III} geometry analysis of 1 and 2 by SHAPE 2.1 software.

Т	Χт	Xs	α	ln(τ / s)
1.8	95.58	54.42	0.289	-9.190
2.0	82.23	48.77	0.281	-9.073
2.3	70.05	40.95	0.240	-9.074
2.6	59.07	32.93	0.215	-9.138
2.9	49.26	25.74	0.195	-9.193
3.2	39.72	18.28	0.184	-9.270
3.5	30.41	10.59	0.177	-9.363
3.7	22.04	3.96	0.171	-9.433
4.0	15.36	-1.36	0.170	-9.528
4.5	10.00	-4.00	0.165	-9.646
5.0	4.34	-7.34	0.167	-9.778
5.5	-0.44	-10.56	0.179	-9.980
6.0	-2.15	-10.85	0.193	-10.196
6.5	-4.33	-11.67	0.207	-10.397
7.0	-6.20	-12.80	0.238	-10.746
7.5	-7.78	-15.22	0.285	-11.521
8.0	-8.94	-16.06	0.319	-12.055

Table S4 Relaxation fitting parameters from least-squares fitting of $\chi(\omega)$ data under zero *dc* field for **1**.

Τ	χт	Xs	α	$\ln(\tau / s)$
1.8	99.96	44.04	0.309	-7.767
2.0	79.00	34.00	0.294	-7.763
2.3	66.79	30.21	0.283	-7.775
2.6	53.82	22.18	0.250	-7.813
2.9	41.51	13.49	0.230	-7.85
3.2	31.18	5.82	0.219	-7.896
3.5	22.92	0.08	0.205	-7.926
3.7	15.76	-4.76	0.190	-7.951
4.0	10.81	-7.81	0.180	-7.987
4.5	6.26	-9.26	0.161	-8.028
5.0	2.43	-10.43	0.141	-8.072
5.5	0.39	-10.39	0.130	-8.149
6.0	-1.55	-10.45	0.117	-8.219
6.5	-3.34	-10.66	0.107	-8.294
7.0	-5.11	-10.89	0.087	-8.552
7.5	-6.14	-10.86	0.084	-8.893
8.0	-7.10	-10.90	0.079	-9.253
8.5	-8.09	-10.90	0.055	-9.792
9.0	-8.90	-11.10	0.060	-10.336
9.5	-9.66	-11.34	0.057	-10.868
10.0	-10.38	-11.62	0.044	-11.292
10.5	-11.07	-11.93	0.018	-11.629

Table S5 Relaxation fitting parameters from least-squares fitting of $\chi(\omega)$ data under 1.0 kOe *dc* field for **1**.

Т	Х т	Xs	α	$\ln(\tau / s)$
1.8	78.95	61.05	0.481	-9.366
2.0	75.35	59.65	0.485	-9.401
2.3	71.62	56.37	0.510	-9.426
2.6	68.55	55.45	0.516	-9.470
2.9	63.83	51.17	0.522	-9.608
3.2	61.59	48.41	0.526	-9.735
3.5	59.06	46.94	0.525	-9.820
3.7	56.72	45.28	0.531	-9.902
4.0	54.89	44.11	0.530	-10.054
4.5	52.86	43.14	0.536	-10.306
5.0	50.71	41.29	0.551	-10.624
5.5	49.64	39.36	0.590	-11.063
6.0	49.19	36.81	0.620	-11.667
6.5	47.48	35.52	0.624	-12.277
7.0	44.28	33.72	0.599	-12.617
7.5	47.03	27.97	0.627	-12.964
8.0	38.57	26.43	0.592	-13.208

Table S6 Relaxation fitting parameters from least-squares fitting of $\chi(\omega)$ data under zero *dc* field for **2**.

T	ℋт	Xs	α	$\ln(\tau / s)$
1.8	33.82	16.18	0.533	-10.413
2.0	31.32	12.68	0.643	-10.428
2.3	29.02	10.98	0.526	-10.446
2.6	20.75	9.25	0.429	-10.460
2.9	21.44	8.56	0.477	-10.491
3.2	20.66	9.34	0.461	-10.529
3.5	21.05	8.95	0.480	-10.579
3.7	18.93	6.07	0.502	-10.615
4.0	18.25	3.75	0.533	-10.665
4.5	17.02	4.98	0.507	-10.725
5.0	15.62	3.38	0.515	-10.799
5.5	13.56	2.22	0.508	-10.860
6.0	11.10	1.37	0.480	-10.924
6.5	10.02	0.52	0.475	-11.051
7.0	9.40	-0.32	0.470	-11.107
7.5	6.86	-0.34	0.433	-11.249
8.0	9.99	-5.38	0.494	-11.447
8.5	8.85	-6.89	0.485	-11.690
9.0	8.82	-8.55	0.449	-11.857
9.5	5.97	-8.85	0.470	-12.097
10.0	5.38	-11.77	0.425	-12.216
10.5	4.57	-12.53	0.406	-12.493
11.0	4.37	-14.12	0.368	-12.640
12.0	4.30	-16.55	0.329	-12.840
13.0	5.63	-19.16	0.263	-13.035
14.0	4.41	-20.57	0.254	-13.232
15.0	6.19	-24.05	0.184	-13.454
16.0	12.45	-30.49	0.098	-13.641
17.0	14.39	-32.07	0.109	-13.825
18.0	21.28	-39.74	0.116	-14.036
19.0	24.27	-39.18	0.118	-14.162

Table S7 Relaxation fitting parameters from least-squares fitting of $\chi(\omega)$ data under 1.0 kOe *dc* field for **2**.

Figure S1 Infrared spectra of 1-naphthylphosphonic acid, H₂spch, H₂opch, 1 and 2.

Figure S2 Partially labeled structure of 1. The spch²⁻ fragments are shown in green, the $C_{10}H_7PO_3$ in rose, Dy in gold, O in red, N in blue, P in pink.

Figure S3 The Dy_{16} core of 1. Color code: Dy in gold, O in red.

Figure S4 Coordination environments of eight crystallographically independent Dy ions in **1**. The spch²⁻ fragments are shown in green, the PO₃²⁻ in rose, Dy in gold, O in red, N in blue, P in pink.

Figure S5 The $[Dy_{16}(spch)_8(PO_3)_{10}]^{12+}$ core for **1**. The spch²⁻ fragments are shown in green, the PO₃²⁻ in rose, Dy in gold, O in red, N in blue, P in pink.

Figure S6 The $[Dy_{16}(C_{10}H_7-PO_3)_{10}]^{28+}$ core for **1**. Color code: the $C_{10}H_7PO_3$ in rose, Dy in gold, O in red, P in pink.

Figure S7 Space-filling representation exhibiting the longest (top) and shortest (bottom) diameters of 1. Color code: Dy in gold, O in red, P in pink, H in orange.

Figure S8 The molecular packing viewed along the *c* axis in 1.

Figure S9 Partially labeled structure of 2. The opch²⁻ fragments are shown in turquoise, the $C_{10}H_7PO_3$ in rose, Dy in gold, O in red, N in blue, P in pink.

Figure S10 The Dy_{16} core of 2. Color code: Dy in gold, O in red, P in pink.

Figure S11 The $[Dy_{16}(C_{10}H_7-PO_3)_{24}]^{8+}$ core for 2. Color code: the $C_{10}H_7PO_3$ in rose, Dy in gold, O in red, P in pink.

Figure S12 The $[Dy_{16}(spch)_8(PO_3)_{10}]^{12+}$ core for **2**. The opch²⁻ fragments are shown in turquoise, the PO₃²⁻ in rose, Dy in gold, O in red, N in blue, P in pink.

Figure S13 The turquoise, bright green, red and green squares denote square-within-square planar structures in 2.

Figure S14 Coordination environments of four crystallographically independent Dy ions in **2**. The opch²⁻ fragments are shown in turquoise, the PO₃²⁻ in rose, Dy in gold, O in red, N in blue, P in pink.

Figure S15 Space-filling representation exhibiting outer diameter (top) and thickness (bottom) of **2**. Color code: Dy in gold, O in red, P in pink, H in orange.

Figure S16 The molecular packing viewed along the *c* axis in **2**.

Figure S17 *M vs.* H/T plot for 1 at temperature range of 2.0 K – 8.0 K.

Figure S18 Frequency dependence of the χ' product, *ac* susceptibilities under zero *dc* field for 1.

Figure S19 Frequency dependence of the $\chi'T$ product, *ac* susceptibilities under zero *dc* field for 1.

Figure S20 Temperature dependence of the χ' product, *ac* susceptibilities under zero *dc* field for 1.

Figure S21 Temperature dependence of the χ'' product, *ac* susceptibility under zero *dc* field for 1.

Figure S22 Field dependence of the χ' product, ac susceptibility of 1 at 1000 Hz and 2 K.

Figure S23 Field dependence of the χ'' product, *ac* susceptibility of 1 at 1000 Hz and 2 K.

Figure S24 Frequency dependence of the χ' product, *ac* susceptibilities under 1.0 kOe *dc* field for **1**.

Figure S25 Frequency dependence of the $\chi'T$ product, *ac* susceptibilities under 1.0 kOe *dc* field for **1**.

Figure S26 Temperature dependence of the χ' product, *ac* susceptibilities under 1.0 kOe *dc* field for 1.

Figure S27 Temperature dependence of the χ'' product, *ac* susceptibility under 1.0 kOe *dc* field for 1.

Figure S28 *M vs.* H/T plot for **2** at temperature range of 2.0 K – 8.0 K.

Figure S29 Frequency dependence of the χ' product, *ac* susceptibilities under zero *dc* field for 2.

Figure S30 Frequency dependence of the $\chi'T$ product, *ac* susceptibilities under zero *dc* field for **2**.

Figure S31 Temperature dependence of the χ' product, *ac* susceptibilities under zero *dc* field for 2.

Figure S32 Temperature dependence of the χ'' product, *ac* susceptibility under zero *dc* field for **2**.

Figure S33 Field dependence of the χ' product, ac susceptibility of 2 at 1000 Hz and 2 K.

Figure S34 Field dependence of the χ'' product, *ac* susceptibility of 2 at 1000 Hz and 2 K.

Figure S35 Frequency dependence of the χ' product, *ac* susceptibilities under 1.0 kOe *dc* field for **2**.

Figure S36 Frequency dependence of the $\chi'T$ product, *ac* susceptibilities under 1.0 kOe *dc* field for **2**.

Figure S37 Temperature dependence of the χ' product, *ac* susceptibilities under 1.0 kOe *dc* field for **2**.

Figure S38 Temperature dependence of the χ'' product, *ac* susceptibility under 1.0 kOe *dc* field for **2**.