Supporting Information

MOFs Assembled from *C*₃ Symmetric Ligands: Structure, Iodine Capture and as Bifunctional Catalyst towards Oxidation-Knoevenagel Cascade Reaction

Ying-Ying Zhang,^a Qing Liu^b, Lin-Yan Zhang,^b Yu-Mei Bao,^b Jing-Yi Tan^b, Na Zhang^{*}, Jian-Yong Zhang^b and Zhen-Jiang Liu^{*,b}

^a Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, PR China ^b School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418 (P. R. China). *E-mail: nzhang@sit.edu.cn, zjliu@sit.edu.cn*

Figure S1. The FT- IR spectra of the three MOFs presented in this paper.

Figure S2. The comparison of the observed, calculated and PXRD patterns after heating or I_2 adsorption for the three reported MOFs.

Figure S3. The UV-vis spectra of I_2 release process in ethanol.

Compound	MOF1	MOF2	MOF3 ^b
Formula	C47H38.5N12.5O10.5Ni2	C47H38.5N12.5O10.5C02	C54H45N12O19.5Ni3
Formula weight	1063.82	1064.26	1350.15
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	P21/n	P21/n	P21/n
<i>a</i> , Å	17.5508(6)	17.6225(4)	10.144(2)
b, Å	13.8259(4)	13.8371(3)	26.077(5)
<i>c</i> , Å	20.8220(6)	20.9929(4)	15.602(3)
α, °	90	90	90
β, °	92.7240(10)	92.6410(10)	101.362(7)
γ, °	90	90	90
Ζ	4	4	2
<i>V</i> , Å ³	5046.9(3)	5113.56(19)	4046.2(13)
ө range (°)	2.32 - 26.01	2.31-26.01	2.35 - 26.01
D_{c} , g cm ⁻³	1.400	1.382	1.108
μ , mm ⁻¹	0.816	0.717	0.753
Reflections	118241	123858	83056
collected			
Unique reflections	9923	10034	7969
$R_{ m int}$	0.0720	0.0401	0.0991
GOF on F^2	1.049	0.878	1.086
$R_1, wR_2[I > 2\sigma(I)]^a$	0.0562, 0.1824	0.0445, 0.1380	0.0519, 0.1408
R1,wR2(all data) ^a	0.0702, 0.1929	0.0525, 0.1476	0.0624, 0.1460

Table S1. Crystal data and structure refinements of three MOFs.

 $\label{eq:rescaled_state} \overline{ a \; R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|, \; wR_2 = |\Sigma w (|F_0|^2 - |F_c|^2)^2 / \Sigma |w(F_0^2)^2|^{1/2}. }$

^b The values in parenthesis are for the refinement after the SQUEEZE routine.

		0 []	
Ni1-O1	1.987(2)	Ni1-O5#1	2.199(3)
Ni1-O6#1	2.101(3)	Ni1-07	1.967(2)
Ni1-N1	2.126(3)	Ni1-N2#2	2.133(3)
Ni2-O2	2.069(2)	Ni2-O3#3	2.078(2)
Ni2-07	2.018(2)	Ni2-08	2.091(3)
Ni2-N7	2.086(3)	Ni2-N8#2	2.078(3)
O1-Ni1-O7	97.98(10)	O7-Ni1-O6#1	103.45(9)
O1-Ni1-O6#1	158.39(11)	O7-Ni1-N1	87.07(11)
O1-Ni1-N1	91.22(12)	O6#1-Ni1-N1	87.17(11)
O7-Ni1-N2#2	94.68(11)	O1-Ni1-N2#2	90.71(12)
O6#1-Ni1-N2#2	90.28(11)	N1-Ni1-N2#2	177.19(12)
O7-Ni1-O5#1	164.86(10)	O1-Ni1-O5#1	97.02(10)
O6#1-Ni1-O5#1	61.47(10)	N1-Ni1-O5#1	90.57(12)
N2#2-Ni1-O5#1	87.17(12)	O7-Ni2-O2	97.90(9)
O7-Ni2-O3#3	174.54(11)	O2-Ni2-O3#3	84.83(10)
O7-Ni2-N8#2	87.68(11)	O2-Ni2-N8#2	89.00(12)
O3#3-Ni2-N8#2	87.68(11)	07-Ni2-N7	93.36(11)
O2-Ni2-N7	89.88(12)	O3#3-Ni2-N7	91.37(12)
N8#2-Ni2-N7	178.56(13)	O7-Ni2-O8	86.60(11)
O2-Ni2-O8	175.12(12)	O3#3-Ni2-O8	90.53(12)
N8#2-Ni2-O8	89.30(14)	N7-Ni2-O8	91.75(14)
x+1/2, -y+3/2, z+1/	2; #3 -x+1, -y	-x+1/2, y-1/2, -2- /+2, -z.	
Co1-O1	2.0019(18)	Co1-O5#1	2.282(2)
Co1-O6#1	2.1110(18)	Co1-O7	1.9624(15)
Co1-N1	2.191(2)	Co1-N2#2	2.191(2)
Co2-O2	2.0959(18))Co2-O3#3	2.0915(18)
Co2-O7	2.0359(15)	Co2-O8	2.136(2)
Co2-N7	2.137(2)	Co2-N8#2	2.135(2)
O1-Co1-O7	100.23(7)	O7- Co1-O6#1	104.77(7)
O1-Co1-O6#1	154.70(8)	O7- Co1-N1	87.15(8)
O1-Co1-N1	91.13(9)	O6#1-Co1-N1	86.28(8)
O7-Co1-N2#2	95.39(8)	O1-Co1-N2#2	90.71(9)
O6#1-Co1-N2#2	90.81(8)	N1-Co2-N2#2	176.55(8)
O7-Co1-O5#1	164.50(7)	O1-Co1-O5#1	95.20(7)
O6#1-Co1-O5#1	59.74(7)	N1-Co1-O5#1	91.10(9)
N2-Co1-O5#1	85.83(8)	O7-Co2-O2	97.78(7)
O7-Co2-O3#3	173.18(8)	O2-Co2-O3#3	86.65(7)
O7-Co2-N8#2	87.32(8)	O2-Co2-N8#2	
	()		88.63(9)
U3#3-C02-N8#2	87.60(9)	O7-Co2-O8	88.63(9) 85.42(8)
03#3-C02-N8#2 02-Co2-O8	87.60(9) 176.21(9)	O7-Co2-O8 O3#3-Co2-O8	88.63(9) 85.42(8) 89.97(8)

Table S2. Selected bond [Å] and angles [°] for MOF1-3.

O2-Co2-N7	89.93(9)	O3#3-Co2-N7	91.63(9)
N8#2-Co2-N7	178.41(9)	O8-Co2-N7	91.89(10)
Symmetry code	for MOF2	: #1 -x+1/2,y-1/	/2,-z+1/2; #2
x+1/2,-y+3/2,z+1/2	;#3 -x+1,-	y+2,-z.	
Ni1-O1	2.149(2)	Ni1-O2	2.094(2)
Ni1-O4#1	2.019(2)	Ni1-O7	2.049(2)
Ni1-N1	2.090(2)	Ni1-N3#2	2.102(2)
Ni2-O8	2.061(3)	Ni2-09	2.049(3)
Ni2-N2	2.109(3)		
O4#1-Ni1-O7	96.15(9)	O4#1-Ni1-O2	163.44(9)
07-Ni1-O2	100.33(9)	O4#1-Ni1-N1	87.70(10)
07-Ni1-N1	90.99(10)	O2-Ni1-N1	93.67(9)
O4#1-Ni1-N3#2	86.24(10)	O7-Ni1-N3#2	94.24(10)
O2-Ni1-N3#2	90.84(9)	N1-Ni1-N3#2	172.39(10)
O4#1-Ni1-O1	101.48(8)	07-Ni1-O1	162.34(9)
O2-Ni1-O1	62.02(8)	N1-Ni1-O1	90.66(9)
N3#2-Ni1-O1	86.04(9)	O9-Ni2-O9#3	180.0
O9-Ni2-O8#3	89.04(12)	O9-Ni2-O8	90.96(12)
O8#3-Ni2-O8	180.0	O9-Ni2-N2#3	89.36(11)
O9-Ni2-N2	90.64(11)	08-Ni2-N2	89.98(12)
O8#3-Ni2-N2	90.02(12)	N2#3-Ni2-N2	180.0
Symmetry code fo -z+3/2; #3 -x, -y, -z	or MOF 3 : #	1 x+1, y, z; #2 -	x+1/2, y+1/2,

Table S3. The alcohol oxidation of different substituted benzyl alcohol to benzaldehyde catalyzed by activated **MOF3**^a.

Entry	1a	2 a	Time (h)	Conversion (%) ^b	Selectivity (%)
1	Ъ-{Он		6	95	>99
2			6	92	>99
3	F3C-OH		6	NR	
4	<u>م</u>		12	41	>99
5			12	63	>99
6	\Diamond	\bigcirc	12	54	>99
7	€°∕− ^{°™}	^ر ک	16	NR	
8	C→→→ ^{OH}	 	16	NR	
9	~~он	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	16	NR	

^a The reactions were carried out under the optimized conditions: 80°C for 12 h, catalyst (0.25 mmol%), CH₃CN (5 mL) as solvent, *n*-dodecane (400 μ L, as internal standard), air balloon. ^b determined by GC-MS on the basis of area %.

Table S4. The Knoevenagel reaction of different alcohol and methylene substrates catalyzed by activated MOF3.^a

$R_{2a} \xrightarrow{R_1} R_2 \xrightarrow{R_1} R_2$ $R_{2a} \xrightarrow{R_1/R_2=CN \text{ for } 3a, R_2} \xrightarrow{R_1} R_2$							
Entry	2a	3a/3b	Product	Time (h)	Conversion (%) ^b	Selectivity (%)	
1		NC_CN		6	94	>99	
2		NC_CN	C CN	6	92	>99	
3	\sim	NC_CN		12	55	>99	
4	\bigcirc	NC ->	C CN	6	86	>99	
5		NC ~~~		6	71	>99	
6		NC		- 12	34	99	

^a The reactions were carried out under the optimized conditions: 2a (1.0 mmol), 3a or 3b (1.5 mmol), catalyst (0.25 mmol%), DMF (5 mL) as solvent, *n*-dodecane (400 μ L, as internal standard), room temperature. ^b determined by GC-MS on the basis of area %.

The computed results of the (3,5)-connected net of MOF1 and 2 by TOPOS 4.0 are as follows: Topology for Ti1

At	om ′	Ti1 links by	bridge ligar	nds and has			
Common vertex with R(A-A)							
V	1	0.3371	1.1232	0.1071	(010)	5.159A	1
V	1	0.1629	0.6232	0.3929	(000)	7.180A	1
V	1	0.6629	0.8768	-0.1071	(110)	7.273A	1
Ti	1	-0.0899	0.7333	-0.3527	(-1 1-1)	13.398A	1
Ti	1	0.9101	0.7333	0.6473	(010)	13.398A	1

Topology for V1

Atom V1 links by bridge ligands and has

Commo	on vertex v	R(A-A)				
Ti 1	0.4101	-0.2333	0.1473	(0-10)	5.159A	1
Ti 1	0.0899	0.2667	0.3527	(0-10)	7.180A	1
Ti 1	0.5899	0.2333	-0.1473	(110)	7.273A	1

Structural group analysis

Structural group No 1

Structure consists of 3D framework with V, Ti Coordination sequences

 Ti1:
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 Num
 5
 13
 28
 49
 75
 108
 145
 189
 240
 295

 Cum
 6
 19
 47
 96
 171
 279
 424
 613
 853
 1148

 V1:
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 Num
 3
 11
 28
 47
 75
 106
 145
 189
 238
 295

 Cum
 4
 15
 43
 90
 165
 271
 416
 605
 843
 1138

TD10=1143

Vertex symbols for selected sublattice

Ti1 Point symbol:{4.6^6.8^3}

Extended point symbol: [4.6.6.6.6.6(2).6(2).8.8(5).8(8)]

V1 Point symbol:{4.6²}

Extended point symbol: [4.6(2).6(2)]

Point symbol for net: {4.6^2}{4.6^6.8^3} 3,5-c net with stoichiometry (3-c)(5-c); 2-nodal net

ATTENTION! If the name below is written in a long notation s/... or s-d-G-n, this net is a subnet of the net s (see Manual for details)

Topological type: fsc-3,5-Cmce-2 (binodal.ttd) {4.6^2} {4.6^6.8^3} - VS [4.6(2).6(2)] [4.6.6.6.6.6(2).6(2).8.8(3).8(4)] (78929 types in 11 databases)

The computed results of the (3,4)-connected net of MOF**3** by TOPOS 4.0 are as follows: Topology for Ti1

Atom Ti1 links by bridge ligands and has

Common vertex with R(A-A)								
V	1	0.3764	0.6986	0.7205	(001)	7.697A	1	
V	1	0.1236	1.1986	0.7795	(010)	7.745A	1	
Ti	1	-0.1774	1.0419	-0.4971	(020)	15.374A	1	
Тор	Topology for V1							

Atom V1 links by bridge ligands and has

Coi	mm	on vertex w	R(A-A)				
Ti 1	1	0.3226	0.4581	1.0029	(0-11)	7.697A	1
Ti 1	1	0.1774	-0.0419	0.4971	(0-10)	7.745A	1
V	1	1.1236	0.1986	0.7795	(100)	10.144A	1
V	1	-0.8764	0.1986	0.7795	(-1 0 0)	10.144A	1

Structural group analysis

Structural group No 1

Structure consists of 3D framework with V, Ti

There are 3 interpenetrating nets

FIV: Full interpenetration vectors

[0,0,1] (15.60A)

PIC: [0,0,3][1,0,0][0,1,0] (PICVR=3)

Zt=3; Zn=1

Class Ia Z=3

Coordination sequences

 Ti1:
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 Num
 3
 8
 20
 38
 59
 82
 111
 146
 182
 224

 Cum
 4
 12
 32
 70
 129
 211
 322
 468
 650
 874

 V1:
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 Num
 4
 10
 20
 34
 54
 80
 108
 140
 180
 222

 Cum
 5
 15
 35
 69
 123
 203
 311
 451
 631
 853

TD10=863

Vertex symbols for selected sublattice

Ti1 Point symbol: {6.8^2} Extended point symbol: [6(2).8(4).8(4)]

V1 Point symbol:{6^4.8.10} Extended point symbol:[6.6.6.6.8(2).10(4)]

Point symbol for net: {6.8^2}{6^4.8.10}

3,4-c net with stoichiometry (3-c)(4-c); 2-nodal net

ATTENTION! If the name below is written in a long notation s/... or s-d-G-n, this net is a subnet of the net s (see Manual for details)

Topological type: fsg-3,4-Cmmm (binodal.ttd) {6.8^2}{6^4.8.10} - VS [6(2).8(4).8(4)]

[6.6.6.6.10(2).*] (78929 types in 11 databases)