Electronic Supplementary Information

Photoelectrochemical hydrogen evolution using CdTe_xS_{1-x} quantum dots as sensitizers on NiO photocathodes

Elisabetta Benazzi,*a Vito Cristino, a Rita Boaretto, a Stefano Caramori a,b and Mirco Natali *a,b

^{*a.*} Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy.

E-mail: elisabetta.benazzi@unife.it; mirco.natali@unife.it.

^{b.} Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SolarChem), sez. di Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy.

Figure S1. (a) SEM image of NiO|(MAA)QDs and (b,c) EDS analysis.

Figure S2. (a) SEM image of NiO|(MPA)QDs and (b,c) EDS analysis.

Figure S3. (a) SEM image of NiO|(MSA)QDs and (b,c) EDS analysis.

Figure S4. Luminescence spectra (excitation at 550 nm) of NiO|QDs electrodes.

Figure S5. Comparison of luminescence spectra (excitation at 550 nm) of ZrO₂|QDs and NiO|QDs electrodes involving a) **MAA**, b) **MPA**, and c) **MSA** capping agents, prepared using the same soaking procedure.

Figure S6. Time-resolved luminescence decay of a) $ZrO_2|(MPA)QDs$ and b) NiO|(MPA)QDs measured by TC-SPC (excitation at 460 nm, analysis at 600 nm). Biexponential fitting leads to two time-constants $\tau_1 = 4.4$ ns (23%), $\tau_2 = 19$ ns (77%) and an average lifetime of $\langle \tau \rangle = 19.2$ ns for $ZrO_2|(MPA)QDs$; biexponential fitting leads to two time-constants: $\tau_1 = 1.18$ ns (79%), $\tau_2 = 15.5$ ns (21%) and an average lifetime of $\langle \tau \rangle = 4.2$ ns for NiO|(MPA)QDs.

Figure S7. Time-resolved luminescence decay of a) $ZrO_2|(MAA)QDs$ and b) NiO|(MAA)QDs measured by TC-SPC (excitation at 460 nm, analysis at 600 nm). Biexponential fitting leads to two time-constants: $\tau_1 = 4.1$ ns (29%), $\tau_2 = 24.1$ ns (71%) and an average lifetime of $\langle \tau \rangle = 18.3$ ns for $ZrO_2|(MAA)QDs$; biexponential fitting leads to two time-constants: $\tau_1 = 0.6$ ns (80%), $\tau_2 = 6.9$ ns (20%) and an average lifetime of $\langle \tau \rangle = 0.8$ ns for NiO|(MAA)QDs.

Figure S8. Time-resolved luminescence decay of a) $ZrO_2|(MSA)QDs$ and b) NiO|(MSA)QDs measured by TC-SPC (excitation at 460 nm, analysis at 600 nm). Biexponential fitting leads to two time-constants: $\tau_1 = 3.4$ ns (29%), $\tau_2 = 22.9$ ns (71%) and an average lifetime of $\langle \tau \rangle = 17.2$ ns for $ZrO_2|(MSA)QDs$; biexponential fitting leads to two time-constants: $\tau_1 = 0.7$ ns (96%), $\tau_2 = 8.8$ ns (4%) and an average lifetime of $\langle \tau \rangle = 1.0$ ns for NiO|(MSA)QDs.

Figure S9. Absorption spectra (optical pathlength of 1 cm) of the aqueous solution obtained upon treatment of NiO|QDs electrodes (1 cm² surface area) with 5 mL 1 M NaOH. Molar extinction coefficients of 472,000, 469,000, and 479,000 M⁻¹cm⁻¹ at 360 nm were used for **MPA-**, **MAA-**, and **MSA-**capped QDs, respectively. These values were obtained by diluting QDs solutions of known concentration in 1 M NaOH.

Figure S10. a) Linear sweep voltammetry (recorded at a scan rate of 10 mV·s⁻¹) and b) chronoamperometry at 0 V vs. NHE under chopped irradiation (100 mW·cm⁻²) of NiO|QDs electrodes with different capping agents in the presence of 5 mM [Co^{III}(NH₃)₅Cl]Cl₂ as an irreversible electron acceptor (0.1 M acetate buffer at pH 4).

Figure S11. a) Linear sweep voltammetry (recorded at a scan rate of 10 mV·s⁻¹) and b) chronoamperometry at 0 V vs. NHE under chopped irradiation (100 mW·cm⁻²) of NiO|QDs electrodes with different capping agents in the presence of 20 mM [Co^{III}(NH₃)₅Cl]Cl₂ as an irreversible electron acceptor (0.1 M acetate buffer at pH 4).

Figure S12. Absorption spectra (optical pathlength of 1 cm) of the aqueous solution obtained upon treatment of NiO|(**MAA**)QDs and NiO|(**MAA**)QDs|Pt electrodes (1 cm² surface area) with 5 mL 1 M NaOH. A molar extinction coefficient of 469,000 M⁻¹cm⁻¹ at 360 nm was used.

Figure S13. (a) SEM image of NiO|(MAA)QDs|Pt(20s) and (b,c) EDS analysis.

Figure S14. (a) SEM image of NiO|(MAA)QDs|Pt(50s) and (b) EDS analysis.

Figure S15. (a) SEM image of NiO|(MAA)QDs|Pt(100s) and (b) EDS analysis.

Figure S16. (a) SEM image of NiO|(MAA)QDs|1 and (b) EDS analysis.

Figure S17. Absorption spectra (optical pathlength of 1 cm) of the aqueous solution obtained upon treatment of NiO|(MAA)QDs, NiO|(MAA)QDs|1, and NiO|1 electrodes (1 cm² surface area) with 5 mL 1 M NaOH. A molar extinction coefficient of 469,000 M⁻¹cm⁻¹ at 360 nm was used for (MAA)QDs and a molar extinction coefficient of 53,000 M⁻¹cm⁻¹ at 255 nm was used for 1 (see reference 36 of the main text). Simulation = 1/3 (NiO|(MAA)QDs) + (NiO|1)

Figure S18. LSV under chopped irradiation (100 mW·cm⁻²) of a) NiO|1 and b) NiO|Pt(50s) in 0.1 M acetate buffer at pH 4.

Figure S19. LSV under chopped irradiation (100 mW·cm⁻²) of a) NiO|(**MAA**)QDs|1 and b) NiO|(**MAA**)QDs|Pt(50s) in aqueous solution (0.1 M LiClO₄) at different pH (varied using HClO₄).

Figure S20. Plot of the onset potential obtained from Figure S18 vs. pH, the linear fitting provides in both cases a slope of ca -120 mV/pH.

Figure S21. Faradaic efficiency determination for photoelectrochemical hydrogen production by a) NiO|(MAA)QDs|Pt(50s) and b) NiO|(MAA)QDs|1 electrodes at 0 V vs. NHE under chopped irradiation (100 mW·cm⁻²) in 0.1 M acetate buffer at pH 4. The black trace is the produced photocurrent generated by the NiO electrode (generator), whereas the red trace represents the current registered at the FTO|Pt electrode (collector) held at +0.4 V vs. NHE.

Figure S22. Faradaic efficiency determination for photoelectrochemical hydrogen production by NiO|(MAA)QDs at 0 V vs. NHE under chopped irradiation (100 mW·cm⁻²) in 0.1 M acetate buffer at pH 4. The black trace is the produced photocurrent generated by the NiO electrode (generator), whereas the red trace represents the current registered at the FTO|Pt electrode (collector) held at +0.4 V vs. NHE.

	Electrode	J (μA cm ⁻²) at E (V vs NHE) ^a	Time (min) ^b	FE (%)	Conditions	Light	Ref
1	NiO RuP Co	7 at -0.2	n.a.	n.a.	phosphate pH 7	$300 \text{ mW cm}^{-2}, \ \lambda > 400 \text{ nm}$	S1
2	NiO P1 Co	25 at 0	10	68	phosphate pH 7	$100 \text{ mWcm}^{-2}, \ \lambda > 400 \text{ nm}$	S2
3	NiO C343 Fe	<10 at -0.1	ca 3	50	acetate pH 4.5	$100 \text{ mWcm}^{-2}, \ \lambda > 400 \text{ nm}$	S3
4	NiO DPP NiP	~10 at -0.1	5	31	Na ₂ SO ₄ pH 3	$100 \text{ mWcm}^{-2}, \ \lambda > 400 \text{ nm}$	S4
5	NiO RuP Zr NiP	6.4 at 0	2	9	Na ₂ SO ₄ pH 3	$100 \text{ mW cm}^{-2}, \ \lambda > 400 \text{ nm}$	S5
6	NiO dyad1	15 at -0.19	10	9	MES pH 5.5	$65 \text{ mW cm}^{-2}, \ \lambda > 400 \text{ nm}$	S6
7	NiO dyad2	~12 at 0.2	10	n.a.	acetate pH 4.8	$100 \text{ mW cm}^{-2}, \ \lambda > 400 \text{ nm}$	S7
8	NiO dyad3 ^c	~10 at 0.1	90	68	phosphate pH 7	$300 \text{ W lamp,} \\ \lambda > 420 \text{ nm}$	S8
9	NiO CdSe Fe	~30 at -0.1	5	52	Na ₂ SO ₄ pH 6.8	$300 \text{ W lamp,} \\ \lambda > 400 \text{ nm}$	S9
10	NiO CdSe CoP	~100 at 0	25	81	Na ₂ SO ₄ pH 6.8	$300 \text{ W lamp,} \\ \lambda > 400 \text{ nm}$	S10
11	NiO CdSe Co ^d	~100 at 0.2	10	99.6	HMTA/HCl pH 6	180 mW green LED	S11
12	NiO CdTe Ni ^d	~40 at 0	6	99.5	HMTA/HCl pH 6	$300 \text{ W lamp,} \\ \lambda > 400 \text{ nm}$	S12
13	NiO CdTe _x S _{1-x} 1	~20 at 0	50	80	acetate pH 4	$100 \text{ mW cm}^{-2}, \ \lambda > 400 \text{ nm}$	е
14	NiO CdTe _x S _{1-x} Pt	~16 at 0	50	70	acetate pH 4	$100 \text{ mW cm}^{-2}, \ \lambda > 400 \text{ nm}$	е

 Table S1. Comparison of photoelectrochemical results on sensitized NiO electrodes.

^{*a*} Net photocurrent density measured by CA; ^{*b*} maximum time window explored by CA; ^{*c*} using an Al_xO_y coating; ^{*d*} catalyst in solution; ^{*e*} this work.

References of the ESI

- S1 K. Fan, F. Li, L. Wang, Q. Daniel, E. Gabrielsson and L. Sun, *Phys. Chem. Chem. Phys.*, 2014, 16, 25234.
- S2 F. Li, K. Fan, B. Xu, E. Gabrielsson, Q. Daniel, L. Li and L. Sun, J. Am. Chem. Soc., 2015, 137, 9153.
- S3 L. J. Antila, P. Ghamgosar, S. Maji, H. Tian, S. Ott and L. Hammarström, ACS Energy Lett., 2016, 1, 1106.
- S4 C. E. Creissen, J. Warnan and E. Reisner, Chem. Sci., 2018, 9, 1439.
- S5 M. A. Gross, C. E. Creissen, K. L. Orchard and E. Reisner, Chem. Sci., 2016, 7, 5537.
- S6 N. Kaeffer, J. Massin, C. Lebrun, O. Renault, M. Chavarot-Kerlidou and V. Artero, J. Am. Chem. Soc., 2016, 138, 12308.
- S7 P. B. Pati, L. Zhang, B. Philippe, B. Fernandez-Teran, S. Amadi, L. Tian, H. Rensmo, L. Hammarström and H. Tian, *ChemSusChem*, 2017, 10, 2480.
- S8 Z. Ji, M. He, Z. Huang, U. Ozkan and Y. Wu, J. Am. Chem. Soc., 2013, 135, 11696.
- S9 M. Wen, H.-L. Wu, J.-X. Jian, X.-Z. Wang, X.-B. Li, B. Chen, C.-H. Tung and L. Z. Wu, *ChemPhotoChem*, 2017, 1, 260.
- S10 P. Meng, M. Wang, Y. Yang, S. Zhang and L. Sun, J. Mater. Chem. A, 2015, 3, 18852.
- S11 H. Lv, C. Wang, G. Li, R. Burke, T. D. Krauss, Y. Gao and R. Eisenberg, *Proc. Natl. Acad. Sci.* U.S.A., 2017, **114**, 11297.
- S12 Y. Dong, R. Wu, P. Jiang, G. Wang, Y. Chen, X. Wu and C. Zhang, ACS Sustain. Chem. Eng., 2015, 3, 2429.