Suppoting information for

Two homochiral Eu^{III} and Sm^{III} enantiomeric pairs showing circularly polarized luminescence, photoluminescence and triboluminescence

Minghui Cui,^a Ai-Ling Wang,^a Cong-Li Gao,^a Liming Zhou,^a Tao Wu,^{*b} Shaoming Fang^a Hong-Ping Xiao,^{*c} Feng-Cai Li and Xi-Li Li,^{*a}

^a Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China; Email: lixl@zzuli.edu.cn

^b Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic; Email: wu@uochb.cas.cz
^c College of Chemistry & Material Engineering, Wenzhou University, Wenzhou 325035, P. R. China; Email: hp xiao@126.com

Scheme S1 Chemical structures of homochiral *R*-2-Sm/*S*-2-Sm.

Fig. S1 Molecular structures of homochiral *R***-2-Sm** and *S***-2-Sm** enantiomeric pairs (ORTEP at 30% probability); H atoms are omitted for clarity.

Fig. S2 Coordination geometries of Eu1 in *R*-1-Eu (a) and Sm1 in *R*-2-Sm (b).

Fig. S3 ¹H NMR of *R*-1-Eu in DMSO- d_6 . The NMR spectra for the homochiral Eu^{III} enantiomeric pairs are identical as expected.

Fig. S4 ¹H NMR of *S*-1-Eu in DMSO- d_6 . The NMR spectra for the homochiral Eu^{III} enantiomeric pairs are identical as expected.

Fig. S5 ¹H NMR of *R***-2-Sm** in DMSO- d_6 . The NMR spectra for the homochiral Sm^{III} enantiomeric pairs are identical as expected.

Fig. S6 ¹H NMR of *S*-2-Sm in DMSO- d_6 . The NMR spectra for the homochiral Sm^{III} enantiomeric pairs are identical as expected.

Fig. S7 (a) Electronic circular dichroism (ECD) spectra and (b) UV-Vis absorption spectra of homochiral *R*-2-Sm and *S*-2-Sm enantiomeric pairs in DCM (1×10^{-5} M).

Fig. S8 The excitation spectra of *R*-1-Eu in the solid state ($\lambda_{em} = 613$ nm) (a) and in DCM (1 × 10⁻⁵ M, $\lambda_{em} = 612$ nm) (b).

Fig. S9 The excitation spectra of *S*-1-Eu in the solid state ($\lambda_{em} = 613$ nm) (a) and in DCM (1 × 10⁻⁵ M, $\lambda_{em} = 612$ nm) (b).

Fig. S10 Emission spectra of *S*-1-Eu in solid state ($\lambda_{ex} = 370 \text{ nm}$) (a) and in DCM (1 × 10⁻⁵ M, $\lambda_{ex} = 377 \text{ nm}$) (b) at room temperature.

Fig. S11 Decay curves of *S***-1-Eu** with fitted curves (red) in the solid state (a) and in DCM $(1 \times 10^{-5} \text{ M})$ (b) at room temperature. Decay curves presented with log ordinate scale.

Fig. S12 The excitation spectra of *R*-2-Sm in the solid state ($\lambda_{em} = 647$ nm) (a) and in DCM (3 × 10⁻⁵ M, $\lambda_{em} = 647$ nm) (b).

Fig. S13 The excitation spectra of *S*-2-Sm in the solid state ($\lambda_{em} = 647$ nm) (a) and in DCM (3 × 10⁻⁵ M, $\lambda_{em} = 647$ nm) (b).

Fig. S14 Emission spectra of *S*-2-Sm in the solid state ($\lambda_{ex} = 370 \text{ nm}$) (a) and in DCM ($3 \times 10^{-5} \text{ M}, \lambda_{ex} = 370 \text{ nm}$) (b) at room temperature.

Fig. S15 Decay curves of *S*-2-Sm with fitted curves (red) in the solid state (a) and in DCM $(3 \times 10^{-5} \text{ M})$ (b) at room temperature. Decay curves presented with log ordinate scale.

	<i>R</i> -1-Eu <i>S</i> -1-Eu <i>R</i> -2-Sm		<i>R</i> -2-Sm	<i>S</i> -2-Sm			
Chemical formula	$C_{47}H_{36}F_9N_2O_6Eu$	$C_{47}H_{36}F_9N_2O_6Eu$	$C_{47}H_{36}F_9N_2O_6Sm$	$C_{47}H_{36}F_9N_2O_6Sm\\$			
Formula weight	1047.74	1047.74	1046.13	1046.13			
Crystal system	triclinic	triclinic	triclinic	triclinic			
Space group	<i>P</i> 1	<i>P</i> 1	<i>P</i> 1	<i>P</i> 1			
a/Å	10.6976(9)	10.7349(3)	10.6922(7)	10.7328(4)			
$b/\text{\AA}$	10.7310(6)	10.7689(2)	10.7184(9)	10.7633(4)			
$c/\text{\AA}$	11.1962(9)	11.1509(4)	11.1514(8)	11.2076(4)			
α/ο	83.744(5)	83.873(2)	83.872(7)	83.741(3)			
β/°	66.703(8)	66.744(3)	66.808(6)	66.691(4)			
γ/ ⁰	73.668(6)	74.512(2)	74.017(7)	73.880(4)			
$V/Å^3$	1132.85(16)	1141.33(6)	1129.30(16)	1142.29(8)			
Ζ	1	1	1	1			
$D/g \text{ cm}^{-3}$	1.536	1.524	1.538	1.521			
μ/mm^{-1}	1.471	1.460	1.387	1.371			
GOF	1.000	0.965	1.038	1.023			
$R_1^a / w R_2^b$	0.0408 / 0.0892	0.0357 / 0.0708	0.0369 / 0.0770	0.0391 / 0.0718			
Flack parameter	0.009(14)	0.0100(11)) 0.014(10) 0.011(10)				
a	^{<i>a</i>} $R_1 = \sum Fo - Fc / \sum Fo $. ^{<i>b</i>} $_{w}R_2 = [\sum w(Fo^2 - Fc^2)^2 / \sum w(Fo^2)^2]^{1/2}$						

Table S1 Crystallographic data and structure refinement parameters for both *R*-1-Eu/*S*-1-Eu and *R*-2-Sm/*S*-2-Sm enantiomeric pairs.

 Table S2. Selected bond lengths (Å) and angles (°) for *R*-1-Eu and *S*-1-Eu.

<i>R</i> -1-Eu				<i>S</i> -1-Eu				
Bond lengths (Å)		Bond angles (°)		Bond lengths (Å)		Bond angles (°)		
Eu1–N1	2.560(9)	O1–Eu1–N1	73.8(2)	Eu1–N1	2.626(6)	O2-Eu1-N2	80.72(18)	
Eu1–N2	2.586(7)	O1–Eu1–N2	76.1(2)	Eu1–N2	2.625(6)	O2-Eu1-N1	132.96(18)	
Eu1–O1	2.362(6)	O1–Eu1–O2	71.1(2)	Eu1–O1	2.415(5)	O2-Eu1-O1	70.19(17)	
Eu1–O2	2.362(6)	O5–Eu1–N1	74.0(3)	Eu1–O2	2.402(5)	O6-Eu1-N2	76.34(18)	
Eu1–O3	2.359(6)	O6–Eu1–O5	71.4(2)	Eu1–O3	2.396(5)	O5–Eu1–O6	70.75(17)	
Eu1–O4	2.359(7)	N1–Eu1–N2	62.1(2)	Eu1–O4	2.407(5)	N1–Eu1–N2	61.3(2)	
Eu1–O5	2.374(7)			Eu1–O5	2.416(5)			
Eu1–O6	2.344(6)			Eu1–O6	2.385(5)			

<i>R</i> -2-Sm				<i>S</i> -2-Sm				
Bond lengths (Å)		Bond angles (°)		Bond lengths (Å)		Bond angles (°)		
N1–Sm1	2.580(7)	O5–Sm1–N2	76.1(2)	N1-Sm1	2.602(7)	O5–Sm1–N1	73.3(2)	
N2-Sm1	2.584(6)	O5–Sm1–N1	73.8(2)	N2-Sm1	2.602(7)	O5-Sm1-N2	76.06(19)	
O1–Sm1	2.394(6)	O5–Sm1–O6	70.77(19)	O1–Sm1	2.393(6)	O5–Sm1–O3	77.85(18)	
O2–Sm1	2.354(6)	O2-Sm1-O1	71.16(19)	O2–Sm1	2.365(5)	O1–Sm1–O2	71.47(19)	
O3–Sm1	2.364(5)	O1–Sm1–N1	73.9(2)	O3–Sm1	2.373(5)	O2-Sm1-N2	75.37(19)	
O4–Sm1	2.368(6)	N1-Sm1-N2	62.2(2)	O4–Sm1	2.379(6)	N1-Sm1-N2	62.0(2)	
O5–Sm1	2.367(5)			O5–Sm1	2.379(5)			
O6–Sm1	2.382(5)			O6–Sm1	2.377(6)			

Table S3. Selected bond lengths (Å) and angles (°) for *R*-2-Sm and *S*-2-Sm.

 Table S4. Continuous Shape Measures calculation for Eu1 atom in *R*-1-Eu.

OP-8	1 D8h	Octagon
HPY-8	2 C7v	Heptagonal pyramid
HBPY-8	3 D6h	Hexagonal bipyramid
CU-8	4 Oh	Cube
SAPR-8	5 D4d	Square antiprism
TDD-8	6 D2d	Triangular dodecahedron
JGBF-8	7 D2d	Johnson gyrobifastigium J26
JETBPY-8	8 D3h	Johnson elongated triangular bipyramid J14
JBTPR-8	9 C2v	Biaugmented trigonal prism J50
BTPR-8	10 C2v	Biaugmented trigonal prism
JSD-8	11 D2d	Snub diphenoid J84
TT-8	12 Td	Triakis tetrahedron
ETBPY-8	13 D3h	Elongated trigonal bipyrami

 Structure [ML8]
 OP-8
 HPY-8
 HBPY-8
 CU-8
 SAPR-8
 TDD-8
 JGBF-8
 JETBPY-8
 JBTPR-8
 BTPR-8
 JSD-8
 TT-8
 ETBPY-8

 ABOXIY,
 29.936,
 22.050,
 16.156,
 9.275,
 0.508, 2.427,
 16.426,
 27.351,
 3.021,
 2.346,
 5.583,
 9.988,
 23.197

OP-8 HPY-8 HDDV 8	1 D8h 2 C7v 2 D6h	Octagon Heptagonal pyramid
HBP 1-8	3 Don 4 Oh	Cube
SAPR-8	5 D4d	Square antiprism
TDD-8	6 D2d	Triangular dodecahedron
JGBF-8	7 D2d	Johnson gyrobifastigium J26
JETBPY-8	8 D3h	Johnson elongated triangular bipyramid J14
JBTPR-8	9 C2v	Biaugmented trigonal prism J50
BTPR-8	10 C2v	Biaugmented trigonal prism
JSD-8	11 D2d	Snub diphenoid J84
TT-8	12 Td	Triakis tetrahedron
ETBPY-8	13 D3h	Elongated trigonal bipyrami

Table S5. Continuous Shape Measures calculation for Sm1 atom in R-2-Sm

 Structure [ML8]
 OP-8
 HPY-8
 HBPY-8
 CU-8
 SAPR-8
 TDD-8
 JGBF-8
 JETBPY-8
 JBTPR-8
 BTPR-8
 JSD-8
 TT-8
 ETBPY-8

 ABOXIY,
 29.909,
 22.041,
 16.225,
 9.385,
 0.510,
 2.379,
 16.398,
 27.342,
 2.937,
 2.284,
 5.456,
 10.063,
 23.130

Table S6 Corrected emission transition intensities^a relative to ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ of *S*-1-Eu in the solid state and in DCM solution at room temperature

Parameter	<i>f</i> 0–0	∫0−1	ſ0-2	f0-3	<i>f</i> 0–4	∫total
Solid state	0.07 (580)	1.00 (590)	13.22 (613)	0.34 (653)	2.41 (703)	17.04
	[0.41%]		[77.58%]	[2.00%]	[14.14%]	
DCM	0.13 (580)	1.00 (591)	17.31 (612)	0.56 (651)	1.60 (703)	20.60
	[0.63%]		[84.03%]	[2.72%]	[7.77%]	

Values in the parentheses are the barycenter (nm) of emission transition, while the values in the square brackets are relative intensity (%) of each transition. ^a Estimated errors, $\pm 5\%$.

Table S7 Radiative (A_r) and nonradiative (A_{nr}) decay rates, observed luminescence lifetime (τ_{obs}) , radiative lifetime (τ_{rad}) , intrinsic quantum yield (Φ Eu Eu), overall quantum yield (Φ L Eu) and sensitization efficiency (η_{sen}) values of *S*-1-Eu in the solid state and in DCM at room temperature

<i>S</i> -1-Eu	$A_{\rm r}({\rm s}^{-1})$	$A_{\rm nr}$ (s ⁻¹)	$\tau_{\rm obs}({\rm ms})$	$\tau_{\rm rad}({\rm ms})$	$\pmb{\Phi}$ Eu Eu	${\it \Phi}$ L Eu	η_{sen} (%)
					(%)	(%)	
Solid state	930	327	0.79	1.08	74	59	80
DCM	871	392	0.80	1.15	69	51	74

Estimated errors: $A_{\rm r}$, ±5 s⁻¹; $A_{\rm nr}$, ±5 s⁻¹; $\tau_{\rm obs}$, ±2%; $\tau_{\rm rad}$, ±10%; Φ L Eu, ±10%; Φ Eu Eu, ±12%; $\eta_{\rm sen}$, ±16%.