Electronic Supplementary Information

Efficient Photorelease of Carbon Monoxide from a Luminescent Tricarbonyl Rhenium(I) Complex Incorporating Pyridyl-1,2,4-triazole and Phosphine Ligands

Ángel Hernández Mejías, Alexandre Poirot, Meriem Rmili, Nadine Leygue, Mariusz Wolff, Nathalie Saffon-Merceron, Eric Benoist and Suzanne Fery-Forgues *

NMR characterization

igure S1. ¹ H NMR spectrum of [Re(CO) ₃ (L)(CH ₃ CN)] ⁺ (OTf) ⁻ in CD ₃ CN	2
igure S2. ¹³ C NMR spectrum of [Re(CO) ₃ (L)(CH ₃ CN)] ⁺ (OTf) ⁻ in CD ₃ CN	2
igure S3. COSY NMR spectrum of [Re(CO) ₃ (L)(CH ₃ CN)] ⁺ (OTf) ⁻ in CD ₃ CN	3
igure S4. HSQC NMR spectrum of [Re(CO) ₃ (L)(CH ₃ CN)] ⁺ (OTf) ⁻ in CD ₃ CN	3
igure S5. HMBC NMR spectrum of [Re(CO) ₃ (L)(CH ₃ CN)] ⁺ (OTf) ⁻ in CD ₃ CN	4
igure S6. Numbering scheme and ¹ H NMR spectrum of 1-TPP in CD ₃ CN	4
Figure S7. ¹³ C NMR spectrum of 1-TPP in CD ₃ CN	5
Figure S8. COSY NMR spectrum of 1-TPP in CD ₃ CN	5
igure S9. HSQC NMR spectrum of 1-TPP in CD ₃ CN	6
Figure S10. HMBC NMR spectrum of 1-TPP in CD ₃ CN	6

Molecular structure

Figure S11. Molecular view showing the stacking of PBO moieties in molecules of 1-TPP	. 7
Table S1. Experimental and theoretical selected bond lengths and angles for complex 1-TPP in CH ₃ CN	7

Spectroscopy

Figure S12.	Monitoring	by UV-vi	s absorptio	on spect	troscopy	of the	chemica	l stability	of 1-TPP in	CH ₃ CN	7
Table S2. U	V-vis absorp	otion and	emission p	propertie	es of com	plex 1	-TPP in	three orga	anic solvents	s	8

Photochemistry

Figure S13. Monitoring by UV-vis absorption spectroscopy of the photochemical reaction of 1-TPP in	
acetonitrile solution under irradiation at 300 nm over 12 min	8
Figure S14. Monitoring by UV-vis absorption spectroscopy of the photochemical reaction of 1-Cl in CH ₃ CN upon irradiation at 300 nm over 2 h	8
Figure S15. Photoluminescence spectrum of complex 2 , obtained after complete photolysis of 1-TPP in acetonitrile solution $(4.4 \times 10^{-5} \text{ M})$ with irradiation at 350 nm.	9
Figure S16. Optical microscopy image of the microcrystalline powder of 1-TPP suspended in water, after 10 min illumination by the microscope light beam (450 nm).	9
Figure S17. Enlargement of the ¹ H NMR spectrum of 1-TPP in CD ₃ CN	9
Figure S18. High resolution mass spectrum ESI ⁺ and chemical structure of complex 2 1	0

DFT and TD-DFT calculations

Table S3. Frontier molecular orbital compositions (%) and energy levels in CH ₃ CN for 1-TPP	10
Table S4. Main electronic transitions for 1-TPP in CH ₃ CN, calculated with TD-DFT method	11
Table S5. Four calculated singlet states for 1-TPP in S ₁ optimized geometry with TD-DFT method	11
Table S6. Calculated phosphorescence emission energies of 1-TPP in acetonitrile	11
Figure S19. Isodensity plots of the frontier molecular orbitals of 1-TPP in CH ₃ CN	12
Figure S20. Experimental and simulated UV-Vis absorption spectra of 1-TPP and 2 in CH ₃ CN	13
Figure S21. Spin density distribution for the lowest triplet state T ₁ of 1-TPP and 2(iso1) in CH ₃ CN	13
Figure S22. Optimized geometries of isomers 1-5 of [Re(CO) ₂ (L)(PPh ₃)(CH ₃ CN)] ⁺ (the cation of 2)	13
Table S7. Theoretical selected bond lengths and angles for 2(iso1) in CH ₃ CN	14
Table S8. Frontier molecular orbital compositions (%) and energy levels in CH ₃ CN for 2(iso1)	14
Table S9. Main electronic transitions for 2(iso1) in CH ₃ CN, calculated with TDDFT method	15
Table S10. Four calculated singlet states for 2(iso1) in S ₁ optimized geometry with TDDFT method	15
Table S11. Calculated phosphorescence emission energies of 2(iso1) in acetonitrile	15
Figure S23. Isodensity plots of the frontier molecular orbitals of 2(iso1) in CH ₃ CN	16
Figure S24. Comparative energy levels of selected frontier molecular orbitals of 1-TPP and 2(iso1) in	
acetonitrile, and 1-Cl in CH ₂ Cl ₂ according to TD-DFT calculations	17

NMR characterization

Figure S1. ¹H NMR spectrum of [Re(CO)₃(L)(CH₃CN)]⁺(OTf)⁻ in CD₃CN.

Figure S2. ¹³C NMR spectrum of $[Re(CO)_3(L)(CH_3CN)]^+(OTf)^-$ in CD₃CN.

Figure S3. COSY NMR spectrum of [Re(CO)₃(L)(CH₃CN)]⁺(OTf)⁻ in CD₃CN.

Figure S4. HSQC NMR spectrum of [Re(CO)₃(L)(CH₃CN)]⁺(OTf)⁻ in CD₃CN.

Figure S5. HMBC NMR spectrum of [Re(CO)₃(L)(CH₃CN)]⁺(OTf)⁻ in CD₃CN.

Figure S6. Numbering scheme and ¹H NMR spectrum of $[Re(CO)_3(L)(PPh_3)]^+(OTf)^-$ (1-TPP) in CD₃CN.

Figure S7. ¹³C NMR spectrum of $[Re(CO)_3(L)(PPh_3)]^+(OTf)^-(1-TPP)$ in CD₃CN.

Figure S8. COSY NMR spectrum of [Re(CO)₃(L)(PPh₃)]⁺(OTf)⁻ (1-TPP) in CD₃CN.

Figure S9. HSQC NMR spectrum of [Re(CO)₃(L)(PPh₃)]⁺(OTf)⁻ (1-TPP) in CD₃CN.

Figure S10. HMBC NMR spectrum of [Re(CO)₃(L)(PPh₃)]⁺(OTf)⁻ (1-TPP) in CD₃CN.

Molecular structure

Figure S11. Molecular view showing the stacking of PBO moieties in molecules of **1-TPP**. Triflate and solvent molecule have been deleted for the sake of clarity.

Table S1. Experimental (XR data) and theoretical selected bond lengths [Å] and angles [°] calculated for complex **1-TPP** in CH₃CN.

Pond longths	Fyn		Optimize	d	Pond angles	Evn		Optimized	l
Bonu lengtils	Exp.	S ₀	S ₁	T ₁	bollu aligies	Exp.	S ₀	S ₁	T ₁
Re(1)-C(39)	1.900(7)	1.917	1.950	1.918	C(39)-Re(1)-C(40)	91.6(2)	90.38	85.37	90.46
Re(1)-C(40)	1.900(6)	1.918	1.969	1.918	C(39)-Re(1)-C(41)	87.7(3)	89.29	94.52	89.33
Re(1)-C(41)	1.956(7)	1.941	1.999	1.941	C(40)-Re(1)-C(41)	87.5(2)	89.03	87.10	88.97
Re(1)-N(2)	2.136(4)	2.158	2.078	2.155	C(39)-Re(1)-N(2)	97.2(2)	99.60	99.03	99.49
Re(1)-N(1)	2.196(4)	2.214	2.147	2.212	C(40)-Re(1)-N(2)	171.1(2)	170.01	175.18	170.04
Re(1)-P(1)	2.495 (2)	2.536	2.564	2.536	C(41)-Re(1)-N(2)	91.6(2)	90.77	90.58	90.78
					C(39)-Re(1)-N(1)	170.4(2)	173.14	175.47	172.99
O(2)-C(39)	1.159(7)	1.158	1.150	1.158	C(40)-Re(1)-N(1)	97.9(2)	96.41	99.12	96.45
O(3)-C(40)	1.168(6)	1.158	1.148	1.159	C(41)-Re(1)-N(1)	93.7(2)	89.83	85.09	89.65
O(4)-C(41)	1.145(7)	1.153	1.141	1.154	N(2)-Re(1)-N(1)	73.3(2)	73.61	76.46	73.59
					C(39)-Re(1)-P(1)	89.7(2)	89.98	90.94	89.93
					C(40)-Re(1)-P(1)	90.7(2)	91.81	93.40	91.79
					C(41)-Re(1)-P(1)	176.7 (2)	178.89	174.55	178.94
					N(2)-Re(1)-P(1)	90.6 (1)	88.53	88.52	88.60
					N(1)-Re(1)-P(1)	89.2 (1)	90.80	89.47	90.99
					O(2)-C(39)-Re(1)	177.2(5)	178.60	178.27	178.63
					O(3)-C(40)-Re(1)	175.8(5)	177.42	177.18	177.34
					O(4)-C(41)-Re(1)	173.6(6)	178.01	179.01	178.02

Figure S12. Monitoring by UV-vis absorption spectroscopy of the stability of complex **1-TPP** in CH₃CN (2.43 \times 10⁻⁵ M) in the dark over one month. The small variation between the two first measurements can be attributed to slow equilibration.

Solvent	λ _{abs} (nm)	λ _{em} (nm)	${oldsymbol{\varPhi}}_{ m P}$
Dichloromethane	306	548	0.090
Acetonitrile	305	546	0.033
Methanol	306	550	0.025

Table S2. UV-vis absorption and emission properties of complex **1-TPP** in three organic solvents. Excitation near the absorption maximum.

Photochemistry

Figure S13. Monitoring by UV-vis absorption spectroscopy of the photochemical reaction of complex **1-TPP** in CH₃CN solution $(4.27 \times 10^{-5} \text{ M})$ under irradiation at 300 nm over 12 min. Initial spectrum in black dashed line. The arrows indicate the evolution of the spectrum. Inset: plot of Log(*a*-*x*) *vs* time, with *a* being the initial concentration of **1-TPP** and *x* the concentration of formed photoproduct. According to Beer-lambert's law, (*a*-*x*) was calculated using the formula: $a-x = a[1-(A_t-A_0)/(A_F-A_0)]$ with A: absorbance at 410 nm before reaction (*A*₀), at time *t* (*A*_t) and at *t* = 12 min (*A*_F).

Figure S14. Monitoring by UV-vis absorption spectroscopy of the photochemical reaction of complex **1-Cl** in CH₃CN (6.4×10^{-5} M) upon irradiation at 300 nm over 2 h. One measurement every 15 min. The arrows indicate the evolution of the spectrum.

Figure S15. Photoluminescence spectrum of complex **2**, obtained after complete photolysis of complex **1-TPP** in CH₃CN solution (2.1×10^{-5} M) with irradiation at 350 nm. $\lambda_{ex} = 370$ nm.

Figure S16. Optical microscopy image of the microcrystalline powder of complex **1-TPP** suspended in water, after 10 min illumination by the microscope light beam (450 nm). Gas bubbles are indicated by arrows.

Figure S17. Enlargement of the ¹H NMR spectrum of complex **1-TPP** in CD₃CN. Proton H25 appears as a very complicated apparent triplet system, the most deshielded part of which is situated between two other multiplets (H4 at the left side, and H7 at the right side, together with the rest of the signal of H25). This spectrum corresponds to t = 0 in Fig. 6. At t = 19 min in Fig.6, the whole triplet of H25 is well visible at the right of H7.

lass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula
383.1729	883.1730	-0.1	-0.1	50.5	299.3	2.547	7.83	C58 H23 N6 O5
	883.1733	-0.4	-0.5	46.0	299.4	2.573	7.63	C54 H26 N7 O5 P
	883.1725	0.4	0.5	31.0	299.1	2.325	9.77	C42 H31 N6 O3 P 185Re
	883.1735	-0.6	-0.7	35.0	299.9	3.059	4.69	C48 H30 N2 O4 185Re
	883.1722	0.7	0.8	35.5	299.3	2.461	8.53	C46 H28 N5 O3 185Re
	883.1720	0.9	1.0	46.5	298.8	2.034	13.08	C52 H24 N10 O4 P
	883.1738	-0.9	-1.0	30.5	300.0	3.196	4.09	C44 H33 N3 O4 P 185Re
	883.1717	1.2	1.4	51.0	298.9	2.136	11.81	C56 H21 N9 04
	883.1743	-1.4	-1.6	55.5	299.9	3.066	4.66	C59 H19 N10 O
	883.1711	1.8	2.0	31.5	299.0	2.162	11.51	C40 H29 N9 O2 P 185Re
	883.1748	-1.9	-2.2	40.0	300.4	3.643	2.62	C49 H26 N6 185Re
	883.1708	2.1	2.4	36.0	299.1	2.323	9.80	C44 H26 N8 O2 185Re
	883.1752	-2.3	-2.6	30.0	300.9	4.108	1.64	C46 H35 O5 P 185Re
	883.1752	-2.3	-2.6	35.5	300.6	3.762	2.32	C45 H29 N7 P 185Re

Figure S18. Left: High resolution mass spectrum ESI^+ of complex 2, i.e. $[Re(CO)_2(L)(PPh_3)(CH_3CN)]^+$ (OTf)⁻, obtained by complete photolysis of complex 1-**TPP** at 300 nm in acetonitrile. Only the cation is visible on the spectrum. Right: chemical structure of 2.

DFT and TD-DFT calculations

Table S3. Frontier molecular orbital compositions (%) and energy levels in CH_3CN for the cation of complex 1-TPP.

Orbital		Energy		MO C	Contributi	on (%)		Main bond type
		(eV)	Re	СО	PPh ₃	P ₁	P ₂	
186	LUMO+5	-1.25	3	7	75	3	12	$\pi^*(PPh_3)$
185	LUMO+4	-1.43	13	14	65	1	6	$\pi^*(\text{PPh}_3) + p(\text{Re}) + \pi^*(\text{CO})$
184	LUMO+3	-1.57	27	35	34	3	0	$\pi^{*}(PPh_{3}) + p(Re) + \pi^{*}(CO)$
183	LUMO+2	-1.79	0	2	3	89	6	$\pi^*(\mathbf{P}_1)$
182	LUMO+1	-2.23	0	0	0	4	95	$\pi^*(\mathbf{P}_2)$
181	LUMO	-2.68	1	4	1	92	2	$\pi^*(\mathbf{P}_1)$
				HOMO	-LUMO	gap (E =	= 4.25 eV	
180	HOMO	-6.93	0	0	0	1	99	$\pi(P_2)$
179	HOMO-1	-7.24	49	18	14	19	1	$d(\text{Re}) + \pi(\text{CO}) + \pi(\text{P}_1)$
178	HOMO-2	-7.29	50	19	24	8	0	$d(Re) + \pi(CO) + \pi(PPh_3)$
177	HOMO-3	-7.44	0	0	0	0	100	$\pi(P_2)$
176	HOMO-4	-7.46	35	15	49	0	0	$\pi(PPh_3) + d(Re) + \pi(CO)$
175	HOMO-5	-7.50	47	20	32	1	0	$d(Re) + \pi(CO) + \pi(PPh_3)$

P1: pyridyltriazole, P2: 2-phenylbenzoxazole

Electronic transition	Contribution	Assignment		E _{calc} /eV	λ _{calc} /nm	f	λ _{exp} /nm
$S_0 \rightarrow S_1$	$H - 1 \rightarrow LUMO$	$d(\text{Re}) + \pi(\text{CO}) + \pi(\text{P}_1) \rightarrow \pi^*(\text{P}_1)$	MLCT/LLCT/ILCT	3.59	345.87	0.0175	346
$S_0 \rightarrow S_2$	$H - 2 \rightarrow LUMO$	$d(Re) + \pi(CO) + \pi(PPh_3) \rightarrow \pi^*(P_1)$	MLCT/LLCT	3.69	335.90	0.2177	
$S_0 \rightarrow S_3$	$HOMO \rightarrow LUMO$	$\pi(\mathbf{P}_2) \rightarrow \pi^*(\mathbf{P}_1)$	ILCT	3.76	329.59	0.0136	
$S_0 \rightarrow S_4$	$H - 5 \rightarrow LUMO$	$d(\text{Re}) + \pi(\text{CO}) + \pi(\text{PPh}_3) \rightarrow \pi^*(\text{P}_1)$	MLCT/LLCT	3.78	327.91	0.0054	319
$S_0 \rightarrow S_5$	$HOMO \rightarrow L + 1$	$\pi(P_2) \rightarrow \pi^*(P_2)$	ILCT	4.05	305.95	1.0033	305
$S_0 \rightarrow S_6$	$H - 4 \rightarrow LUMO$	$\pi(\text{PPh}_3) + d(\text{Re}) + \pi(\text{CO}) \rightarrow \pi^*(\text{P}_1)$	MLCT/LLCT	4.11	301.99	0.0086	301
$S_0 \rightarrow S_7$	$H - 6 \rightarrow LUMO$	$\pi(\text{PPh}_3) \to \pi^*(\text{P}_1)$	LLCT	4.23	293.43	0.0123	
$S_0 \rightarrow S_{11}$	$H - 2 \rightarrow L + 3$	$d(\text{Re}) + \pi(\text{CO}) + \pi(\text{PPh}_3) \rightarrow$	MLCT/LLCT/ILCT	4.43	280.15	0.0193	
		$\pi^{*}(PPh_{3}) + p(Re) + \pi^{*}(CO)$					
$S_0 \rightarrow S_{14}$	$H - 3 \rightarrow L + 1$	$\pi(P_2) \rightarrow \pi^*(P_2)$	ILCT	4.48	276.76	0.0133	275
$S_0 \rightarrow S_{17}$	$H - 1 \rightarrow L + 2$	$d(Re) + \pi(CO) + \pi(P_1) \rightarrow \pi^*(P_1)$	MLCT/LLCT/ILCT	4.58	270.82	0.0158	268
$S_0 \rightarrow S_{21}$	$H-2 \rightarrow L+4$	$d(\text{Re}) + \pi(\text{CO}) + \pi(\text{PPh}_3) \rightarrow \pi^*(\text{PPh}_3)$	MLCT/LLCT/ILCT	4.73	262.16	0.0247	263
		$+ p(Re) + \pi^*(CO)$					
$S_0 \rightarrow S_{23}$	$H - 10 \rightarrow LUMO$	$\pi(PPh_3) \rightarrow \pi^*(P_1)$	LLCT	4.76	260.41	0.0254	
$S_0 \rightarrow S_{24}$	$H - 11 \rightarrow LUMO$	$\pi(\mathbf{P}_1) \rightarrow \pi^*(\mathbf{P}_1)$	ILCT	4.79	258.61	0.0546	
$S_0 \rightarrow S_{25}$	$H - 12 \rightarrow LUMO$	$\pi(P_2) \rightarrow \pi^*(P_1)$	ILCT	4.82	257.39	0.0591	
$S_0 \rightarrow S_{29}$	$H - 1 \rightarrow L + 4$	$d(Re) + \pi(CO) + \pi(P_1) \rightarrow \pi^*(PPh_3) +$	MLCT/LLCT/ILCT	4.90	252.90	0.0818	
		$p(Re) + \pi^*(CO)$					
$S_0 \to S_{30}$	$H - 6 \rightarrow L + 1$	$\pi(\text{PPh}_3) \to \pi^*(\text{P}_2)$	LLCT	4.94	251.19	0.0513	

Table S4. Main electronic transitions for the cation of complex **1-TPP** in CH₃CN, calculated with TD-DFT method at the PBE1PBE/LANL2DZ level, and comparison with experimental values.

Table S5. Four calculated singlet states for the cation of complex 1-TPP in S_1 optimized geometry with TD-DFT method at the PBE1PBE/LANL2DZ level.

State	Contribution	Assignment		E _{calc} /eV	λ _{calc} /nm	f
1	$HOMO \rightarrow LUMO$	$d(Re) + \pi(CO) + \pi(P_{1+2}) \rightarrow \pi^*(P_1)$	MLCT/LLCT/ILCT	2.69	460.78	0.0219
2	$H - 3 \rightarrow LUMO$	$d(\text{Re}) + \pi(\text{CO}) \rightarrow \pi^*(\text{P}_1)$	MLCT/LLCT	3.07	403.36	0.0150
3	$H - 2 \rightarrow LUMO$	$d(Re) + \pi(CO) + \pi(P_1) \rightarrow \pi^*(P_1)$	MLCT/LLCT/ILCT	3.14	395.50	0.4716
4	$H - 1 \rightarrow LUMO$	$\pi(\mathbf{P}_2) \to \pi^*(\mathbf{P}_1)$	ILCT	3.31	374.71	0.1109

Table S6. Calculated phosphorescence emission energies of the cation of complex 1-**TPP**, in comparison to the experimental values recorded in CH₃CN.

	DFT			TD-DH	T	
$\frac{\Delta E_{\rm T1}-S_0}{(\rm eV/nm)}$	Character	Major contribution (C _i coefficient)	E (eV)	λ _{cal} (nm)	Character	(eV/nm)
2.06/601.9	³ IL	$L \rightarrow H (0.563)$	1.74	713.7	³ IL $\pi(P_2) \rightarrow \pi^*(P_{1+2})$	544

 ΔE_{T1} -S₀ is the energy difference between the ground singlet and triplet states.

	Occupied orbitals	Unoccupied orbitals			
HOMO (-6.93 eV)		LUMO (–2.68 eV)	A Contraction		
HOMO–1 (–7.24 eV)		LUMO+1 (-2.23 eV)			
HOMO–2 (–7.29 eV)		LUMO+2 (-1.79 eV)			
HOMO–3 (–7.44 eV)		LUMO+3 (-1.57 eV)	A A A A A A A A A A A A A A A A A A A		
HOMO–4 (–7.46 eV)	A Company	LUMO+4 (-1.43 eV)			
HOMO-5 (-7.50 eV)	A Company	LUMO+5 (-1.25 eV)			

Figure S19. Isodensity plots of the frontier molecular orbitals of the cation of complex 1-TPP in CH_3CN .

Figure S20. Experimental (black) and simulated (red) UV-Vis absorption spectra of complexes 1-TPP and 2 in CH₃CN. Simulation was made for 2(iso1).

Figure S21. Spin density distribution for the lowest triplet state T_1 of the cation of 1-TPP and cation 2(iso1) in CH₃CN, calculated based on the optimized triplet state with DFT method at the PBE1PBE/LANL2DZ level.

Figure S22. Optimized geometries of isomers 1-5 of [Re(CO)₂(L)(PPh₃)(CH₃CN)]⁺ (the cation of complex **2**).

Pond longths	Optimized			Dond angles	Optimized			
bond lengths	S ₀	S ₁	T ₁	bonu angles	S ₀	S ₁	T ₁	
Re(1)-C(39)	1.894	1.929	1.932	C(39)-Re(1)-C(40)	89.65	83.53	84.25	
Re(1)-C(40)	1.894	1.944	1.960	C(39)-Re(1)-P(1)	90.86	90.95	91.52	
Re(1)-P(1)	2.423	2.483	2.486	C(40)-Re(1)-P(1)	91.93	95.92	94.87	
Re(1)-N(2)	2.169	2.104	2.073	C(39)-Re(1)-N(2)	100.46	101.52	100.31	
Re(1)-N(1)	2.218	2.151	2.144	C(40)-Re(1)-N(2)	169.34	173.47	173.82	
Re(1)-N(3)	2.090	2.081	2.097	P(1)-Re(1)-N(2)	91.33	88.19	89.20	
				C(39)-Re(1)-N(1)	172.72	175.73	175.03	
O(2)-C(39)	1.167	1.156	1.156	C(40)-Re(1)-N(1)	96.19	98.76	98.96	
O(3)-C(40)	1.167	1.154	1.152	P(1)-Re(1)-N(1)	93.29	92.40	91.98	
				N(2)-Re(1)-N(1)	73.48	75.94	76.22	
				C(39)-Re(1)-N(3)	92.35	92.30	92.71	
				C(40)-Re(1)-N(3)	92.17	91.25	89.64	
				P(1)-Re(1)-N(3)	174.81	172.42	174.10	
				N(2)-Re(1)-N(3)	84.08	84.46	86.00	
				N(1)-Re(1)-N(3)	83.11	84.07	83.55	
				O(2)-C(39)-Re(1)	178.34	177.69	177.91	
				O(3)-C(40)-Re(1)	177.34	177.41	177.05	

Table S7. Theoretical selected bond lengths [Å] and angles [°] for 2(iso1) in CH₃CN.

Table S8. Frontier molecular orbital compositions (%) and energy levels in CH₃CN for cation 2(iso1).

Orbital		Energy	MO Contribution (%)					Main band ton	
		(eV)	Re	CO	MeC N	PPh ₃	P ₁	P ₂	— Main bond type
190	LUMO+5	-1.09	2	0	1	50	5	43	$\pi^{*}(PPh_{3}) + \pi^{*}(P_{2})$
189	LUMO+4	-1.14	4	0	1	54	4	39	$\pi^{*}(PPh_{3}) + \pi^{*}(P_{2})$
188	LUMO+3	-1.22	4	1	2	84	1	8	$\pi^*(\text{PPh}_3)$
187	LUMO+2	-1.69	0	2	0	4	85	10	$\pi^*(\mathbf{P}_1)$
186	LUMO+1	-2.21	0	0	0	0	7	93	$\pi^*(P_2)$
185	LUMO	-2.56	3	3	0	0	91	4	$\pi^*(\mathbf{P}_1)$
				HOMO	D-LUMC) gap (E =	= 3.86 eV)		
184	HOMO	-6.42	66	16	6	5	6	0	$d(Re) + \pi(CO)$
183	HOMO-1	-6.56	63	16	6	6	9	1	$d(Re) + \pi(CO)$
182	HOMO-2	-6.92	0	0	0	0	1	98	$\pi(P_2)$
181	HOMO-3	-7.05	69	30	1	1	0	0	$d(Re) + \pi(CO)$
180	HOMO-4	-7.34	3	1	1	95	1	0	$\pi(PPh_3)$
179	HOMO-5	-7.44	0	0	0	0	0	100	$\pi(P_2)$

P₁: pyridyltriazole, P₂: 2-phenylbenzoxazole

Electronic transition	Contribution	Assignment		E _{calc} /eV	λ _{calc} /nm	f	λ _{exp} /nm
$S_0 \rightarrow S_1$	$HOMO \rightarrow LUMO$	$d(\text{Re}) + \pi(\text{CO}) \rightarrow \pi^*(\text{P}_1)$	MLCT/LLCT	2.87	432.34	0.0008	
$S_0 \to S_2$	$H - 1 \rightarrow LUMO$	$d(Re) + \pi(CO) \rightarrow \pi^*(P_1)$	MLCT/LLCT	3.14	394.91	0.1501	401
$S_0 \rightarrow S_3$	$H - 3 \rightarrow LUMO$	$d(\text{Re}) + \pi(\text{CO}) \rightarrow \pi^*(\text{P}_1)$	MLCT/LLCT	3.47	356.91	0.0030	
$S_0 \to S_4$	$HOMO \rightarrow L + 1$	$d(\text{Re}) + \pi(\text{CO}) \rightarrow \pi^*(\text{P}_2)$	MLCT/LLCT	3.73	332.59	0.0220	
$S_0 \rightarrow S_5$	$H - 2 \rightarrow LUMO$	$\pi(\mathbf{P}_2) \to \pi^*(\mathbf{P}_1)$	ILCT	3.86	321.50	0.1268	318
$S_0 \rightarrow S_6$	$H - 1 \rightarrow L + 1$	$d(\text{Re}) + \pi(\text{CO}) \rightarrow \pi^*(\text{P}_2)$	MLCT/LLCT	3.87	320.76	0.0502	
$S_0 \rightarrow S_7$	$HOMO \rightarrow L + 2$	$d(Re) + \pi(CO) \rightarrow \pi^*(P_1)$	MLCT/LLCT	3.87	320.14	0.0101	
$S_0 \rightarrow S_8$	$H - 1 \rightarrow L + 2$	$d(Re) + \pi(CO) \rightarrow \pi^*(P_1)$	MLCT/LLCT	4.02	308.40	0.0162	
$S_0 \rightarrow S_9$	$H - 2 \rightarrow L + 1$	$\pi(P_2) \rightarrow \pi^*(P_2)$	ILCT	4.08	304.15	0.8953	305
$S_0 \rightarrow S_{10}$	$H - 4 \rightarrow LUMO$	$\pi(PPh_3) \rightarrow \pi^*(P_1)$	LLCT	4.10	302.22	0.0176	
$S_0 \rightarrow S_{11}$	$H - 4 \rightarrow LUMO$	$\pi(\text{PPh}_3) \rightarrow \pi^*(\text{P}_1)$	LLCT	4.11	301.40	0.0211	
$S_0 \rightarrow S_{12}$	$H - 1 \rightarrow L + 6$	$d(\text{Re}) + \pi(\text{CO}) \rightarrow \pi^*(\text{PPh}_3)$	MLCT/LLCT	4.21	294.54	0.0158	295
$S_0 \rightarrow S_{19}$	$H - 3 \rightarrow L + 2$	$d(\text{Re}) + \pi(\text{CO}) \rightarrow \pi^*(\text{P}_1)$	MLCT/LLCT	4.50	275.62	0.0169	
$S_0 \rightarrow S_{21}$	$H - 1 \rightarrow L + 3$	$d(\text{Re}) + \pi(\text{CO}) \rightarrow \pi^*(\text{PPh}_3)$	MLCT/LLCT	4.51	275.00	0.0820	276
$S_0 \rightarrow S_{25}$	$H - 11 \rightarrow LUMO$	$\pi(\mathbf{P}_1) + \pi(\mathbf{PPh}_3) \to \pi^*(\mathbf{P}_1)$	ILCT/LLCT	4.65	266.53	0.1802	
$S_0 \rightarrow S_{26}$	$H - 2 \rightarrow L + 2$	$\pi(P_2) \rightarrow \pi^*(P_1)$	ILCT	4.67	265.36	0.0242	
$S_0 \rightarrow S_{27}$	$HOMO \rightarrow L + 6$	$d(Re) + \pi(CO) \rightarrow \pi^*(PPh_3)$	MLCT/LLCT	4.68	265.19	0.0298	
	$HOMO \rightarrow L + 7$	$d(Re) + \pi(CO) \rightarrow p(Re) + \pi^*(CO) + \pi^*(PPh_3)$	MLCT/LLCT/ILCT				
$S_0 \rightarrow S_{35}$	$H - 1 \rightarrow L + 5$	$d(Re) + \pi(CO) \rightarrow \pi^*(PPh_3) + \pi^*(P_2)$	MLCT/LLCT	4.88	254.14	0.0147	
	$\mathrm{H}-1 \rightarrow \mathrm{L}+4$	$d(Re) + \pi(CO) \rightarrow \pi^*(PPh_3) + \pi^*(P_2)$	MLCT/LLCT				

Table S9. Main electronic transitions for cation **2(iso1)** in CH₃CN, calculated with TDDFT method at the PBE1PBE/LANL2DZ level, and comparison with experimental values.

MLCT: metal-to-ligand charge transfer; LMCT: ligand-to-metal charge transfer; LLCT: ligand-to-ligand charge transfer; ILCT: intraligand charge transfer.

Table S10. Four calculated singlet states	s for $2(iso1)$ in S_1	optimized geometry	with TDDFT	method at
the PBE1PBE/LANL2DZ level.				

State	Contribution	Assignme	nt	E _{calc} /eV	λ _{calc} /nm	f
1	$HOMO \rightarrow LUMO$	$d(\text{Re}) + \pi(\text{CO}) \rightarrow \pi^*(\text{P}_1)$	MLCT/LLCT	2.07	599.26	0.0019
2	$H - 1 \rightarrow LUMO$	$d(Re) + \pi(CO) \rightarrow \pi^*(P_1)$	MLCT/LLCT	2.65	468.29	0.2884
3	$H - 2 \rightarrow LUMO$	$d(\text{Re}) + \pi(\text{CO}) \rightarrow \pi^*(\text{P}_1)$	MLCT/LLCT	2.81	441.73	0.0068
4	$HOMO \rightarrow L + 1$	$d(Re) + \pi(CO) \rightarrow \pi^*(P_2)$	MLCT/LLCT	3.30	376.21	0.1790

Table S11. Calculated phosphorescence emission energies of 2(iso1), in comparison to the experimental values recorded in acetonitrile.

	DFT	TD-DFT				
$\frac{\Delta E_{\rm T1}-S_0}{({\rm eV/nm})}$	Character	Major contribution (C _i coefficient)	E (eV)	λ _{cal} (nm)	Character	(eV/nm)
1.74/712.6	³ MLCT/ ³ LLCT/ ³ IL	$L \rightarrow H (0.679)$	1.75	707.6	$^{3}MLCT/^{3}LLCT$ d(Re)+ π (CO) $\rightarrow \pi^{*}(P_{1})$	686

 ΔE_{T1} -S₀ is the energy difference between the ground singlet and triplet states.

Figure S23. Isodensity plots of the frontier molecular orbitals of cation 2(iso1) in CH₃CN.

Figure S24. Comparative energy levels of selected frontier molecular orbitals of the cation of complex **1-TPP**, cation **2(iso1)** in CH₃CN, and complex **1-Cl** in CH₂Cl₂ (Wang et al, *Dalton Trans.*, 2019, **48**, 15906–15916) according to TD-DFT calculations at the PBE1PBE/LANL2DZ level of theory.