Supplementary Information

Interface Controlled Solid-State Lithium Storage in Free-Standing Bismuth Nanosheets

Yayu Peng,^a Liang Fang,^a Yongtao Li,^{a,b} Hai-Wen Li,^{*b} Torben R. Jensen^{*c} and Qingan Zhang^{*a}

^a.School of Materials Science and Engineering & Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Maanshan 243002, China. E-mail: qazhang_ahut@163.com

^bInternational Research Center for Hydrogen Energy and WPI International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan. email: li.haiwen.305@m.kyushu-u.ac.jp

^cCenter for Materials Crystallography, Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark.

Table S1 Cyclability and rate capability comparison of bismuth anode materials in batteries with solid-

Anode material	Rate Capability (mAh g ⁻¹)	Cycling Capacity (mAh g ⁻¹)	Batteries	Ref.
Bismuth nanorod	~350.1 at 50 mA g ⁻¹ ~292.5 at 100 mA g ⁻¹ ~211.8 at 500 mA g ⁻¹ ~142.6 at 1000 mA g ⁻¹ ~102.3 at 2000 mA g ⁻¹	~302 after 150 cycles at 50 mA g ⁻¹	Sodium-ion batteries (Liquid)	[S1]
Bismuth bulk	~394.8 at 50 mA g ⁻¹ ~385.1 at 100 mA g ⁻¹ ~382.9 at 400 mA g ⁻¹ ~371.9 at 800 mA g ⁻¹ ~369.8 at 1200 mA g ⁻¹ ~362.9 at 1600 mA g ⁻¹ ~356.0 at 2000 mA g ⁻¹	~389 after 2000 cycles at 400 mA g ⁻¹	Sodium-ion batteries (Liquid)	[S2]
Bismuth nanoparticles@C	~260 at 100 mA g ⁻¹ ~220.1 at 200 mA g ⁻¹ ~178.8 at 500 mA g ⁻¹ ~130.4 at 1000 mA g ⁻¹ ~83.4 at 2000 mA g ⁻¹ ~160 at 100 mA g ⁻¹	~123 after 100 cycles at 100 mA g ⁻¹	Sodium-ion batteries (Liquid)	[S3]
Bismuth nanoparticles@C	~299 at 100 mA g ⁻¹ ~252 at 200 mA g ⁻¹ ~192 at 500 mA g ⁻¹ ~141 at 1000 mA g ⁻¹ ~90 at 2000 mA g ⁻¹ ~282 at 100 mA g ⁻¹	~280 after 100 cycles at 100 mA g ⁻¹	Lithium-ion batteries (Liquid)	[S3]
Bimuth@Graphite	~160 at 160 mA g ⁻¹ ~158 at 320 mA g ⁻¹ ~155 at 1600 mA g ⁻¹ ~156 at 1600 mA g ⁻¹	~142 after 10000 cycles at 3200 mA g ⁻¹	Sodium-ion batteries (Liquid)	[S4]
Bismuth nanoparticles	~350 at 17.5 mA g ⁻¹ ~342 at 70 mA g ⁻¹ ~329 at 175 mA g ⁻¹ ~319 at 350 mA g ⁻¹ ~313 at 700 mA g ⁻¹ ~216 at 1750 mA g ⁻¹	~303 after 200 cycles at 700 mA g ⁻¹	Magnesium- ion batteries (Liquid)	[S5]
BiPO ₄ @Graphite	/	~304 after 100 cycles at 50 mA g ⁻¹	Lithium-ion batteries (Solid)	[S6]
Bismuth nanosheets	~411 at 250 mA g ⁻¹ ~364 at 500 mA g ⁻¹ ~321 at 1000 mA g ⁻¹ ~278 at 2000 mA g ⁻¹ ~239 at 4000 mA g ⁻¹ ~357 at 250 mA g ⁻¹	~287 after 100 cycles at 250 mA g ⁻¹	Lithium- ion batteries (Solid)	This work

state or liquid electrolytes and other reported representative works ^{S1-S6}.

 Table S2 Temperature-dependent lithium ionic conductivity of selected liquid or solid state electrolytes

 including hydrides and oxides compared with LiPF₆ liquid electrolyte.

Sample	30 ℃ (S cm ⁻¹)	90 °C (S cm ⁻¹)	120 ℃ (S cm ⁻¹)	Ref.
LiPF ₆ liquid electrolyte	4.5×10 ⁻³	/	/	[S7]
Li(CB ₉ H ₁₀) _{0.7} (CB ₁₁ H ₁₂) _{0.3}	6.7×10^{-3}	/	8.5×10^{-2}	[S8]
$Li_4(BH_4)(NH_2)_3$	3.1×10^{-4}	7.8×10^{-4}	1.1×10^{-3}	[S9]
Li ₇ La ₃ Zr ₂ O ₁₂	1.6×10^{-6}	7.1×10^{-4}	/	[S10]
Li ₃ PO ₄	4.1×10^{-8}	/	/	[S11]
LiBH ₄	1.5×10 ⁻⁸	1.4×10 ⁻⁶	1.5×10 ⁻³	[S12]
LiI	3.2×10^{-8}	5.2×10^{-7}	1.4×10^{-6}	[S13]
LiNH ₂	/	2.5×10^{-7}	2.5×10^{-6}	[S13]
LiAlH ₄	8.7×10^{-9}	3.6×10 ⁻⁶	1.5×10^{-5}	[S14]
LiBH ₄ .0.5NH ₃	1.0×10^{-4}	4.0×10 ⁻²	/	[S15]

Figure S1 XRD patterns for the Li-Bi system at different stages of the synthesis.

Figure S2 SEM images of the a) Bulk-Bi micro-spheres and b) Bi-NSs nanosheets.

Figure S3 Energy dispersive spectroscopy (EDS) of Bi-NSs electrode material after 100th lithiation /delithiation cycles at 250 mA g^{-1} .

Figure S4 C1s and O1s XPS spectra for the Bi-NSs samples upon lithiation/delithiation corresponding to Figure 2c.

Figure S5 HRTEM image for the cyclic Bi-NSs anode.

Figure S6 Cycling performances of different Bi anodes in solid-state LIBs with half-cell structure.

Figure S7 Rate capabilities of Bulk-Bi half-cells at various current densities from 250 to 4000 mA g⁻¹.

Figure S8 a) HRTEM images for discharge state of Bi-NSs electrode; b) FFT digital diffractogram image of the $LiBH_4$ inside the pink box in a).

Supplementary References

- 1. S. Liu, J. Feng, X. Bian, J. Liu and H. Xu, J. Mater. Chem. A, 2016, 4, 10098.
- 2. C. Wang, L. Wang, F. Li, F. Cheng and J. Chen, Adv. Mater., 2017, 29, 1702212.
- 3. F. Yang, F. Yu, Z. Zhang, K. Zhang, Y. Lai and J. Li, Chem. Eur. J., 2016, 22, 2333.
- J. Chen, X. Fan, X. Ji, T. Gao, S. Hou, X. Zhou, L. Wang, F. Wang, C. Yang, L. Chen and C. Wang, Energy Enviro. Sci., 2018, 11, 1218.
- Y. Shao, M. Gu, X. Li, Z. Nie, P. Zuo, G. Li, T. Liu, J. Xiao, Y. Chen, C. Wang, J. Zhang and J. Zhang, *Nano Lett.*, 213, 14, 255.
- 6. C.F. Sun, J. Hu, P. Wang, X.Y. Cheng, S.B. Lee and Y. Wang, Nano Lett., 2016, 16, 5875.
- Y. Yan, R.S. Kühnel, A. Remhof, L. Duchêne, E.C. Reyes, D. Rentsch, Z. Łodziana and C. Battaglia, *Adv. Energy Mater.*, 2017, 7, 1700294.
- S. Kim, H. Oguchi, N. Toyama, T. Sato, S. Takagi, T. Otomo, D. Arunkumar, N. Kuwata, S. Kawamura and S.I. Orimo, *Nat. Commun.*, 2019, 10, 1081.
- M. Matsuo, A. Remhof, P. Martelli, R. Caputo, M. Ernst, Y. Miura, T. Sato, H. Oguchi, H. Maekawa, H. Takamura and A. Borgschulte, *J. Am. Chem. Soc.*, 2009, 131, 16389.
- H. Xie, J.A. Alonso, Y. Li, M.T. Fernández-Díaz and J.B. Goodenough, *Chem. Mater.*, 2011, 23, 3587.
- 11. N.I. Ayu, E. Kartini, L.D. Prayogi and M. Faisal, *Ionics*, 2016, 22, 1051.
- 12. A. Unemoto, G. Nogami, M. Tazawa, M. Taniguchi and S.I. Orimo, Mater. Trans., 2017, 58, 1063.
- M. Matsuo, T. Sato, Y. Miura, H. Oguchi, Y. Zhou, H. Maekawa, H. Takamura and S.I. Orimo, *Chem. Mater.*, 2010, 22, 2702.

- 14. H. Oguchi, M. Matsuo, T. Sato, H. Takamura, H. Maekawa, H. Kuwano and S. Orimo, *J. Appl. Phys.*, 2010, **107**, 096104.
- Y. Yan, J. Grinderslev, Y. Lee, M. Jørgensen, Y. Cho, R. Černý and T.R. Jensen, *Chem. Commun.*, 2020, 56, 3971.