Supplementary Information

DFT vs. TDDFT vs. TDA to simulate phosphorescence spectra of Pt- and Ir-based complexes

Romain Schira^a and Camille Latouche^{*a}

^a Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France. E-mail: camille.latouche@univ-nantes.fr

Contents

1	Complex 10	2
2	Complex 13	4
3	Complex I1	6
4	Complex I3	8
5	Complex 1a	10
6	Complex 2a	12
7	Complex 2c	14
8	Complex 3a	16
9	Complex 3b	18
10	Complex 4a	20
11	Complex 4b	22
12	Complex 5c	24
13	Basis set impact	26
14	Absorption spectra of complex 1a	26
15	Experimental and simulated phosphorescence	26

Fig-SI 1: Relaxed ground state structure (left) of **10**. Experimental[1] and computed relevant geometrical parameters (middle) around the metal centre in Å. Ground and excited (Unr. DFT) states superimposed geometries (right).

Fig-SI 2: Energetic diagram (left) and graphical representation of the frontier orbitals (right) of complex **10**.

Exp. (eV)	TDDFT (eV)	Excitation assignments
3 20	2.54	$HOMO-2 \rightarrow LUMO$
0.29	0.04	HOMO-3 \rightarrow LUMO
		$HOMO \rightarrow LUMO+1$
3.73	3.86	$\mathrm{HOMO-3} \rightarrow \mathrm{LUMO}$
		$\rm HOMO-1 \rightarrow \rm LUMO+1$
4.05	3.03	$HOMO-4 \rightarrow LUMO$
4.05	0.90	$\rm HOMO \rightarrow \rm LUMO{+}2$
		$HOMO-3 \rightarrow LUMO+1$
4.54	4.47	$\mathrm{HOMO-2} \rightarrow \mathrm{LUMO+1}$
		$HOMO-1 \rightarrow LUMO+3$

Table-SI 1: Experimental[1] and computed absorption energies and excitation assignments obtained on complex 10.

Fig-SI 3: Experimental[1] and computed (Unr. DFT, TDDFT and TDA) colour rendering of **10** over a CIE 1931 chromaticity horseshoe diagram.

Fig-SI 4: Relaxed ground state structure (left) of **13**. Experimental[1] and computed relevant geometrical parameters (middle) around the metal centre in Å. Ground and excited (Unr. DFT) states superimposed geometries (right).

Fig-SI 5: Energetic diagram (left) and graphical representation of the frontier orbitals (right) of complex 13.

Exp. (eV)	TDDFT (eV)	Excitation assignments
2 02	2.07	$HOMO \rightarrow LUMO$
5.95	3.07	$\mathrm{HOMO-2} \to \mathrm{LUMO}$
		$HOMO-4 \rightarrow LUMO$
2 40	3.56	HOMO-3 \rightarrow LUMO
0.49		$HOMO-2 \rightarrow LUMO$
		$\rm HOMO \rightarrow \rm LUMO{+1}$
		$HOMO-1 \rightarrow LUMO+3$
4 99	4 49	$HOMO-2 \rightarrow LUMO+3$
4.25	4.42	$HOMO-4 \rightarrow LUMO+1$
		$HOMO-3 \rightarrow LUMO+2$

Table-SI 2: Experimental[1] and computed absorption energies and excitation assignments obtained on complex 13.

Fig-SI 6: Experimental[1] and computed (Unr. DFT, TDDFT and TDA) colour rendering of **13** over a CIE 1931 chromaticity horseshoe diagram.

	Bond	Exp.	GS	Unr. DFT	TDDFT	TDA	
• 🖌	$\operatorname{Ir-N}(1)$	2.028	2.036	2.040	2.037	2.040	<u>v</u>
3	Ir-N(2)	1.998	2.036	2.032	2.039	2.031	30-
2	Ir-N(3)	2.106	2.152	2.147	2.168	2.150	
5 4 4	$\operatorname{Ir-C}(4)$	2.020	2.005	1.998	1.978	1.993	A A WAY
Fre se se	$\operatorname{Ir-C}(5)$	2.009	2.018	2.004	2.015	2.002	•
	Ir-O	2.142	2.172	2.074	2.174	2.081	

Fig-SI 7: Relaxed ground state structure (left) of **I1**. Experimental[2] and computed relevant geometrical parameters (middle) around the metal centre in Å. Ground and excited (Unr. DFT) states superimposed geometries (right).

Fig-SI 8: Energetic diagram (left) and graphical representation of the frontier orbitals (right) of complex I1.

Exp. (eV)	TDDFT (eV)	Excitation assignments
3.58	3.39	$HOMO-1 \rightarrow LUMO$
		$HOMO-4 \rightarrow LUMO+1$
4.47	4.29	$HOMO-3 \rightarrow LUMO+4$
		$\rm HOMO-4 \rightarrow \rm LUMO+2$

Table-SI 3: Experimental[2] and computed absorption energies and excitation assignments obtained on complex I1.

Fig-SI 9: Experimental[2] and computed (Unr. DFT, TDDFT and TDA) colour rendering of **I1** over a CIE 1931 chromaticity horseshoe diagram.

	$\begin{array}{c} \text{Bond} \\ \text{Ir-N(1)} \\ \text{Ir-N(2)} \\ \text{Ir-N(3)} \\ \text{Ir-C(4)} \\ \text{Ir-C(5)} \end{array}$	Exp. 2.039 2.040 2.135 2.013 2.008	GS 2.033 2.043 2.157 2.014 2.012	Unr. DFT 2.023 2.072 2.202 1.971 2.050	TDDFT 2.038 2.042 2.171 1.990 2.014	TDA 2.027 2.066 2.201 1.967 2.047	
° ~	Ir-C(5) Ir-O	2.008 2.159	2.012 2.165	2.030 2.021	$2.014 \\ 2.165$	2.047 2.027	

Fig-SI 10: Relaxed ground state structure (left) of **I3**. Experimental[2] and computed relevant geometrical parameters (middle) around the metal centre in Å. Ground and excited (Unr. DFT) states superimposed geometries (right).

Fig-SI 11: Energetic diagram (left) and graphical representation of the frontier orbitals (right) of complex I3.

Exp. (eV)	TDDFT (eV)	Excitation assignments
3.56	3.46	$HOMO-2 \rightarrow LUMO$
		$HOMO-4 \rightarrow LUMO+4$
4.58	4.58	$HOMO-3 \rightarrow LUMO+7$
		$\text{HOMO-5} \rightarrow \text{LUMO+1}$

Table-SI 4: Experimental^[2] and computed absorption energies and excitation assignments obtained on complex **I3**.

Fig-SI 12: Experimental[2] and computed (Unr. DFT, TDDFT and TDA) colour rendering of **I3** over a CIE 1931 chromaticity horseshoe diagram.

	Bond Ir-P(1) Ir-P(2) Ir-N(3) Ir-N(4) Ir-C	Exp. 2.307 2.316 2.056 2.090 2.055	GS 2.358 2.356 2.068 2.178 2.039	$\begin{array}{c} \text{Unr. DFT} \\ 2.375 \\ 2.368 \\ 2.058 \\ 2.176 \\ 2.011 \end{array}$	TDDFT 2.367 2.362 2.060 2.182 2.028	TDA 2.376 2.366 2.059 2.177 2.014	井谷	•••
2. 26.22 8. A.	Ir-C	2.055	2.039	2.011	2.028	2.014	· · ·	
	п-п	1.012	1.019	1.022	1.022	1.022		

Fig-SI 13: Relaxed ground state structure (left) of **1a**. Experimental[3] and computed relevant geometrical parameters (middle) around the metal centre in Å. Ground and excited (Unr. DFT) states superimposed geometries (right).

Fig-SI 14: Energetic diagram (left) and graphical representation of the frontier orbitals (right) of complex **1a**.

Exp. (eV)	TDDFT (eV)	Excitation assignments
3 15	3 39	$\mathrm{HOMO} \to \mathrm{LUMO}$
0.10	0.02	$HOMO \rightarrow LUMO+1$
3.63	3.67	$\rm HOMO \rightarrow \rm LUMO{+1}$
		$HOMO-1 \rightarrow LUMO+2$
4.46	4.20	$HOMO \rightarrow LUMO+5$
		$\rm HOMO\text{-}2 \rightarrow \rm LUMO\text{+}2$

Table-SI 5: Experimental[3] and computed absorption energies and excitation assignments obtained on complex **1a**.

Fig-SI 15: Experimental[3] and computed (Unr. DFT, TDDFT and TDA) colour rendering of **1a** over a CIE 1931 chromaticity horseshoe diagram.

44 3	Bond Ir-P(1) Ir-P(2) Ir-N(3) Ir-N(4) Ir-C	Exp. 2.307 2.316 2.056 2.090 2.055	GS 2.307 2.361 2.066 2.166 2.036	$\begin{array}{c} \text{Unr. DFT} \\ 2.386 \\ 2.374 \\ 2.058 \\ 2.156 \\ 2.003 \end{array}$	TDDFT 2.381 2.374 2.048 2.141 2.015	TDA 2.383 2.374 2.058 2.159 2.003	
	Ir-H	1.512	1.618	1.618	1.623	1.619	

Fig-SI 16: Relaxed ground state structure (left) of **2a**. Experimental[3] and computed relevant geometrical parameters (middle) around the metal centre in Å. Ground and excited (Unr. DFT) states superimposed geometries (right).

Fig-SI 17: Energetic diagram (left) and graphical representation of the frontier orbitals (right) of complex **2a**.

Exp. (eV)	TDDFT (eV)	Excitation assignments
3.05	3.95	$HOMO \rightarrow LUMO$
5.05	0.20	$HOMO \rightarrow LUMO+1$
3 66	3 76	$\rm HOMO \rightarrow \rm LUMO{+1}$
5.00	5.70	$HOMO-1 \rightarrow LUMO$
4.54	4.26	$HOMO-2 \rightarrow LUMO+2$
4.04	4.20	$\rm HOMO-1 \rightarrow \rm LUMO+2$

Table-SI 6: Experimental[3] and computed absorption energies and excitation assignments obtained on complex **2a**.

Fig-SI 18: Experimental[3] and computed (Unr. DFT, TDDFT and TDA) colour rendering of **2a** over a CIE 1931 chromaticity horseshoe diagram.

1 44 3	Bond Ir-P(1) Ir-P(2) Ir-N(3) Ir-N(4) Ir-C	Exp. 2.309 2.318 2.066 2.123 2.049	GS 2.361 2.360 2.063 2.149 2.036	$\begin{array}{c} \text{Unr. DFT} \\ 2.384 \\ 2.381 \\ 2.058 \\ 2.143 \\ 2.000 \end{array}$	$\begin{array}{c} \text{TDDFT} \\ 2.374 \\ 2.373 \\ 2.058 \\ 2.149 \\ 2.015 \end{array}$	TDA 2.382 2.382 2.058 2.143 2.003	教育
ଟ ଅନ୍ତ୍ର କ୍ଷ	Ir-C	2.049	2.036	2.000	2.015	2.003	• • • • • • • • •
-0	Ir-H	1.473	1.619	1.620	1.620	1.620	

Fig-SI 19: Relaxed ground state structure (left) of **2c**. Experimental[3] and computed relevant geometrical parameters (middle) around the metal centre in Å. Ground and excited (Unr. DFT) states superimposed geometries (right).

Fig-SI 20: Energetic diagram (left) and graphical representation of the frontier orbitals (right) of complex 2c.

Exp. (eV)	TDDFT (eV)	Excitation assignments
2 10	2.04	$HOMO \rightarrow LUMO$
3.10	0.24	$\rm HOMO \rightarrow \rm LUMO{+1}$
3.64	2 75	$HOMO-1 \rightarrow LUMO$
3.04	5.75	$\mathrm{HOMO} \rightarrow \mathrm{LUMO}{+1}$
4.61	4.40	$HOMO-1 \rightarrow LUMO+2$

Table-SI 7: Experimental[3] and computed absorption energies and excitation assignments obtained on complex 2c. [†] Approximately attributed from experimental spectra.

Fig-SI 21: Experimental [3] and computed (Unr. DFT, TDDFT and TDA) colour rendering of $\bf 2c$ over a CIE 1931 chromaticity horseshoe diagram.

	Bond	Exp.	GS	Unr. DFT	TDDFT	TDA	
25 C	$\operatorname{Ir-P}(1)$	2.240	2.296	2.309	2.305	2.309	
	Ir-P(2)	2.347	2.401	2.434	2.418	2.434	
	Ir-N(3)	2.048	2.043	2.028	2.030	2.028	
2	Ir-N(4)	2.117	2.147	2.138	2.145	2.139	
12 C	Ir-C	2.038	2.045	2.019	2.033	2.019	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
80	Ir-H	1.595	1.623	1.620	1.621	1.619	5

Fig-SI 22: Relaxed ground state structure (left) of **3a**. Experimental[3] and computed relevant geometrical parameters (middle) around the metal centre in Å. Ground and excited (Unr. DFT) states superimposed geometries (right).

Fig-SI 23: Energetic diagram (left) and graphical representation of the frontier orbitals (right) of complex **3a**.

Exp. (eV)	TDDFT (eV)	Excitation assignments
3.12	3.17	$HOMO \rightarrow LUMO$
2.80	3.00	$HOMO-1 \rightarrow LUMO$
3.80	3.90	$HOMO \rightarrow LUMO+3$
4.61	4 56	$HOMO-4 \rightarrow LUMO+1$
4.01	4.00	$HOMO-4 \rightarrow LUMO+2$

Table-SI 8: Experimental[3] and computed absorption energies and excitation assignments obtained on complex **3a**.

Fig-SI 24: Experimental[3] and computed (Unr. DFT, TDDFT and TDA) colour rendering of **3a** over a CIE 1931 chromaticity horseshoe diagram.

-	Bond	Exp.	GS	Unr. DFT	TDDFT	TDA	1
	$\operatorname{Ir-P}(1)$	2.240	2.295	2.308	2.304	2.309	
	Ir-P(2)	2.347	2.406	2.452	2.426	2.444	
	Ir-N(3)	2.048	2.040	2.023	2.027	2.025	1. Alexandre
2	$\operatorname{Ir-N}(4)$	2.117	2.144	2.129	2.143	2.135	
	Ir-C	2.038	2.044	2.016	2.031	2.017	
- 4-0	Ir-H	1.595	1.622	1.615	1.619	1.617	•

Fig-SI 25: Relaxed ground state structure (left) of **3b**. Experimental[3] and computed relevant geometrical parameters (middle) around the metal centre in Å. Ground and excited (Unr. DFT) states superimposed geometries (right).

Fig-SI 26: Energetic diagram (left) and graphical representation of the frontier orbitals (right) of complex **3b**.

Exp. (eV)	TDDFT (eV)	Excitation assignments
3.09	3.17	$HOMO \rightarrow LUMO$
3.81	3.91	$HOMO-1 \rightarrow LUMO$

Table-SI 9: CExperimental[3] and computed absorption energies and excitation assignments obtained on complex **3b**.

Fig-SI 27: Experimental[3] and computed (Unr. DFT, TDDFT and TDA) colour rendering of **3b** over a CIE 1931 chromaticity horseshoe diagram.

Selection of the select	Bond	Exp.	GS	Unr. DFT	TDDFT	TDA	• 1
	$\operatorname{Ir-P}(1)$	2.240	2.328	2.338	2.334	2.338	
	$\operatorname{Ir-P}(2)$	2.347	2.293	2.296	2.293	2.296	
	Ir-N(3)	2.048	2.044	2.026	2.030	2.025	TO SEC
2	Ir-N(4)	2.117	2.156	2.150	2.158	2.148	J. Variat
PX I	Ir-C	2.038	2.048	2.023	2.033	2.021	A A
80	Ir-Cl	2.250	2.467	2.489	2.484	2.497	8

Fig-SI 28: Relaxed ground state structure (left) of **4a**. Experimental[3] and computed relevant geometrical parameters (middle) around the metal centre in Å. Ground and excited (Unr. DFT) states superimposed geometries (right).

Fig-SI 29: Energetic diagram (left) and graphical representation of the frontier orbitals (right) of complex 4a.

Exp. (eV)	TDDFT (eV)	Excitation assignments
3.06	3.15	$HOMO \rightarrow LUMO$
3.80	2 75	$HOMO-1 \rightarrow LUMO$
3.80	5.70	$\rm HOMO \rightarrow \rm LUMO{+}3$

Table-SI 10: Experimental[3] and computed absorption energies and excitation assignments obtained on complex 4a.

Fig-SI 30: Experimental[3] and computed (Unr. DFT, TDDFT and TDA) colour rendering of **4a** over a CIE 1931 chromaticity horseshoe diagram.

~	Bond	Exp.	GS	Unr. DFT	TDDFT	TDA	- See
<u>I</u>	$\operatorname{Ir-P}(1)$	2.240	2.326	2.337	2.332	2.338	The second
	Ir-P(2)	2.347	2.295	2.299	2.296	2.300	
2	Ir-N(3)	2.048	2.042	2.024	2.028	2.023	
XX	Ir-N(4)	2.117	2.152	2.146	2.155	2.144	X
4-0	Ir-C	2.038	2.046	2.018	2.029	2.016	•
	Ir-Cl	2.250	2.467	2.493	2.486	2.506	

Fig-SI 31: Relaxed ground state structure (left) of **4b**. Experimental[3] and computed relevant geometrical parameters (middle) around the metal centre in Å. Ground and excited (Unr. DFT) states superimposed geometries (right).

Fig-SI 32: Energetic diagram (left) and graphical representation of the frontier orbitals (right) of complex 4b.

Exp. (eV)	TDDFT (eV)	Excitation assignments
3.07	3.12	$HOMO \rightarrow LUMO$
4.16	3.72	$\begin{array}{c} \text{HOMO-1} \rightarrow \text{LUMO+3} \\ \text{HOMO} \rightarrow \text{LUMO+2} \end{array}$

Table-SI 11: Experimental[3] and computed absorption energies and excitation assignments obtained on complex 4b.

Fig-SI 33: Experimental[3] and computed (Unr. DFT, TDDFT and TDA) colour rendering of **4b** over a CIE 1931 chromaticity horseshoe diagram.

2	Bond	Exp.	GS	Unr. DFT	TDDFT	TDA	1
	$\operatorname{Ir-P}(1)$	2.283	2.345	2.365	2.356	2.364	
	Ir-P(2)	2.416	2.494	2.570	2.533	2.565	- ERG H
6	$\operatorname{Ir-N}(3)$	2.041	2.030	2.016	2.018	2.016	
2	$\operatorname{Ir-N}(4)$	2.125	2.137	2.123	2.131	2.126	
413.41	$\operatorname{Ir-C}(5)$	2.063	2.043	2.008	2.019	2.007	7 X A
<u>_</u> 9.8. 8.6	Ir-C(6)	2.102	2.093	2.080	2.088	2.078	•

Fig-SI 34: Relaxed ground state structure (left) of **5c**. Experimental[3] and computed relevant geometrical parameters (middle) around the metal centre in Å. Ground and excited (Unr. DFT) states superimposed geometries (right).

Fig-SI 35: Energetic diagram (left) and graphical representation of the frontier orbitals (right) of complex **5c**.

Exp. (eV)	TDDFT (eV)	Excitation assignments
2.95	2.96	$HOMO \rightarrow LUMO$
3.67	3.73	$HOMO-2 \rightarrow LUMO$

Table-SI 12: Experimental[3] and computed absorption energies and excitation assignments obtained on complex 5c.

Fig-SI 36: Experimental[3] and computed (Unr. DFT, TDDFT and TDA) colour rendering of **5c** over a CIE 1931 chromaticity horseshoe diagram.

13 Basis set impact

			Gr	ound St	ate
	Bond	Exp.	\mathbf{A}	в	\mathbf{C}
	$\operatorname{Ir-P}(1)$	2.309	2.361	2.360	2.348
	Ir-P(2)	2.318	2.360	2.359	2.348
0	$\operatorname{Ir-N}(3)$	2.066	2.063	2.067	2.078
	$\operatorname{Ir-N}(4)$	2.123	2.149	2.149	2.161
	Ir-C	2.049	2.036	2.037	2.051
	Ir-H	1.473	1.619	1.605	1.610
			U	Jnr. DF	Г
	Bond		\mathbf{A}	в	\mathbf{C}
8 8 8 V	$\operatorname{Ir-P}(1)$		2.384	2.382	2.373
0	Ir-P(2)		2.381	2.382	2.368
	Ir-N(3)		2.058	2.061	2.072
	Ir-N(4)		2.143	2.141	2.161
	Ir-C		2.000	2.002	2.011
	Ir-H		1.620	1.606	1.611

Fig-SI 37: Relaxed ground and excited state structures of complex 2c with respect to the basis set used together with relevant experimental data.[3] A refers to LANL2DZ+pol. (excepting H), B corresponds to LANL2DZ+pol. on all atoms and C is the Def2TZVP basis set.

14 Absorption spectra of complex 1a

Fig-SI 38: Simulated and experimental absorption spectra of complex **1a** using TDDFT (green) and VG (black) model.[3]

15 Experimental and simulated phosphorescence

Table-SI 13: Experimental and simulated (electronic and vibronic) emission bands in eV together with the average and the mean absolute error (MAE) with respect to the

	highest energy bar	nd.[1, 2,	3, ^T A _F	oproximately attrib	uted from experimen	ntal spe	ctra.						
	Exp.			Unr. DFT				TDDFT				TDA	
		Elec.	$\Delta_{ m Elec.}$	AH	$\Delta_{ m AH}$	Elec.	$\Delta_{ m Elec.}$	AH	$\Delta_{ m AH}$	Elec.	$\Delta_{ m Elec.}$	AH	$\Delta_{ m AH}$
10	2.66, 2.51	2.71	0.05	2.66, 2.51	0.00, 0.00	2.58	-0.08	2.71, 2.55	0.05, 0.04	2.78	0.12	2.87, 2.72	0.21, 0.21
13	2.53, 2.41	2.76	0.23	2.66, 2.51	0.13, 0.10	2.48	-0.05	2.58, 2.41	0.05, 0.00	2.59	0.06	2.68, 2.52	0.15, 0.11
11	2.37	2.64	0.27	2.39	0.02	2.31	-0.06	2.29	-0.08	2.17	-0.20	2.33	-0.04
I3	2.28	2.49	0.21	2.21	-0.07	2.33	0.05	2.31	0.03	1.86	-0.42	2.16	-0.12
la	2.60, 2.42, 2.26	2.64	0.04	2.53, 2.35, 2.20	-0.07, -0.07, -0.06	2.65	0.05	2.80, 2.64, 2.47	0.20, 0.22, 0.21	2.36	-0.24	2.51, 2.33, 2.17	-0.09, -0.09, -0.09
2a	2.54, 2.37, 2.22	2.53	-0.01	2.41, 2.23, 2.08	-0.13, -0.14, -0.14	2.62	0.08	2.76, 2.59, 2.43	0.22, 0.22, 0.21	2.24	-0.30	2.41, 2.23, 2.07	-0.13, -0.14, -0.15
2c	2.55, 2.37, 2.21	2.53	-0.02	2.43, 2.25, 2.10	-0.12, -0.12, -0.11	2.01	-0.54	2.20, 2.02, 1.87	-0.35, -0.35, -0.34	2.25	-0.30	2.41, 2.23, 2.07	-0.14, -0.14, -0.14
3a	2.59, 2.41, 2.27	2.58	-0.01	2.45, 2.27, 2.11	-0.14, -0.14, -0.16	2.08	-0.51	2.24, 2.06, 1.90	-0.35, -0.35, -0.37	2.31	-0.28	2.45, 2.27, 2.11	-0.14, -0.14, -0.16
3b	2.58, 2.41, 2.25	2.58	0.00	2.47, 2.30, 2.16	-0.11, -0.11, -0.09	2.09	-0.49	2.24, 2.07, 1.91	-0.34, -0.34, -0.34	2.32	-0.26	2.45, 2.28, 2.12	-0.13, -0.13, -0.13
4a	2.59, 2.42, 2.27	2.58	-0.01	2.44, 2.27, 2.11	-0.15, -0.15, -0.16	2.05	-0.54	2.23, 2.05, 1.89	-0.36, -0.37, -0.38	2.30	-0.29	2.44, 2.26, 2.10	-0.15, -0.16, -0.17
4b	$2.58, 2.41, 2.27^{+}$	2.58	0.00	2.45, 2.27, 2.11	-0.13, -0.14, -0.16	2.06	-0.52	2.23, 2.05, 1.89	-0.35, -0.36, -0.38	2.30	-0.28	2.43, 2.26, 2.10	-0.15, -0.15, -0.17
5с	2.50, 2.33, 2.14	2.43	-0.07	2.32, 2.14, 2.04	-0.18, -0.19, -0.10	1.96	-0.54	2.13, 1.96, 1.77	-0.37, -0.37, -0.37	2.17	-0.33	2.31, 2.13, 1.97	-0.19, -0.20, -0.17
Avg.	I	ı	0.06	I	-0.08	ı	-0.18	ı	-0.14	·	-0.23	I	-0.08
MAE	·	ı	0.08	I	0.10	ı	0.29	ı	0.23	ı	-0.26	ı	0.14

References

- C. Lee, R. Zaen, K-M. Park, K H. Lee, J. Y. Lee, and Y. Kang. Blue phosphorescent platinum complexes based on tetradentate bipyridine ligands and their application to Organic Light-Emitting Diodes (OLEDs). Organometallics, 37(24):4639–4647, 2018.
- [2] W. Wei, S. A. M. Lima, P. I. Djurovich, A. Bossi, M. T. Whited, and M. E. Thompson. Synthesis and characterization of phosphorescent isomeric iridium complexes with a rigid cyclometalating ligand. *Polyhedron*, 140:138–145, 2018.
- [3] J-L. Liao, P. Rajakannu, S-H. Liu, G-H. Lee, P-T. Chou, A. K-Y. Jen, and Y. Chi. Iridium (III) complexes bearing tridentate chromophoric chelate: Phosphorescence fine-tuned by phosphine and hydride ancillary. *Inorganic chemistry*, 57(14):8287–8298, 2018.