Covalency in AnCl₃ (An = Th–No)

Sophie Cooper and Nikolas Kaltsoyannis*

Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, UK, M13 9PL.

ORCID

Sophie Cooper: 0000-0002-2508-0815

Nikolas Kaltsoyannis: 0000-0003-0293-5742

Supplementary Information

Table SI1: α and β spin 5f electron counts and PBEO $\langle S^2 \rangle$ values following the ECP geometry optimisations and subsequent single point all electron calculations on AnCl₃. $\langle S^2 \rangle$ data are reported as the difference between the formal and actual values. Also reported are the electronic states and point groups. Note that for some molecules the reported point group is of lower symmetry than that implied by the description of the geometries as either trigonal pyramidal or trigonal planar in the main text, but in all cases this is due to very small distortions from either C_{3v} or D_{3h} symmetry.

An	5f electrons α,β	<s<sup>2> small core ECP</s<sup>	<s<sup>2> all electron</s<sup>	Electronic state (point group)
Th	1,0	0.0024	0.0023	² A ₁ (C _{3v})
Ра	2,0	0.0070	0.0052	³ A (C ₁)
U	3,0	0.0087	0.0086	⁴ A ₁ (C _{3v})
Np	4,0	0.0111	0.0122	⁵ A ₁ (C _{3v})
Pu	5,0	0.0189	0.0183	⁶ A (C ₁)
Am	6,0	0.0351	0.0339	⁷ A (C ₁)
Cm	7,0	0.0148	0.0152	⁸ A (C ₁)
Bk	7,1	0.0114	0.0116	⁷ A ₂ (C _{3v})
Cf	7,2	0.0074	0.0074	⁶ A (C ₁)
Es	7,3	0.0047	0.0047	⁵ A ₂ (C _{3v})
Fm	7,4	0.0033	0.0028	⁴ A (C ₁)
Md	7,5	0.0019	0.0024	³ A (C ₁)
No	7,6	0.0029	0.0038	² A ₂ ′ (D _{3h})

An		Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
Average	PBE0 Small Core	2.545	2.529	2.527	2.521	2.508	2.508	2.496	2.477	2.470	2.452	2.442	2.447	2.476
bond														
length														
	PBE0 Large Core	2.643	2.622	2.603	2.585	2.569	2.553	2.537	2.524	2.511	2.499	2.489	2.477	2.467
	PBE Small Core	2.551	2.523	2.518	2.515	2.506	2.517	2.495	2.479	2.474	2.466	2.457	2.482	2.515
	Data from	2.569	2.551	2.567	2.545	2.533	2.545	2.538	2.500	2.492	2.475	2.466	2.473	2.518
	references 22													
	and 23													
Dihedral	PBE0 Small Core	180.0	120.8	123.1	126.4	124.8	140.0	127.6	125.3	149.3	137.6	145.4	176.6	180.0
angle														
	PBE0 Large Core	134.1	131.9	131.6	132.1	132.7	133.8	135.2	136.4	138.5	140.3	142.2	145.5	148.6
	PBE Small Core	180.0	122.7	142.3	121.5	117.8	130.3	121.0	117.3	155.0	148.2	150.2	177.1	180.0

Table SI2: Average bond lengths (Å) and dihedral angles (°) for AnCl₃ with small and large ECP cores for the PBEO functional, and with small core ECP cores for the PBE functional.

An	5f	6d	7s	7р
Th	0.40	1.57	0.60	0.02
Ра	1.89	1.11	0.52	0.04
U	3.17	1.02	0.27	0.02
Np	4.23	0.96	0.21	0.02
Pu	5.22	0.95	0.20	0.02
Am	6.23	0.89	0.19	0.02
Cm	7.11	0.94	0.22	0.02
Bk	8.14	0.93	0.23	0.02
Cf	9.15	0.88	0.21	0.02
Es	10.16	0.89	0.24	0.02
Fm	11.18	0.86	0.26	0.02
Md	12.32	0.76	0.25	0.02
No	13.62	0.61	0.24	0.02

Table SI3: An Natural populations in AnCl₃ (PBEO/all electron).

Table SI4: Metal contribution (%) to the An–Cl bonding NBOs (PBE0/all electron).

An	Average	ασ	απ	βσ	βπ
Th	10.02	13.00	7.62	, 12.68	6.78
Ра	10.01	11.88	9.01	11.26	7.91
U	9.48	12.60	7.35	10.91	7.04
Np	9.06	12.26	6.74	11.06	6.18
Pu	8.73	11.69	6.68	10.83	5.71
Am	8.20	9.98	7.78	9.56	5.48
Cm	8.42	11.56	5.92	10.42	5.76
Bk	8.46	11.51	5.59	11.04	5.71
Cf	7.87	9.36	5.81	10.17	6.15
Es	8.34	10.05	5.53	11.43	6.36
Fm	8.43	9.45	4.44	12.08	7.73
Md	8.42	6.67	5.71	11.06	10.25

On the origin of the dips at AmCl₃ and CfCl₃ in Figure 2.

As discussed in the main paper, there are dips in the average metal % (m%) at AmCl₃ and CfCl₃. As shown in table SI4 this decrease is not uniform across all NBOs, being present only in the α and β σ type NBOs. When looking for possible explanations for this, we noticed that AmCl₃ and CfCl₃ have larger dihedral angles (*i.e.* are more planar) than might be expected on the basis of those of the elements around them – see Figure SI1 below. The reduced % m in the σ type orbitals arises from decreases in both s and d character (Tables SI5 and SI6), the latter consistent with previous conclusions that, for formally d⁰ MX₃, pyramidalization comes from an increased participation of the d orbitals of M in the bent structure (M. Kaupp, *Angew. Chem. Int. Ed.*, 2001, **40**, 3534; L. Perrin, L. Maron and O. Eisenstein, *Faraday Discuss.*, 2003, **124**, 25).

Figure SI1: 180°-the dihedral angle between two Cl-An-Cl planes for AnCl₃ (An = Th−No). Dihedral angle data from Table SI2.

An	S	р	d	f
Th	2.16	0.03	8.88	1.91
Ра	1.90	0.11	7.67	2.14
U	3.78	0.06	7.78	0.93
Np	3.45	0.03	7.81	0.95
Pu	3.37	0.04	7.88	0.35
Am	2.65	0.14	6.98	0.10
Cm	3.70	0.07	7.69	0.07
Bk	3.71	0.06	7.65	0.06
Cf	2.71	0.36	6.18	0.06
Es	3.16	0.16	6.64	0.05
Fm	2.79	0.26	6.12	0.06
Md	1.12	0.85	4.56	0.10

Table SI5: NAO contribution (%) to the $\sigma \alpha$ An-Cl bonding NBOs (PBE0/all electron).

Table SI6: AO contribution (%) to the $\sigma \beta$ An-Cl bonding NBOs (PBE0/all electron).

An	S	р	d	f
Th	2.08	0.03	8.74	1.81
Ра	1.70	0.05	7.36	2.10
U	2.52	0.07	6.14	2.14
Np	2.41	0.02	6.70	1.90
Pu	2.60	0.03	6.46	1.72
Am	2.13	0.08	5.69	1.63
Cm	2.59	0.04	6.05	1.71
Bk	2.74	0.05	6.18	2.05
Cf	1.94	0.10	5.87	2.21
Es	2.56	0.06	5.51	3.22
Fm	2.97	0.07	4.68	3.18
Md	3.00	0.06	5.23	2.73

An	S	р	d	f
Th	0.00	0.51	4.12	2.95
Ра	0.57	0.28	5.47	2.63
U	0.03	0.19	5.69	1.43
Np	0.25	0.29	5.13	1.04
Pu	0.18	0.27	5.28	0.92
Am	0.00	0.28	4.87	2.57
Cm	0.01	0.30	5.52	0.07
Bk	0.01	0.28	5.22	0.06
Cf	0.07	0.61	5.02	0.05
Es	0.02	0.42	5.01	0.07
Fm	0.06	0.53	4.75	0.07
Md	0.61	1.06	3.89	0.10

Table SI7: AO contribution (%) to the $\pi \alpha$ An-Cl bonding NBOs (PBE0/all electron).

Table SI8: AO contribution (%) to the $\pi \beta$ An-Cl bonding NBOs (PBE0/all electron).

An	s	р	d	f
Th	0.00	0.37	3.59	2.78
Ра	0.77	0.13	4.81	2.15
U	0.03	0.15	4.90	1.94
Np	0.09	0.19	4.09	1.80
Pu	0.03	0.17	3.97	1.53
Am	0.01	0.27	3.85	1.32
Cm	0.00	0.22	4.25	1.28
Bk	0.00	0.25	4.42	1.02
Cf	0.07	0.28	3.47	2.28
Es	0.00	0.16	3.92	2.24
Fm	0.01	0.18	3.62	3.82
Md	0.05	0.26	5.72	4.16

Table SI9: The Wiberg Bond Index (WBI) and QTAIM metrics (delocalisation Index δ (An,Cl), (-G/V)_{BCP} and bond critical point electron density (ρ _{BCP}), all in au) for the An-Cl bond in AnCl₃, where An=Th–Md for the WBI and An=Th–No for the QTAIM metrics (PBE0/all electron).

			(
An	WBI	δ(An,Cl)	(- <i>G/V</i>)вср	$ ho_{ t BCP}$
Th	0.97	0.97	0.72	0.084
Ра	0.99	0.97	0.72	0.087
U	0.93	0.91	0.75	0.084
Np	0.89	0.89	0.76	0.083
Pu	0.87	0.89	0.77	0.083
Am	0.83	0.87	0.79	0.081
Cm	0.80	0.84	0.80	0.081
Bk	0.81	0.85	0.80	0.082
Cf	0.79	0.84	0.81	0.082
Es	0.80	0.85	0.81	0.084
Fm	0.81	0.87	0.81	0.084
Md	0.82	0.88	0.83	0.081
No	_	0.79	0.86	0.073

Table SI10: NRT analysis; average α and β spin covalent, ionic and ionic/covalent An-Cl Natural bond orders in AnCl₃ (An=Th–Md, PBEO/all electron).

An	lpha covalent	α ionic	lpha ionic/covalent	β covalent	β ionic	β ionic/covalent
Th	0.22	1.20	5.58	0.20	1.17	5.80
Ра	0.24	1.17	4.86	0.21	1.15	5.38
U	0.19	0.81	4.39	0.20	1.10	5.59
Np	0.18	0.82	4.70	0.19	1.12	5.96
Pu	0.20	1.07	5.33	0.13	0.70	5.36
Am	0.17	0.95	5.57	0.12	0.71	5.94
Cm	0.14	0.70	5.06	0.13	0.71	5.55
Bk	0.14	0.70	5.17	0.13	0.70	5.23
Cf	0.12	0.71	5.85	0.17	1.12	6.40
Es	0.13	0.70	5.56	0.16	0.84	5.18
Fm	0.12	0.70	5.85	0.17	0.83	4.95
Md	0.09	0.58	6.46	0.17	0.66	3.82

Table SI11: The average energy difference between the α and β 5f and 3p NAOs and the β An and Cl NHOs (Hartrees) in AnCl₃ (An = Pu-Md, PBE0/all electron).

An	Pu	Am	Cm	Bk	Cf	Es	Fm	Md
ΝΑΟ α	0.059	-0.004	-0.084	-0.106	-0.126	-0.145	-0.158	-0.142
ΝΑΟ β	0.282	0.282	0.257	0.192	0.127	0.060	-0.005	-0.054
σ ΝΗΟ β	-	0.454	0.435	0.418	0.406	0.367	0.344	0.418
π ΝΗΟ β	-	0.334	0.314	0.312	0.293	0.290	0.222	0.204

Table SI12: NHO overlap for AnCl₃ (An=Th-Md, PBEO/all electron).

An	ασ	απ	βσ	βπ
Th	0.58	0.55	0.58	0.55
Ра	0.57	0.52	0.58	0.54
U	0.56	0.48	0.58	0.53
Np	0.56	0.45	0.58	0.48
Pu	0.56	0.42	0.56	0.45
Am	0.59	0.39	0.54	0.44
Cm	0.56	0.42	0.53	0.43
Bk	0.56	0.42	0.53	0.42
Cf	0.55	0.46	0.51	0.40
Es	0.56	0.45	0.52	0.37
Fm	0.55	0.46	0.52	0.35

Table SI13: The PBE $\langle S^2 \rangle$ values following the ECP geometry optimisations and subsequent single point all electron calculations on AnCl₃. Data are reported as the difference between the formal and actual values.

I.	
Small core ECP	All electron
0.0020	0.0020
0.0048	0.0066
0.0099	0.0098
0.0160	0.0178
0.0392	0.0373
0.0970	0.0906
0.0142	0.0145
0.0114	0.0131
0.0074	0.0060
0.0041	0.0036
0.0030	0.0029
0.0011	0.0011
0.0008	0.0010
	Small core ECP 0.0020 0.0048 0.0099 0.0160 0.0392 0.0970 0.0142 0.0144 0.0074 0.0074 0.0041 0.0030 0.0011 0.0008

Table SI14: An Natural populations in AnCl₃ (PBE/all electron).

An	5f	6d	7s	7р
Th	0.50	1.55	0.64	0.02
Ра	1.97	1.17	0.56	0.04
U	3.29	1.08	0.33	0.02
Np	4.37	1.02	0.26	0.02
Pu	5.38	1.00	0.25	0.02
Am	6.41	0.91	0.22	0.02
Cm	7.21	1.00	0.25	0.02
Bk	8.26	0.97	0.30	0.02
Cf	9.36	0.89	0.23	0.02
Es	10.42	0.84	0.24	0.02
Fm	11.54	0.78	0.29	0.02
Md	12.65	0.67	0.27	0.02
No	13.71	0.59	0.28	0.02

l I				
Average	ασ	απ	βσ	βπ
10.72	13.58	8.50	13.21	7.57
10.89	14.29	8.29	12.30	8.67
10.80	13.99	8.96	12.06	8.20
10.27	12.77	8.95	12.13	7.24
10.20	12.42	9.93	11.91	6.53
9.40	10.65	11.79	9.92	5.21
9.59	12.56	6.46	12.11	7.21
9.73	12.28	5.98	12.90	7.76
9.30	10.08	5.68	12.35	9.09
9.73	8.42	5.88	13.63	11.00
10.14	9.52	4.65	12.71	13.69
9.59	7.65	3.90	12.64	14.16
	Average 10.72 10.89 10.80 10.27 10.20 9.40 9.59 9.73 9.30 9.73 10.14 9.59	Averageα σ10.7213.5810.8914.2910.8013.9910.2712.7710.2012.429.4010.659.5912.569.7312.289.3010.089.738.4210.149.529.597.65	Averageα σα π10.7213.588.5010.8914.298.2910.8013.998.9610.2712.778.9510.2012.429.939.4010.6511.799.5912.566.469.7312.285.989.738.425.8810.149.524.659.597.653.90	Averageα σα πβ σ10.7213.588.5013.2110.8914.298.2912.3010.8013.998.9612.0610.2712.778.9512.1310.2012.429.9311.919.4010.6511.799.929.5912.566.4612.119.7312.285.9812.909.3010.085.6812.359.738.425.8813.6310.149.524.6512.719.597.653.9012.64

Table SI15: Metal contribution (%) to the An–Cl bonding NBOs (PBE/all electron).

Table SI16: AO contribution (%) to the $\sigma \alpha$ An-Cl bonding NBOs (PBE/all electron).

	1	1	1	1
An	S	р	d	f
Th	2.18	0.03	9.08	2.27
Ра	2.95	0.03	8.87	2.36
U	3.98	0.04	8.57	1.36
Np	3.85	0.03	8.52	0.34
Pu	3.80	0.04	8.36	0.16
Am	3.04	0.06	7.29	0.10
Cm	4.10	0.04	8.32	0.07
Bk	4.03	0.04	8.12	0.06
Cf	3.11	0.14	6.81	0.04
Es	2.50	0.34	5.80	0.05
Fm	3.04	0.08	5.58	0.04
Md	1.96	0.20	5.41	0.04

An	S	р	d	f
Th	2.17	0.03	8.88	2.11
Ра	1.89	0.05	7.85	2.47
U	2.79	0.07	6.70	2.46
Np	2.85	0.04	6.93	2.29
Pu	2.90	0.04	6.75	2.20
Am	2.24	0.05	5.35	2.19
Cm	2.86	0.04	6.46	2.73
Bk	3.87	0.02	6.48	2.49
Cf	1.89	0.05	5.95	4.38
Es	2.38	0.03	3.86	7.29
Fm	1.81	0.30	4.72	5.82
Md	3.17	0.07	6.26	2.91

Table SI17: AO contribution (%) to the $\sigma \beta$ An-Cl bonding NBOs (PBE/all electron).

Table SI18: AO contribution (%) to the $\pi \alpha$ An-Cl bonding NBOs (PBE/all electron).

An	S	р	d	f
Th	0.00	0.47	4.54	3.44
Ра	0.01	0.11	4.86	3.25
U	0.05	0.18	6.31	2.39
Np	0.18	0.27	5.84	2.63
Pu	0.03	0.19	4.50	5.15
Am	0.00	0.32	7.38	3.85
Cm	0.00	0.25	6.14	0.05
Bk	0.00	0.21	5.70	0.05
Cf	0.04	0.41	5.17	0.05
Es	0.19	0.55	5.07	0.05
Fm	0.03	0.25	4.32	0.04
Md	0.12	1.12	2.56	0.06

An	S	р	d	f
Th	0.00	0.38	3.92	0.00
Ра	0.74	0.16	5.17	2.56
U	0.10	0.12	5.41	2.55
Np	0.00	0.16	4.61	2.45
Pu	0.00	0.16	4.07	2.28
Am	0.00	0.17	2.28	2.78
Cm	0.01	0.20	4.59	2.40
Bk	0.14	0.19	4.47	2.94
Cf	0.05	0.19	3.90	4.88
Es	0.00	0.22	5.46	5.17
Fm	0.00	0.17	6.49	6.88
Md	0.44	0.28	7.13	5.89

Table SI19: AO contribution (%) to the $\pi \beta$ An-Cl bonding NBOs (PBE/all electron).

Table SI20: The Wiberg Bond Index (WBI) and QTAIM metrics (delocalisation Index δ (An,Cl), (-G/V)_{BCP} and bond critical point electron density (ρ_{BCP}), all in au) for the An-Cl bond in AnCl₃, where An=Th–Md for the WBI and An=Th–No for the QTAIM metrics (PBE/all electron).

An	WBI	<i>δ</i> (An <i>,</i> Cl)	(- <i>G/V</i>) _{BCP}	$ ho_{ t BCP}$
Th	1.04	1.04	0.73	0.084
Ра	1.09	1.06	0.72	0.088
U	1.07	1.02	0.74	0.087
Np	1.01	1.00	0.76	0.085
Pu	1.00	0.99	0.77	0.084
Am	0.94	0.97	0.80	0.079
Cm	0.91	0.93	0.79	0.082
Bk	0.94	0.97	0.79	0.084
Cf	0.91	0.96	0.81	0.081
Es	0.91	0.97	0.82	0.081
Fm	0.96	1.02	0.83	0.080
Md	0.88	0.96	0.85	0.074
No	—	0.79	0.88	0.067

An	α covalent	α ionic	α ionic/covalent	ß covalent	ßionic	ß ionic/covalent
Th	0.24	1.20	5.07	<u>1.42</u>	0.23	5.29
Ра	0.28	1.14	4.14	1.33	0.24	4.61
U	0.22	0.78	3.63	1.40	0.24	4.94
Np	0.28	1.20	4.23	1.31	0.22	4.97
Pu	0.24	1.02	4.35	1.31	0.21	5.33
Am	0.20	0.80	3.96	1.30	0.18	6.18
Cm	0.16	0.68	4.25	1.32	0.21	5.15
Bk	0.15	0.68	4.60	1.45	0.25	4.86
Cf	0.12	0.71	5.71	1.30	0.24	4.47
Es	0.12	0.88	7.32	1.16	0.24	3.85
Fm	0.12	0.71	6.09	1.44	0.32	3.42
Md	0.08	0.59	7.23	1.00	0.25	2.98

Table SI21: NRT analysis; average α and β spin covalent, ionic and ionic/covalent An-Cl Natural bond orders in AnCl₃ (An=Th–Md, PBE/all electron).

Table SI22: The average energy difference between the α and β 5f and 3p NAOs and the β An and Cl NHOs (Hartrees) in AnCl₃ (An = Pu-Md, PBE/all electron).

An	Pu	Am	Cm	Bk	Cf	Es	Fm	Md
ΝΑΟ α	0.062	0.034	-0.027	-0.043	0.014	-0.046	-0.038	-0.090
ΝΑΟ β	0.162	0.160	0.117	0.080	0.057	0.031	0.013	0.000
σ ΝΗΟ β	-	0.355	0.316	0.310	0.261	0.224	0.174	0.274
π ΝΗΟ β	-	0.217	0.210	0.182	0.159	0.166	0.147	0.168

Table SI23: NHO overlap for AnCl₃ (An=Th-Md, PBE/all electron).

	1			-
An	ασ	απ	βσ	βπ
Th	0.57	0.54	0.57	0.54
Ра	0.56	0.53	0.57	0.54
U	0.55	0.50	0.56	0.53
Np	0.54	0.46	0.56	0.48
Pu	0.55	0.40	0.54	0.44
Am	0.56	0.38	0.54	0.39
Cm	0.54	0.41	0.50	0.40
Bk	0.54	0.41	0.51	0.38
Cf	0.53	0.44	0.47	0.34
Es	0.52	0.46	0.42	0.34
Fm	0.54	0.44	0.36	0.33

Figure SI2: Average metal contribution (%) to the metal–chlorine NBOs in AnCl₃, computed at the PBE level. NoCl₃ is omitted as it did not converge on σ type + π type NBOs for all three An-Cl bonds.

Figure SI3: Delocalisation Index of AnCl₃ (An=Th-No) for both the PBE and PBEO functionals

Figure SI4: $(-G/V)_{BCP}$ for AnCl₃ (An=Th-No) for PBE and PBEO functionals.

Figure SI5: An–Cl bond lengths computed with small core ECPs using the PBE and PBEO functionals (data in Table SI2). The experimental value for UCl_3 is shown as the orange dot, and the black line provides the B3LYP data from Kovács *et al.*^{21,22}

Converged cartesian atomic coordinates (Å)

PBE0

Th	0.00000000	0.000000	000	0.00000200	
Cl	0.00000000	2.545037	700	-0.00000400	D
Cl	-2.20406700	-1.27251	900	-0.00000400	D
Cl	2.20406700	-1.27251	900	-0.00000400	D
Ра	0.00470200	0.000000	000	-0.2990380	0
Cl	-1.20819800	2.051173	300	0.53066600	
Cl	2.39132000	-0.00005	300	0.53940000	
Cl	-1.20829300	-2.05111	700	0.53066700	
	0 0000000		0000	0000	0 20172000
CI	0.0000000) U. N D	2000	0000	0.28172000
	2 0792960	, 2. 0 1	.3997	3800	0.50820100
	2.07828600	נ- U 1_ (1	1 1990	29900	-0.50820100
CI	2.07828000	L 1		55500	0.30820100
Np	0.00000000	0.000000	000	0.26036300	
Cl	0.00000000	2.411234	100	-0.4747790	D
Cl	-2.08819000	-1.20561	700	-0.4747790	D
Cl	2.08819000	-1.20561	700	-0.4747790	C
_					_
Pu	-0.01024800	0.000098	300	-0.26968300	J
CI	-2.39920100	0.007010	000	0.50904100	
CI	1.23432800	2.036718	300	0.49114400	
CI	1.22153700	-2.04427	300	0.49100300	
Am	-0.00001300	-0.02173	500	-0.1787030	0
Cl	-2.17780900	-1.15531	400	0.34153300	-
Cl	0.00056900	2.432990	000	0.31558800	
Cl	2.17731400	-1.15621	400	0.34151600	
Cm	0.00000400	-0.00000	700	-0.2457300	C
Cl	-1.79527800	-1.58202	200	0.46255900	
Cl	-0.47248000	2.345752	200	0.46253100	
Cl	2.26773800	-0.76369	000	0.46256300	
Bŀ	0 0000000	0 00000	000	0 25474300	
CI	0.00000000	2 364410	000	-0 4845120	า
CI	-2 04763900	-1 18770	500	-0 4845120	
CI	2.04763900	-1 18220	500	-0 4845120	n n
	2.04/03300	1.10220	500	0.40401200	

Cf	-0.00939100	-0.00013800	-0.13567600
Cl	-2.45223800	-0.01060600	0.26652500
Cl	1.24350800	2.08743200	0.25775200
Cl	1.26286800	-2.07603200	0.25785200
Es	0.00000000	0.00000000	0.18684400
Cl	0.00000000	2.38989300	-0.36269800
Cl	-2.06970800	-1.19494700	-0.36269800
Cl	2.06970800	-1.19494700	-0.36269800
Fm	-0.00002800	0.00000500	-0.14832100
Cl	1.32420800	2.00438500	0.29079000
Cl	1.07392900	-2.14889400	0.29079600
Cl	-2.39797100	0.14448200	0.29089000
Md	0.01331800	-0.00001300	0.01413700
Cl	-1.26921600	2.08259900	-0.02754900
Cl	2.46067100	-0.00073400	-0.02889000
Cl	-1.27057900	-2.08178600	-0.02755000
No	0.00000000	0.00000000	0.00000000
Cl	0.00000000	2.48375700	0.00000000
Cl	2.15099600	-1.24187800	0.00000000
Cl	-2.15099600	-1.24187800	0.00000000

PBE

Th	0.00000000	0.00000000	0.00000000
Cl	0.00000000	2.55092500	0.00000100
Cl	-2.20916500	-1.27546200	0.00000100
Cl	2.20916500	-1.27546200	0.00000100
_	0 00004 000	0 00000 400	0 00500000
Ра	-0.00001600	0.00000400	-0.28599900
CI	-2.22004800	-0.89698600	0.51031900
CI	0.33321900	2.3/102000	0.51049900
CI	1.88691600	-1.4/405/00	0.51011/00
U	-0.00008300	-0.00007600	-0.32374600
Cl	1.78395800	-1.52796700	0.58385400
Cl	0.43180500	2.30879700	0.58374100
Cl	-2.21531600	-0.78042100	0.58444400
	0.00006400	0 0000 4 400	0 00000000
Np	-0.00006100	-0.00004400	-0.28800600
CI	0.72478600	2.26656200	0.52511200
CI	1.60093900	-1./6064200	0.5251/600
CI	-2.32538900	-0.50568200	0.52527400
Pu	-0.00543400	-0.00000100	-0.30880400
Cl	-2.35392100	-0.00011700	0.57660700
Cl	1.19187800	2.01738100	0.56544800
Cl	1.19208700	-2.01725900	0.56544900
۸m	-0 025/17500	-0 00011100	-0 22111700
	1 298////00	2 04/83100	0.22111700
	1.20044400	-2 0/133200	0.39997500
	-2 46023100	-0.00288100	0.33537300
Ci	2.40023100	0.00200100	0.43304300
Cm	-0.00002500	-0.00000300	-0.28266400
Cl	-2.03913500	-1.18447400	0.53224100
Cl	-0.00616000	2.35821300	0.53209400
Cl	2.04543700	-1.17372300	0.53188700
Bk	0.00000000	0.00000000	0.30022000
Cl	0.00000000	2.32101400	-0.57100600
Cl	-2.01005700	-1.16050700	-0.57100600
CI	2.01005700	-1.16050700	-0.57100600
5.	01000,00	0000,00	3.37 200000

Cf	0.01569300	-0.00001000	-0.18657500
Cl	2.43234900	-0.00045200	0.37182200
Cl	-1.26098000	2.04489100	0.35185800
Cl	-1.26183300	-2.04438000	0.35187200
Es	0.00000000	-0.01920200	-0.13436400
Cl	-0.00001100	2.41406900	0.24841200
Cl	-2.15495900	-1.15113300	0.26704000
Cl	2.15497200	-1.15111400	0.26702300
Fm	-0.00005900	-0.00033200	0.22812900
Cl	2.00636300	-1.24864100	-0.44745300
Cl	-2.08624600	-1.11005000	-0.44754500
Cl	0.08022800	2.36064500	-0.44693700
Md	-0.01280400	-0.00197800	0.02046700
Cl	-2.49021300	-0.11691000	-0.04177000
Cl	1.17518100	2.17789800	-0.03979900
Cl	1.39110600	-2.04923600	-0.04003200
No	0.00001000	-0.00008600	0.00000000
Cl	2.21954000	-1.18228600	-0.00000500
Cl	-2.13406800	-1.33036500	-0.00000500
Cl	-0.08553300	2.51316900	0.00001200