Supporting Information

A side-on Mn(III)-peroxo supported by a non-heme pentadentate N3Py2

ligand: Synthesis, characterization and reactivity studies

Dattaprasad D. Narulkar^{a,b}, Azaz Ansari^c, Anil Kumar Vardhaman^d, Sarvesh S. Harmalkar^a, Giribabu Lingamallu^d, Vishal M. Dhavale^e, Muniyandi Sankaraligam^f, Sandip Das^g, Pankaj Kumar^g, and Sunder N. Dhuri^{a*}

* Corresponding author Tel.: +91 8669609172; E-mail: <u>sndhuri@unigoa.ac.in</u>.

^aSchool of Chemical Sciences, Goa University, Goa-403206, India.

^bDepartment of Chemistry, Dnyanprassarak Mandal's College and Research Centre, Assagao, Goa-403507, India.

^cDepartment of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana. ^dPolymers & Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, India

^eCSIR-Central Electrochemical Research Institute, CSIR Madras Complex, Taramani, Chennai-600113, India.

^fBioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India.

^gIndian Institute of Science Education and Research (IISER), Tirupati 517507, India

Magnetic moment calculation and determination of number of unpaired electrons in complex 1 and 1a: Evans' method of ¹H-NMR was performed to determine the number of unpaired electrons (spin state) in complex 1 and 1a at room temperature^{S1-S3}. A WILMAD® coaxial insert (with a sealed capillary) tube containing the only CD₃CN solvent (with 1.0% TMS) was inserted into the normal NMR tubes containing the complex 1 (3.0 mM, with 0.1% TMS) or 1a (2.0 mM, with 0.1% TMS). We have calculated the chemical shift value of the TMS peak in the presence of the complex 1 or 1a with respect to that of the TMS peak in the outer NMR tube. The magnetic moment was calculated using the given equation,

$$\mu_{eff} = 0.0618 (\Delta v T / 2 f M)^{1/2}$$

Complex 1.

 $\mu_{eff} = 0.0618 * (76 * 298 / 2 * 400 * 0.003)^{1/2}$

 $\mu_{eff} = 5.97 \text{ BM}$

Complex 1a.

$$\mu_{eff} = 0.0618 * (12 * 298 / 2 * 400 * 0.002)^{1/2}$$

 $\mu_{eff} = 2.91 \text{ BM}$

Where f = oscillator frequency (400 MHz) of the superconducting spectrometer, T = absolute temperature, M = molar concentration of the complex **1** or **1a**, and v = difference in frequency (Hz) between the two TMS signals^{S3}. The calculated magnetic moment of complexes **1** and **1a** were determined to be 5.97 BM and 2.91 BM respectively in CD₃CN at RT, suggesting 5 unpaired electrons in Mn²⁺ centre of complex **1** and **2** unpaired electrons in Mn³⁺ centre of complex **1** and **2** unpaired electrons in Mn³⁺ centre of complex **1** and **1** and **2** unpaired electrons in Mn³⁺ centre of complex **1** and **2** unpaired electrons in Mn³⁺ centre of complex **1a**.

Figure S1. ¹H-NMR spectra of (a) 2-phenylpropionaldehyde, (b) deuterated 2-phenylpropionaldehyde recorded in an $CDCl_3$ at 298 K. The indicated arrow (red color) shows that the occurrence of the deuteration in the 2-phenylpropionaldehyde.

Fig. S2. Color changes observed a) before b) after the addition of 10 equiv of H_2O_2 in presence of 5 equiv TEA (triethylamine) to the solution of 1 in acetonitrile. The purple colour solution is species 1a.

Fig. S3. The X-band EPR spectrum of **1** (top) (Ref S24) and **1a** (bottom) in CH₃CN recorded at 77 K.

Fig. S4. Evans method ¹H NMR spectra of 1 (top) and 1a (bottom) used to obtained the magnetic moments of 1 and 1a respectively. Using Evans method magnetic moment (μ) for 1 is 5.97 BM while for 1a it is 2.91 BM.

Fig. S5 Plot of first-order rate constants against 1/T to determine activation energy for the reaction of 1a (1mM) and 60 equiv of 2-PPA.

Fig. S6. B3LYP-D2 optimized structures and spin density plots of the ground state of end-on $[Mn(N_3Py_2)(\eta^1-O_2)]^+$ (a and b) and side-on $[Mn(N_3Py_2)(\eta^2-O_2)]^+$ (c and d) species.

Table S1: List of the Mn^{III}-peroxo prepared by a different synthetic approach along with their

 UV-Vis spectral features and thermal stability.

Sr.	Mn-Peroxo complex	UV-Vis features		
No.		$\lambda_{\max} \operatorname{nm} (\operatorname{L} \operatorname{mol}^{-1} \operatorname{cm}^{-1})$ (thermal stability or $t_{\frac{1}{2}}$)		
Ι	Reaction of Mn ^{II} comple	ex with H ₂ O ₂		
1	$[Mn^{III}(O_2)(Tp^{iPr2}) pz^{iPr2}]$	561 (50), (stable at RT for few h)	[S4]	
2	(brown isomer) $[Mn^{III}(\Omega_2)(Tn^{iPr2}) nz^{iPr2}]$	583 (60) (stable at BT for few h)	[\$4]	
	(blue isomer)		[54]	
3	$[Mn^{III}(O_2)(Tp^{iPr2})(Me-$	381 (314), 478 (173)	[S5]	
II	Reaction of Mn^{II} comple	ex with H ₂ O ₂ in presence of TEA		
a4	$[Mn^{III}(O_2)(L^7py_2^{H})]^+$	445 (280),590(120)(15min at 0°C)	[S6]	
a5	$[Mn^{III}(O_2)(L^7py_2^{6-Me})]^+$	415 (280), 620 (80) (6 min at 0°C)	[S6]	
^a 6	$[Mn^{III}(O_2)(L^7py_2^{6-MeO})]^+$	416 (250), 560(80) (~ seconds at 0°C)	[S6]	
<i>a</i> 7	$[Mn^{III}(O_2)(L^7py_2^{5-Br})]^+$	445 (220), 589 (90) (3 min at 0 °C)	[S6]	
8	$[Mn^{III}(O_2)(L^7q_2)]^+$	415 (305), 606 (70) (4 min at 0°C)	[S7]	
9	$[Mn^{III}(O_2)(L^7py_2^{4-Me})]^+$	445(260), 588(100) (6 min at 0°C)	[S7]	
10	$[Mn^{III}(O_2)(L^8py_2^H)]^+$	465 (280), 599 (120) (12 min at 0°C)	[S7]	
11	$[Mn^{III}(O_2)(L^7py_2^{4-Cl})]^+$	442 (262), 568(102) (10 min at 0°C)	[S8]	
12	$[Mn^{III}(O_2)(L^7iso-q_2)]^+$	446 (291), 587 (112) (30 min at 0°C)	[S8]	
13	$[Mn^{III}(O_2)(14-TMC)]^+$	453 (490), 630 (120) (5 h at 25 °C)	[S9]	
^b 14	$[Mn^{III}(O_2)(13-TMC)]^+$	452 (390), 615 (190) (several days at 25 °C	[S10,S	
15	$[Mn^{III}(O_2)(12-TMC)]^+$	455 (250), 620 (200) (Stability ND)	[S12]	
16	$[Mn^{III}(O_2)(L2)]^+$	440 (175), 597 (41) (4 min at 0°C)	[S13]	
17	$[Mn^{III}(O_2)(L3)]^+$	434 (214), 592 (42) (22 min at 0°C)	[S13]	
18	$[Mn^{III}(O_2)(L4)]^+$	435 (149), 558 (39) (6 min at 0°C)	[S13]	
19	$[Mn^{III}(O_2)(Pro3Py)]^+$	580 (200) (2 h at 0°C)	[S14]	
20	$[Mn^{III}(O_2)(L^1)]^+$	605 (270) (60 min. at 15 °C)	[S15]	
21	$[Mn^{III}(O_2)(L^2)]^+$	450 (160) (100 sec. at 15°C)	[S16]	
22	[Mn ^{III} (O ₂)(Pro3Bzim)] ⁺	540 (140) (30 min at 20°C)	[S17]	
III	Reaction of Mn ^{II} comple	ex with KO ₂		
23	[Mn ^{III} (O ₂)(TPP)] ⁻	983 (50)	[S18]	
24	$[Mn^{III}(O_2)(Tp^{Ph2})(THF)]$	379 (324), 436(73) (4.5 days stability)	[S19]	
25	$[Mn^{III}(O_2)(Me_2EBC)]^+$	650 (530), 400 (185) (decays within 40 min at - 60 °C)	[S20]	
IV	Reaction of Mn ^{II} comple	ex with electrochemically generated O2		
^{a,c} 26	$[Mn^{III}(O_2)(imL_5^2)]^+$	542 (484)	[S21]	

a,c27	$[Mn^{III}(O_2)(mL_5^2)]^+$	585 (335)	[S21]		
a,c28	$[Mn^{III}(O_2)(N4py)]^+$	617 (280)	[S21]		
V	Reaction of Mn ^{II} complex with dioxygen				
29	$[Mn^{III}(O_2)(H_2bupa)]^-$	660 (300), 490 (ND)	[S22]		
a30	[Mn ^{III} (O ₂)(H ₂ bpaa)]	590 (58), 460 (ND)	[S23]		

*Note:*Mn(III)-peroxo species can also be prepared using a) KO₂; b) O₂ and c) H₂O₂ oxidants.

Table S2: Computed structural parameters for Mn(III) peroxo intermediate.

	end-on $[Mn(N_3Py_2)(\eta^1-O_2)]^+$ (1a ₁)												
	B3LYP-D2												
	Mn-	Mn-	01-	Mn-	Mn-	Mn-	Mn-	Mn-	Mn-	Mn-	01-	N1-	N2-
	01	02	O2	N1	N2	N3	N4	N5	01-	O2-	Mn-	Mn-	Mn-
									02	01	N5	N3	N4
HS	2.004		1.392	2.239	2.332	2.281	2.233	2.401	122.6		157.3	146.7	172.5
IS	1.882		1.402	2.032	2.143	2.136	2.045	2.240	119.6		164.5	158.0	174.9
LS	1.746		1.412	2.043	2.123	2.120	2.098	2.264	128.9		156.7	157.4	172.2
	B3LYP												
HS	2.040		1.391	2.281	2.357	2.323	2.271	2.475	121.3		153.4	142.2	173.2
IS	1.892		1.400	2.061	2.157	2.172	2.065	2.304	118.8		163.8	144.2	174.3
LS	1.913		1.385	2.063	2.150	2.163	2.081	2.292	123.5		160.0	151.5	172.5
											•		
	side-on $[Mn(N_3Pv_2)(\eta^2-O_2)]^+$ (1a ₂)												
	B3LYP-D2												
HS	2.037	2.044	1.443	2.220	2.345	2.301	2.240	2.458	69.5	69.0	154.0	141.9	174.9
IS	1.843	2.013	1.497	2.075	2.119	2.270	2.043	2.620	73.3	61.3	155.2	143.0	174.1
LS	1.946	1.942	1.470	2.038	2.161	2.158	2.039	2.231	67.6	67.9	150.9	151.3	176.2
	B3LYP												
HS	2.068	2.063	1.439	2.259	2.376	2.338	2.275	2.540	69.4	69.8	154.6	142.2	175.9
IS	1.839	2.023	1.495	2.101	2.130	2.340	2.061	2.669	73.9	60.9	156.8	144.2	175.6
LS	1.946	1.939	1.471	2.060	2.176	2.181	2.051	2.275	67.5	68.0	151.1	151.5	175.3

Note: HS=High spin, IS=Intermediate spin and LS=Low spin

end-on $[Mn(N_3Py_2)(\eta^1-O_2)]^+$ (1a ₁)							
B3LYP-D2							
Side-on	Mn	01	02				
HS	4.726	-0.272	-0.576				
IS	IS 1.232 0.377 0.46		0.465				
Ls	0.000	0.000	0.000				
B3LYP							
HS	4.769	-0.288	-0.600				
IS	1.207	0.3753	0.487				
Ls -1.046		0.602	0.361				
side-on $[Mn(N_3Pv_2)(n^2-O_2)]^+$ (1a ₂)							
B3LYP-D2							
HS	4.516	-0.348	-0.305				
IS	IS 2.138 -0		-0.087				
Ls 0.000		0.000	0.000				
B3LYP							
HS	4.576	-0.371	-0.329				
IS	2.157	-0.039	-0.096				
Ls	0.000	0.000	0.000				

 Table S3: Computed Mulliken spin densities for Mn(III) peroxo intermediate.

Table S4: B3LYP-D2 computed potential energy surface (ΔG in kJ mol⁻¹) for Mn(III) peroxo intermediate.

B3LYP-D2					
side-on $[Mn(N_3Py_2)(\eta^2-O_2)]^+$ (1a ₂)					
HS	0				
IS	99.6				
Ls	152.6				
end-on $[Mn(N_3Py_2)(\eta^1-O_2)]^+$ (1a ₁)					
HS	14.6				
IS	122.2				
Ls	179.1				
B3LYP					
side-on $[Mn(N_3Py_2)(\eta^2-O_2)]^+$ (1a ₂)					
HS	0				
IS	116.8				
Ls	182.5				
end-on $[Mn(N_3Py_2)(\eta^1-O_2)]^+$ (1a ₁)					
HS	10.7				
IS	145.5				
	223.5				

Kinetic data, thermodynamic parameters as well as product analysis data with standard deviation are also shown as below

1. Determination of second-order rate constant (k_2) for 2-PPA and 2-PPA-*d* with standard deviations (shown in bracket)

Reactivity of	k_2 second-order rate constant (from graph) M s ⁻¹
2-PPA	1.59 (0.23) x 10 ⁻¹ M s ⁻¹
2-PPA-d	9.3374 (0.47) x 10 ⁻² M s ⁻¹

- 2. Calculation for Erying plot to obtain Δ H and Δ S with PPA-*d* with standard deviations (shown in bracket)
- $\Delta H = 42 \; (\pm 2) \text{ kJ mol}^{-1}$
- $\Delta S = -139 (\pm 4) \text{ J mol}^{-1} \text{K}^{-1}$
- $E_a = 42 \ (\pm 1) \ \text{kJ mol}^{-1}$
- 3. Product analysis with a standard deviation (shown in bracket)
 % of acetophenone formed based on 1a = 88 (±2) %
- 4. Product analysis with a standard deviation (shown in bracket)
 % of cyclohexene formed based on 1a = 70 (±2) %

References in SI

- S1. D. F. Evans, J. Chem. Soc. 1959, 2003-2005.
- S2. J. Lölinger, R. Scheffold, J. Chem. Edu., 1972, 646-647.
- S3. D. F. Evans, D. A. Jakubovic, J. Chem. Soc. Dalton Trans. 1988, 2927-2933.
- S4 N. Kitajima, H. Komatsuzaki, S. Hikichi, M. Osawa, Y. Moro-oka, J. Am. Chem. Soc. 1994, 116, 11596–11597.
- S5 U.P. Singh, A.K. Sharma, S. Hikichi, H. Komatsuzaki, Y. Moro-oka, M. Akita, *Inorg. Chim. Acta.*, 2006, 359, 4407–4411.
- S6 R.A. Geiger, S. Chattopadhyay, V.W. Day, T.A. Jackson, J. Am. Chem. Soc., 2010, 132, 2821–2831.
- S7 R.A. Geiger, S. Chattopadhyay, V.W. Day, T.A. Jackson, *Dalton Trans.*, 2011, 40, 1707 1715.
- S8 R.A. Geiger, G.B. Wijeratne, V.W. Day, T.A. Jackson, Eur. J. Inorg. Chem., 2012, 1598-1608.
- S9 M.S. Seo, J.Y. Kim, J. Annaraj, Y. Kim, Y.M. Lee, S.J. Kim, J. Kim, W. Nam, Angew. Chem. Int. Ed., 2007, 46, 377–380.
- S10 J. Annaraj, J. Cho, Y.-M. Lee, S.Y. Kim, R. Latifi, S.P. de Visser, W. Nam, *Angew. Chem. Int. Ed.*, 2009, **48**, 4150-4153.
- S11 M. Sankaralingam, Y.M. Lee, S.H. Jeon, M.S. Seo, K. bin Cho, W. Nam, *Chem. Commun.*, 2018, **54**, 1209-1212.
- S12 H. Kang, J. Cho, K.-B. Cho, T. Nomura, T. Ogura, W. Nam, *Chem. Eur. J.*, 2013, 19, 14119-14125.
- S13 N. Saravanan, M. Sankaralingam, M. Palaniandavar, RSC Adv., 2014, 4, 1200-1211.
- S14 J. Du, D. Xu, C. Zhang, C. Xia, Y. Wang, W. Sun, *Dalton Trans.*, 2016, 45, 10131 10135.
- S15 P. Barman, P. Upadhyay, A.S. Faponle, J. Kumar, S.S. Nag, D. Kumar, C. V. Sastri, S. P. de Visser, *Angew. Chem. Int. Ed.*, 2016, 55, 11091-11095.
- S16 F. G. Cantú Reinhard, P. Barman, G. Mukherjee, J. Kumar, D. Kumar, D. Kumar, C. V. Sastri, S.P. de Visser, *J. Am. Chem. Soc.*, 2017, **139**, 18328-18338.

- S17 J. Du, C. Miao, C. Xia, W. Sun, Chin. Chem. Lett., 2018, 29, 1869-1871.
- S18 R. B. Vanatta, C.E. Strouse, L.K. Hanson, J.S. Valentine, J. Am. Chem. Soc., 1987, 109, 1425-1434.
- S19 H. E. Colmer, R. A. Geiger, D. F. Leto, G. B. Wijeratne, V. W. Day, T. A. Jackson, *Dalton Trans.*, 2014, 43, 17947-17963.
- S20 H. E. Colmer, A.W. Howcroft, T.A. Jackson, Inorg. Chem., 2016, 55, 2055-2069.
- S21 S. el Ghachtouli, H.Y.V. Ching, B. Lassalle-Kaiser, R. Guillot, D.F. Leto, S. Chattopadhyay, T. Jackson, P. Dorlet, E. Anxolabéhère-Mallart, *Chem. Commun.*, 2013, 49, 5696-5698.
- S22 R. L. Shook, W.A. Gunderson, J. Greaves, J.W. Ziller, M.P. Hendrich, A.S. Borovik, J. Am. Chem. Soc., 2008, 130, 8888-8889.
- S23 R. L. Shook, A.S. Borovik, Inorg. Chem., 2010, 49, 3464-3660.
- S24 D. D. Narulkar, K. Devulapally, A. K. U., S. N. Dhuri, V. M. Dhavale, A. K. Vardhaman and L. Giribabu, *Sustain. Energy Fuels*, 2020, **4**, 2656–2660.