Supporting Information

Development of a novel highly anti-proliferative family of gold complexes: Au(I)-phosphonium-phosphines

Benjamin Rousselle,^a Florence Bouyer,^b Jérôme Bayardon,^a Myriam Laly,^a François Ghiringhelli,^b Yoann Rousselin,^a Ewen Bodio,^{*a} and Raluca Malacea-Kabbara^{*a}

^a ICMUB UMR6302, CNRS, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
 ^b INSERM UMR 1231, Dijon, France
 ewen.bodio@u-bourgogne.fr, raluca.malacea@u-bourgogne.fr

Table of content

1.	¹ H, ¹³ C{ ¹ H} and ³¹ P{ ¹ H} NMR spectra of compound 2	p. 2
2.	¹ H, ¹³ C{ ¹ H} and ³¹ P{ ¹ H} NMR spectra of compound 3	p. 4
3.	¹ H, ¹³ C{ ¹ H} and ³¹ P{ ¹ H} NMR spectra of compound 4	p. 6
4.	¹ H, ¹³ C{ ¹ H} and ³¹ P{ ¹ H} NMR spectra of compound 5a	p. 8
5.	¹ H, ¹³ C{ ¹ H} and ³¹ P{ ¹ H} NMR spectra of compound 5b	p. 10
6.	¹ H, ¹³ C{ ¹ H} and ³¹ P{ ¹ H} NMR spectra of compound 5c	p. 12
7.	¹ H, ¹³ C{ ¹ H} and ³¹ P{ ¹ H} NMR spectra of compound 5d	p. 14
8.	¹ H, ¹³ C{ ¹ H} and ³¹ P{ ¹ H} NMR spectra of compound 5e	p. 16
9.	¹ H, ¹³ C{ ¹ H} and ³¹ P{ ¹ H} NMR spectra of compound 5f	p. 18
10.	¹ H, ¹³ C{ ¹ H} and ³¹ P{ ¹ H} NMR spectra of compound Ia	p. 20
11.	¹ H, ¹³ C{ ¹ H} and ³¹ P{ ¹ H} NMR spectra of compound Ib	p. 22
12.	¹ H, ¹³ C{ ¹ H} and ³¹ P{ ¹ H} NMR spectra of compound Ic	p. 24
13.	¹ H, ¹³ C{ ¹ H} and ³¹ P{ ¹ H} NMR spectra of compound Id	p. 26
14.	¹ H, ¹³ C{ ¹ H} and ³¹ P{ ¹ H} NMR spectra of compound le	p. 28
15.	¹ H, ¹³ C{ ¹ H} and ³¹ P{ ¹ H} NMR spectra of compound If	p. 30
16.	¹ H, ¹³ C{ ¹ H} and ³¹ P{ ¹ H} NMR spectra of compound Ig	p. 32
17.	Crystal structure and table of crystal data of compound le	p. 33
18.	Crystal structure and table of crystal data of compound If	p. 43
19.	Stability studies of compounds la-f in DMSO and in presence of water	p. 50
20.	Water solubility evaluation of compounds Ia-g determined by ICP-AES	p. 64
21.	Cells cytotoxity curves of Ia-g , DMSO, oxaliplatin, 5-FU, paclitaxel (A549)	p. 65
22.	Cells cytotoxity curves of Ia-g , DMSO, oxaliplatin, 5-FU, paclitaxel (MDA)	p. 66
23.	Cells cytotoxity curves of Ia-g , DMSO, oxaliplatin, 5-FU, paclitaxel (SW480)	p. 67

1. ${}^{1}H$, ${}^{13}C{}^{1}H$ and ${}^{31}P{}^{1}H$ NMR spectra of compound **2**

¹H NMR (300 MHz, Chloroform-d)

¹³C{¹H} NMR (75 MHz, Chloroform-d)

³¹P{¹H} NMR (202 MHz, Methylene Chloride-*d*₂)

¹H NMR (500 MHz, Methylene Chloride-*d*₂)

¹³C{¹H} NMR (75 MHz, Chloroform-d)

 $^{31}\text{P}\{^{1}\text{H}\}$ NMR (202 MHz, Methylene Chloride- $d_{2})$

¹H NMR (500 MHz, Methylene Chloride-*d*₂)

¹³C{¹H} NMR (75 MHz, Chloroform-d)

³¹P{¹H} NMR (202 MHz, Methylene Chloride-*d*₂)

¹H NMR (500 MHz, Methylene Chloride-*d*₂)

¹³C{¹H} J-mod NMR (75 MHz, Methylene Chloride-*d*₂)

 $^{31}\text{P}\{^{1}\text{H}\}$ NMR (202 MHz, Methylene Chloride- $d_{2})$

5. ${}^{1}H$, ${}^{13}C{}^{1}H$ and ${}^{31}P{}^{1}H$ NMR spectra of compound **5b**

¹H NMR (500 MHz, Methylene Chloride-*d*₂)

 $^{13}\text{C}\{^{1}\text{H}\}$ J-mod NMR (75 MHz, Methylene Chloride- $d_2)$

³¹P{¹H} NMR (202 MHz, Methylene Chloride-*d*₂)

¹H NMR (500 MHz, Methylene Chloride-*d*₂)

 $^{13}\text{C}\{^{1}\text{H}\}$ J-mod NMR (75 MHz, Methylene Chloride- $d_{2})$

³¹P{¹H} NMR (202 MHz, Methylene Chloride-*d*₂)

¹H NMR (500 MHz, Methylene Chloride-*d*₂)

¹³C{¹H} J-mod NMR (75 MHz, Methylene Chloride-*d*₂)

 $^{31}\text{P}\{^{1}\text{H}\}$ NMR (202 MHz, Methylene Chloride- $d_{2})$

¹H NMR (500 MHz, Methylene Chloride-*d*₂)

 $^{13}\text{C}\{^1\text{H}\}$ J-mod NMR (75 MHz, Methylene Chloride-d₂)

 $^{31}\text{P}\{^{1}\text{H}\}$ NMR (202 MHz, Methylene Chloride- $d_{2})$

9. ${}^{1}H$, ${}^{13}C{}^{1}H$ and ${}^{31}P{}^{1}H$ NMR spectra of compound **5f**

¹H NMR (300 MHz, Methylene Chloride-*d*₂)

¹³C{¹H} J-mod NMR (125.7 MHz, Methylene Chloride-d₂)

 $^{31}\text{P}\{^{1}\text{H}\}$ NMR (121.5 MHz, Methylene Chloride- $d_{2})$

¹H NMR (500 MHz, Methylene Chloride-*d*₂)

 $^{13}\text{C}\{^1\text{H}\}$ J-mod NMR (151 MHz, Methylene Chloride-d₂)

³¹P{¹H} NMR (202 MHz, Methylene Chloride-*d*₂)

11. $^1\text{H},\,^{13}\text{C}\{^1\text{H}\}$ and $^{31}\text{P}\{^1\text{H}\}$ NMR spectra of compound Ib

¹H NMR (500 MHz, Methylene Chloride-*d*₂)

¹³C{¹H} J-mod NMR (151 MHz, Methylene Chloride-*d*₂)

 $^{31}\text{P}\{^{1}\text{H}\}$ NMR (202 MHz, Methylene Chloride- $d_{2})$

¹H NMR (600 MHz, Methylene Chloride-*d*₂)

¹³C{¹H} J-mod NMR (151 MHz, Methylene Chloride-*d*₂)

³¹P{¹H} NMR (243 MHz, Methylene Chloride-*d*₂)

¹H NMR (500 MHz, Methylene Chloride-*d*₂)

¹³C{¹H} J-mod NMR (151 MHz, Methylene Chloride-*d*₂)

 $^{31}\text{P}\{^{1}\text{H}\}$ NMR (202 MHz, Methylene Chloride- $d_{2})$

¹H NMR (600 MHz, Methylene Chloride-*d*₂)

¹³C{¹H} J-mod NMR (151 MHz, Methylene Chloride-*d*₂)

 $^{31}\text{P}\{^{1}\text{H}\}$ NMR (243 MHz, Methylene Chloride- $d_{2})$

15. ${}^{1}H$, ${}^{13}C{}^{1}H$ and ${}^{31}P{}^{1}H$ NMR spectra of compound If

¹H NMR (500 MHz, Methylene Chloride-*d*₂)

¹³C{¹H} J-mod NMR (151 MHz, Methylene Chloride-*d*₂)

³¹P{¹H} NMR (202 MHz, Methylene Chloride-*d*₂)

¹H NMR (500 MHz, Methylene Chloride-*d*₂) of PPh₃AuBr (**Ig**)

17. Crystal structure and table of crystal data of compound le

Experimental. Single clear light orange block-shaped crystals of compound **Ie** were recrystallized from diethyl ether by slow evaporation. A suitable crystal 0.74x0.42x0.27 mm³ was selected and mounted on a MITIGEN holder oil on a Bruker D8 VENTURE diffractometer. The crystal was kept at T = 100(1) K during data collection. Using **Olex2** (Dolomanov et al., 2009), the structure was solved with the **ShelXT** (Sheldrick, 2015) structure solution program, using the Intrinsic Phasing solution method. The model was refined with version 2018/1 of **ShelXL** (Sheldrick, 2015) using Least Squares minimization.

Crystal Data. $C_{42}H_{37}AuBr_2Cl_2FeP_2$, $M_r = 1087.19$, orthorhombic, *P*bca (No. 61), a = 18.7538(15) Å, b = 17.9377(14) Å, c = 23.5541(17) Å, $\alpha = \beta = \gamma = 90^{\circ}$, V =7923.6(11) Å³, *T* = 100(1) K, *Z* = 8, *Z'* = 1, μ (MoK_{α}) = 6.328, 122695 reflections measured, 9105 unique ($R_{int} = 0.0561$) which were used in all calculations. The final *wR*₂ was 0.0609 (all data) and R_1 was 0.0291 (I > 2 σ (I)).

Compound	le
CCDC	2036897
Internal reference	20180104BR114
Formula	C ₄₂ H ₃₇ AuBr ₂ Cl ₂ FeP ₂
D _{calc.} / g cm ⁻³	1.823
μ/mm⁻¹	6.328
Formula Weight	1087.19
Colour	clear light orange
Shape	block
Size/mm ³	0.74x0.42x0.27
<i>Т/</i> К	100(1)
Crystal System	orthorhombic
Space Group	<i>P</i> bca
a/Å	18.7538(15)
b/Å	17.9377(14)
<i>c</i> /Å	23.5541(17)
$\alpha/^{\circ}$	90
βſ°	90
γl°	90
V/Å ³	7923.6(11)
Ζ	8
Ζ'	1
Wavelength/Å	0.710760
Radiation type	ΜοΚα
<i>θ</i> min ∕ °	3.000
θmax/°	27.547
Measured Refl.	122695
Independent Refl.	9105
Reflections Used	7686
Rint	0.0561
Parameters	451
Restraints	0
Largest Peak	0.976
Deepest Hole	-1.242
GooF	1.066
wR2 (all data)	0.0609
wR ₂	0.0576
R₁ (all data)	0.0408
R_1	0.0291

Structure Quality Indicators

Reflections:	d min (Mo)	0.77 ^{I/σ}	31.4 Rint	5.61% complete	100%
Refinement:	Shift	-0.003 ^{Max Peak}	1.0 Min Peak	-1.2 Goof	1.066

A clear light orange block-shaped crystal with dimensions 0.74x0.42x0.27 mm³ was mounted on a MITIGEN holder oil. X-ray diffraction data were collected using a Bruker D8 VENTURE diffractometer equipped with an Oxford Cryosystems low-temperature device, operating at T = 100(1) K. Data were measured using ϕ and ω scans using MoK_{α} radiation (X-ray tube, 50 kV, 30 mA). The total number of runs and images was based on the strategy calculation from the program APEX3 (Bruker, 2015). The maximum resolution achieved was Θ = 27.547°. Cell parameters were retrieved using the SAINT (Bruker, V8.38A, after 2013) software and refined using SAINT (Bruker, V8.38A, after 2013) on 8936 reflections, 7 % of the observed reflections. Data reduction was performed using the SAINT (Bruker, V8.38A, after 2013) software which corrects for Lorentz polarisation. The final completeness is 99.70 % out to 27.547° in Θ . A multi-scan absorption correction was performed using SADABS-2016/2 (Bruker, 2016) was used for absorption correction. wR₂(int) was 0.1054 before and 0.0559 after correction. The Ratio of minimum to maximum transmission is 0.5910. The absorption coefficient μ of this material is 6.328 mm⁻¹ at this wavelength ($\lambda = 0.71073$ Å) and the minimum and maximum transmissions are 0.0721 and 0.1220. The structure was solved in the space group Pbca (# 61) by Intrinsic Phasing using the SheIXT (Sheldrick, 2015) structure solution program and refined by Least Squares using version 2018/1 of ShelXL (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. There is a single molecule in the asymmetric unit,

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Au1	Br1	2.4026(4)	P2	C32	1.765(3)
Au1	P1	2.2373(9)	P2	C19	1.807(3)
Fe1	C33	2.035(4)	P2	C26	1.789(3)
Fe1	C32	2.022(3)	P2	C20	1.798(3)
Fe1	C34	2.045(4)	Cl2	C42	1.764(4)
Fe1	C35	2.048(4)	Cl1	C42	1.771(4)
Fe1	C36	2.039(4)	C33	C32	1.442(5)
Fe1	C41	2.043(4)	C33	C34	1.421(5)
Fe1	C40	2.037(4)	C13	C18	1.405(5)
Fe1	C37	2.050(4)	C13	C14	1.400(5)
Fe1	C38	2.049(4)	C18	C17	1.394(5)
Fe1	C39	2.038(4)	C18	C19	1.518(5)
P1	C13	1.825(3)	C32	C36	1.436(5)
P1	C1	1.818(3)	C34	C35	1.411(6)
P1	C7	1.814(4)	C2	C1	1.392(5)

Table 1: Bond Lengths in Å for I	e
----------------------------------	---

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C2	C3	1.389(5)	C20	C25	1.390(5)
C1	C6	1.397(5)	C29	C28	1.383(6)
C17	C16	1.383(5)	C35	C36	1.416(5)
C7	C8	1.401(5)	C4	C5	1.379(6)
C7	C12	1.392(5)	C4	C3	1.376(6)
C14	C15	1.385(5)	C21	C22	1.383(5)
C30	C31	1.381(5)	С9	C10	1.383(6)
C30	C29	1.386(5)	C41	C40	1.410(6)
C8	C9	1.390(5)	C41	C37	1.421(6)
C27	C26	1.398(5)	C40	C39	1.407(6)
C27	C28	1.389(5)	C10	C11	1.383(6)
C31	C26	1.397(5)	C37	C38	1.401(6)
C16	C15	1.385(5)	C38	C39	1.425(6)
C12	C11	1.393(5)	C22	C23	1.379(6)
C6	C5	1.389(5)	C23	C24	1.384(6)
C20	C21	1.401(5)	C25	C24	1.395(6)

Table 2:	Bond Angles	in [°] for le .					
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/ [°]
P1	Au1	Br1	172.73(2)	C32	Fe1	C35	68.86(14)
C33	Fe1	C34	40.78(15)	C32	Fe1	C36	41.42(13)
C33	Fe1	C35	68.75(16)	C32	Fe1	C41	122.41(16
C33	Fe1	C36	69.63(15)	C32	Fe1	C40	153.81(17
C33	Fe1	C41	157.13(16)	C32	Fe1	C37	112.76(14
C33	Fe1	C40	161.30(16)	C32	Fe1	C38	130.68(15
C33	Fe1	C37	122.12(16)	C32	Fe1	C39	165.77(17
C33	Fe1	C38	108.69(17)	C34	Fe1	C35	40.32(16)
C33	Fe1	C39	125.03(17)	C34	Fe1	C37	153.41(18
C32	Fe1	C33	41.63(13)	C34	Fe1	C38	117.46(18
C32	Fe1	C34	68.92(14)	C35	Fe1	C37	166.27(18

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C35	Fe1	C38	149.30(17)	C7	P1	C1	105.00(16)
C36	Fe1	C34	68.44(16)	C32	P2	C19	108.26(16)
C36	Fe1	C35	40.55(15)	C32	P2	C26	108.83(16)
C36	Fe1	C41	109.43(18)	C32	P2	C20	107.98(16)
C36	Fe1	C37	131.59(17)	C26	P2	C19	109.75(15)
C36	Fe1	C38	169.59(16)	C26	P2	C20	108.70(16)
C41	Fe1	C34	161.64(16)	C20	P2	C19	113.23(16)
C41	Fe1	C35	126.28(17)	C32	C33	Fe1	68.73(19)
C41	Fe1	C37	40.64(17)	C34	C33	Fe1	70.0(2)
C41	Fe1	C38	67.88(19)	C34	C33	C32	107.0(3)
C40	Fe1	C34	122.98(16)	C18	C13	P1	123.3(3)
C40	Fe1	C35	104.27(16)	C14	C13	P1	118.0(2)
C40	Fe1	C36	117.05(17)	C14	C13	C18	118.7(3)
C40	Fe1	C41	40.43(16)	C13	C18	C19	122.6(3)
C40	Fe1	C37	67.99(16)	C17	C18	C13	119.1(3)
C40	Fe1	C38	67.95(18)	C17	C18	C19	118.3(3)
C40	Fe1	C39	40.40(18)	P2	C32	Fe1	129.01(18)
C38	Fe1	C37	39.97(18)	C33	C32	Fe1	69.64(19)
C39	Fe1	C34	103.71(17)	C33	C32	P2	127.4(3)
C39	Fe1	C35	113.94(16)	C36	C32	Fe1	69.90(19)
C39	Fe1	C36	148.71(16)	C36	C32	P2	124.6(3)
C39	Fe1	C41	68.18(19)	C36	C32	C33	107.8(3)
C39	Fe1	C37	68.10(17)	C33	C34	Fe1	69.2(2)
C39	Fe1	C38	40.80(16)	C35	C34	Fe1	70.0(2)
C13	P1	Au1	119.10(11)	C35	C34	C33	109.0(3)
C1	P1	Au1	109.81(12)	C3	C2	C1	119.4(3)
C1	P1	C13	104.03(15)	C2	C1	P1	119.9(3)
C7	P1	Au1	111.42(12)	C2	C1	C6	119.8(3)
C7	P1	C13	106.39(15)	C6	C1	P1	120.3(3)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C16	C17	C18	121.3(3)	C4	C5	C6	119.6(4)
C8	C7	P1	118.4(3)	C22	C21	C20	119.3(4)
C12	C7	P1	122.9(3)	C14	C15	C16	119.6(3)
C12	C7	C8	118.7(3)	C4	C3	C2	120.5(4)
C15	C14	C13	121.3(3)	C10	C9	C8	119.3(4)
C18	C19	P2	114.7(2)	C40	C41	Fe1	69.6(2)
C31	C30	C29	119.9(4)	C40	C41	C37	107.6(4)
C9	C8	C7	121.2(4)	C37	C41	Fe1	69.9(2)
C28	C27	C26	119.5(4)	C41	C40	Fe1	70.0(2)
C30	C31	C26	119.8(3)	C39	C40	Fe1	69.8(2)
C17	C16	C15	119.8(3)	C39	C40	C41	108.6(4)
C27	C26	P2	120.4(3)	С9	C10	C11	120.2(4)
C31	C26	P2	119.5(3)	C41	C37	Fe1	69.4(2)
C31	C26	C27	120.1(3)	C38	C37	Fe1	70.0(2)
C7	C12	C11	120.0(4)	C38	C37	C41	108.1(4)
C5	C6	C1	120.1(4)	C37	C38	Fe1	70.0(2)
C21	C20	P2	120.9(3)	C37	C38	C39	108.2(4)
C25	C20	P2	118.7(3)	C39	C38	Fe1	69.2(2)
C25	C20	C21	120.2(3)	Cl2	C42	Cl1	110.3(2)
C28	C29	C30	120.7(3)	C10	C11	C12	120.6(4)
C34	C35	Fe1	69.7(2)	C23	C22	C21	120.5(4)
C34	C35	C36	108.6(3)	C22	C23	C24	120.7(4)
C36	C35	Fe1	69.4(2)	C40	C39	Fe1	69.8(2)
C3	C4	C5	120.7(4)	C40	C39	C38	107.5(4)
C29	C28	C27	120.0(4)	C38	C39	Fe1	70.0(2)
C32	C36	Fe1	68.67(19)	C20	C25	C24	119.8(4)
C35	C36	Fe1	70.1(2)	C23	C24	C25	119.6(4)
C35	C36	C32	107.6(3)				

Atom Atom Atom Atom Angle/° Au1 Ρ1 C13 C18 71.4(3) Au1 Ρ1 C13 C14 -109.1(2) Au1 Ρ1 C1 C2 26.2(3) Au1 Ρ1 C1 C6 -155.9(3) Ρ1 Au1 C7 C8 34.0(3) Ρ1 C7 Au1 C12 -146.4(3) Fe1 C33 C32 Ρ2 124.2(3) Fe1 C33 C32 C36 -59.7(2) Fe1 C33 C34 C35 58.8(3) Fe1 C32 C36 C35 -59.5(2) Fe1 C34 C35 C36 58.6(3) Fe1 C35 C36 C32 58.6(2) Fe1 C41 C40 C39 59.4(3) C41 C37 C38 Fe1 -59.5(3) Fe1 C40 C39 C38 60.1(3) Fe1 C37 C38 C39 -58.8(3) Fe1 C38 C39 C40 -60.0(3) Ρ1 C18 C13 C17 174.7(2) Ρ1 C13 C18 C19 -3.5(4) Ρ1 C13 C15 C14 -177.2(3) Ρ1 C1 C6 C5 -177.8(3) Ρ1 C7 C8 C9 178.5(3) Ρ1 C7 C12 C11 -179.7(3) Ρ2 C32 C36 Fe1 -124.2(3) Ρ2 C32 C36 C35 176.3(3) Ρ2 C20 C21 C22 -174.8(3) Ρ2 C24 C20 C25 173.8(3) C33 C32 C36 Fe1 59.6(2) C33 0.0(4) C32 C36 C35

Table 3: Torsion Angles in [°] for Ie.

Atom	Atom	Atom	Atom	Angle/°
C33	C34	C35	Fe1	-58.4(3)
C33	C34	C35	C36	0.2(4)
C13	P1	C1	C2	-102.3(3)
C13	P1	C1	C6	75.5(3)
C13	P1	C7	C8	165.3(3)
C13	P1	C7	C12	-15.1(3)
C13	C18	C17	C16	3.6(5)
C13	C18	C19	P2	-113.3(3)
C13	C14	C15	C16	1.5(5)
C18	C13	C14	C15	2.4(5)
C18	C17	C16	C15	0.3(5)
C32	P2	C19	C18	159.7(2)
C32	P2	C26	C27	163.5(3)
C32	P2	C26	C31	-18.1(3)
C32	P2	C20	C21	91.6(3)
C32	P2	C20	C25	-82.7(3)
C32	C33	C34	Fe1	-59.0(2)
C32	C33	C34	C35	-0.2(4)
C34	C33	C32	Fe1	59.8(2)
C34	C33	C32	P2	-176.0(3)
C34	C33	C32	C36	0.1(4)
C34	C35	C36	Fe1	-58.8(3)
C34	C35	C36	C32	-0.2(4)
C2	C1	C6	C5	0.1(6)
C1	P1	C13	C18	-166.0(3)
C1	P1	C13	C14	13.5(3)
C1	P1	C7	C8	-84.8(3)
C1	P1	C7	C12	94.8(3)
C1	C2	C3	C4	0.0(5)

Atom	Atom	Atom	Atom	Angle/°
C1	C6	C5	C4	-0.3(6)
C17	C18	C19	P2	68.5(3)
C17	C16	C15	C14	-2.8(5)
C7	P1	C13	C18	-55.5(3)
C7	P1	C13	C14	124.1(3)
C7	P1	C1	C2	146.1(3)
C7	P1	C1	C6	-36.1(3)
C7	C8	C9	C10	1.3(6)
C7	C12	C11	C10	1.2(6)
C14	C13	C18	C17	-4.9(5)
C14	C13	C18	C19	176.9(3)
C19	P2	C32	Fe1	56.2(3)
C19	P2	C32	C33	-37.0(3)
C19	P2	C32	C36	147.5(3)
C19	P2	C26	C27	-78.2(3)
C19	P2	C26	C31	100.2(3)
C19	P2	C20	C21	-28.3(3)
C19	P2	C20	C25	157.5(3)
C19	C18	C17	C16	-178.1(3)
C30	C31	C26	P2	-178.3(3)
C30	C31	C26	C27	0.1(5)
C30	C29	C28	C27	-1.3(6)
C8	C7	C12	C11	-0.1(5)
C8	C9	C10	C11	-0.2(7)
C31	C30	C29	C28	2.1(6)
C26	P2	C32	Fe1	175.5(2)
C26	P2	C32	C33	82.3(3)
C26	P2	C32	C36	-93.3(3)
C26	P2	C19	C18	41.0(3)

Atom	Atom	Atom	Atom	Angle/°
C26	P2	C20	C21	-150.5(3)
C26	P2	C20	C25	35.3(3)
C26	C27	C28	C29	-0.2(6)
C12	C7	C8	C9	-1.1(6)
C20	P2	C32	Fe1	-66.7(3)
C20	P2	C32	C33	-159.9(3)
C20	P2	C32	C36	24.6(3)
C20	P2	C19	C18	-80.6(3)
C20	P2	C26	C27	46.2(3)
C20	P2	C26	C31	-135.5(3)
C20	C21	C22	C23	1.5(6)
C20	C25	C24	C23	0.7(6)
C29	C30	C31	C26	-1.5(5)
C28	C27	C26	P2	179.2(3)
C28	C27	C26	C31	0.8(5)
C5	C4	C3	C2	-0.2(6)
C21	C20	C25	C24	-0.4(6)
C21	C22	C23	C24	-1.2(7)
C3	C2	C1	P1	177.9(3)
C3	C2	C1	C6	0.0(5)
C3	C4	C5	C6	0.3(6)
С9	C10	C11	C12	-1.0(7)
C41	C40	C39	Fe1	-59.5(3)
C41	C40	C39	C38	0.6(5)
C41	C37	C38	Fe1	59.2(3)
C41	C37	C38	C39	0.4(4)
C40	C41	C37	Fe1	59.6(3)
C40	C41	C37	C38	0.0(4)
C37	C41	C40	Fe1	-59.8(3)

Atom	Atom	Atom	Atom	Angle/°
C37	C41	C40	C39	-0.4(4)
C37	C38	C39	Fe1	59.4(3)
C37	C38	C39	C40	-0.6(5)
C22	C23	C24	C25	0.2(7)
C25	C20	C21	C22	-0.6(5)

18. Crystal structure and table of crystal data of compound If

Experimental. Single clear light colourless prism-shaped crystals of compound **If** were recrystallised from DCM by slow evaporation. A suitable crystal $0.11x0.11x0.07 \text{ mm}^3$ was selected and mounted on a MITIGEN holder oil on a Nonius Kappa Apex II diffractometer. The crystal was kept at T = 110.0(1) K during data collection. Using **Olex2** (Dolomanov et al., 2009), the structure was solved with the **ShelXT** (Sheldrick, 2015) structure solution program, using the Intrinsic Phasing solution method. The model was refined with version 2018/3 of **ShelXL** (Sheldrick, 2015) using Least Squares minimisation.

Crystal Data. $C_{33}H_{29}AuBr_{0.83}CI_{3.17}P_2$, $M_r = 863.06$, orthorhombic, $Pna2_1$ (No. 33), a = 25.312(2) Å, b = 9.6184(7) Å, c = 13.5131(9) Å, $\alpha = \beta = \gamma = 90^{\circ}$, V = 3289.9(4) Å³, T = 110(1) K, Z = 4, Z' = 1, μ (MoK $_{\alpha}$) = 5.854, 17639 reflections measured, 5751 unique ($R_{int} = 0.1236$) which were used in all calculations. The final wR_2 was 0.1461 (all data) and R_1 was 0.0644 (I > 2σ (I)).

Compound	If
CCDC	2036898
Internal reference	17br88
Formula	C ₃₃ H ₂₉ AuBr _{0.83} Cl _{3.17} P ₂
D _{calc.} / g cm ⁻³	1.742
µ/mm⁻¹	5.854
Formula Weight	863.06
Colour	clear light colourless
Shape	prism
Size/mm ³	0.11x0.11x0.07
Т/К	110.0(1)
Crystal System	orthorhombic
Flack Parameter	0.055(14)
Hooft Parameter	0.041(14)
Space Group	Pna21
a/Å	25.312(2)
b/Å	9.6184(7)
<i>c</i> /Å	13.5131(9)
$\alpha/^{\circ}$	90
βſ°	90
γI°	90
V/Å ³	3289.9(4)
Ζ	4
Ζ'	1
Wavelength/Å	0.710730
Radiation type	ΜοΚα
$\theta_{min}/°$	2.660
θmax/°	25.000
Measured Refl.	17639
Independent Refl.	5751
Reflections Used	3381
Rint	0.1236
Parameters	312
Restraints	268
Largest Peak	1.416
Deepest Hole	-1.097
GooF	0.986
wR2 (all data)	0.1461
wR ₂	0.1227
R1 (all data)	0.1258
<i>R</i> ₁	0.0644

Structure Quality Indicators

Reflections:	d min (Mo) $0.84^{I/\sigma(I)}$	7.4 ^{Rint}	12.36% Full 50.4	^{0°} 99.7
Refinement:	Shift -0.001 Max Peak	1.4 Min Peak -1.1	Goof 0.986	<mark>055(</mark> 14)

A clear light colourless prism-shaped crystal with dimensions 0.11x0.11x0.07 mm³ was mounted on a MITIGEN holder oil. X-ray diffraction data were collected using a Nonius Kappa Apex II diffractometer equipped with an Oxford Cryosystems low-temperature device, operating at T = 110.0(1) K. Data were measured using ϕ and ω scans using MoK_{α} radiation (X-ray tube, 50 kV, 32 mA). The total number of runs and images was based on the strategy calculation from the program **APEX3** (Bruker, 2015). The maximum resolution achieved was Θ = 25°. Cell parameters were retrieved using the SAINT (Bruker, V8.38A, after 2013) software and refined using SAINT (Bruker, V8.38A, after 2013) on 917 reflections, 5 % of the observed reflections. Data reduction was performed using the SAINT (Bruker, V8.38A, after 2013) software which corrects for Lorentz polarisation. The final completeness is 99.70 % out to 25° in O. A multi-scan absorption correction was performed using SADABS-2016/2 (Bruker, 2016/2) was used for absorption correction. wR₂(int) was 0.1002 before and 0.0807 after correction. The Ratio of minimum to maximum transmission is 0.4338. The absorption coefficient μ of this material is 5.854 mm⁻¹ at this wavelength (λ = 0.71073Å) and the minimum and maximum transmissions are 0.005 and 0.021. The structure was solved in the space group Pna21 (# 33) by Intrinsic Phasing using the SheIXT (Sheldrick, 2015) structure solution program and refined by Least Squares using version 2016/6 of ShelXL (Sheldrick, 2015). Counterions were found disordered as a mixture of Bromine/Chlorine with a s.o.f of 53.4%/ 46.6% and 29.4%/70.6% for Br1/Cl1 and Br2/Cl2 respectively. All non-hydrogen atoms were refined anisotropically, excepted disordered Br/Cl. Hydrogen atom positions were calculated geometrically and refined using the riding model. Some rigid bond restraints with esds 0.002 for 1,2-distances and 0.002 for 1,3 were employed by using RIGU (Sheldrick, 2015) restraints to maintain a reasonable model. Poor diffraction was observed beyond 2θ = 50°, these reflections were ignored totally from the refinement by using OMIT -2 50. High R_{int} value was observed because crystals weakly diffracting and exhibits many weak reflections at higher theta values.

	•				
Atom	Atom	Length/Å	Atom	Atom	Length/
Au1	Br1	2.371(5)	C20	C25	1.42(4)
Au1	P1	2.250(5)	C19	C14	1.47(2)
Au1	Cl1	2.390(15)	C21	C22	1.37(3)
P1	C13	1.798(14)	C14	C15	1.3900
P1	C1	1.834(15)	C14	C13	1.3900
P1	C7	1.806(16)	C15	C16	1.3900
P2	C20	1.78(2)	C16	C17	1.3900
P2	C26	1.78(2)	C17	C18	1.3900
P2	C19	1.81(3)	C18	C13	1.3900
P2	C27	1.796(15)	C22	C23	1.28(4)
C20	C21	1.42(3)	C23	C24	1.41(3)

Table 4: Bond Lengths in Å for If.

Atom	Atom	Length/Å
C27	C32	1.3900
C27	C28	1.3900
C32	C31	1.3900
C31	C30	1.3900
C30	C29	1.3900
C29	C28	1.3900
C1	C6	1.3900
C1	C2	1.3900
C6	C5	1.3900
C5	C4	1.3900
C4	C3	1.3900

Atom	Atom	Length/Å
С3	C2	1.3900
Cl4	C33	1.74(3)
Cl3	C33	1.69(3)
C24	C25	1.37(3)
C7	C12	1.3900
C7	C8	1.3900
C12	C11	1.3900
C11	C10	1.3900
C10	С9	1.3900
С9	C8	1.3900

 Table 5: Bond Angles in [°] for If.

	-						
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
P1	Au1	Br1	178.3(3)	C25	C20	C21	119(2)
P1	Au1	Cl1	171.8(5)	C14	C19	P2	116.0(16
C13	P1	Au1	117.0(6)	C22	C21	C20	119(2)
C13	P1	C1	106.0(9)	C15	C14	C19	116.8(15
C13	P1	C7	103.7(9)	C15	C14	C13	120.0
C1	P1	Au1	109.1(7)	C13	C14	C19	123.2(15
C7	P1	Au1	111.8(7)	C14	C15	C16	120.0
C7	P1	C1	108.9(9)	C17	C16	C15	120.0
C20	P2	C26	109.9(12)	C16	C17	C18	120.0
C20	P2	C19	108.9(13)	C13	C18	C17	120.0
C20	P2	C27	107.8(10)	C14	C13	P1	121.1(10)
C26	P2	C19	108.3(12)	C18	C13	P1	118.6(10)
C26	P2	C27	110.3(11)	C18	C13	C14	120.0
C27	P2	C19	111.6(11)	C23	C22	C21	123(2)
C21	C20	P2	121.7(19)	C22	C23	C24	119(3)
C25	C20	P2	119.4(19)	C32	C27	P2	120.9(10

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle
C32	C27	C28	120.0	C4	С3	C2	120.0
C28	C27	P2	118.8(10)	С3	C2	C1	120.0
C31	C32	C27	120.0	C25	C24	C23	123(2)
C32	C31	C30	120.0	C12	C7	P1	118.7(
C31	C30	C29	120.0	C12	C7	C8	120.0
C28	C29	C30	120.0	C8	C7	P1	121.2(
C29	C28	C27	120.0	C11	C12	C7	120.0
C6	C1	P1	121.0(10)	C12	C11	C10	120.0
C6	C1	C2	120.0	C11	C10	С9	120.0
C2	C1	P1	118.7(10)	C10	С9	C8	120.0
C5	C6	C1	120.0	С9	C8	C7	120.0
C6	C5	C4	120.0	C24	C25	C20	117(2)
С3	C4	C5	120.0	Cl3	C33	Cl4	117.2(

 Table 6: Torsion Angles in [°] for If.

Atom	Atom	Atom	Atom	Angle/°
Au1	P1	C13	C14	-57.9(11)
Au1	P1	C13	C18	128.3(7)
Au1	P1	C1	C6	127.0(9)
Au1	P1	C1	C2	-46.7(11)
Au1	P1	C7	C12	-24.5(12)
Au1	P1	C7	C8	152.5(8)
P1	C1	C6	C5	-173.6(13)
P1	C1	C2	С3	173.8(13)
P1	C7	C12	C11	177.1(13)
P1	C7	C8	С9	-177.0(14)
P2	C20	C21	C22	176(2)
P2	C20	C25	C24	-179(2)
P2	C19	C14	C15	-68.2(19)
P2	C19	C14	C13	111.4(16)

Atom	Atom	Atom	Atom	Angle/°
P2	C27	C32	C31	173.7(12)
P2	C27	C28	C29	-173.8(12)
C20	P2	C19	C14	-162.1(17)
C20	P2	C27	C32	-82.7(12)
C20	P2	C27	C28	91.0(12)
C20	C21	C22	C23	3(5)
C26	P2	C20	C21	27(3)
C26	P2	C20	C25	-154(2)
C26	P2	C19	C14	-43(2)
C26	P2	C27	C32	157.2(11)
C26	P2	C27	C28	-29.0(13)
C19	P2	C20	C21	146(2)
C19	P2	C20	C25	-35(3)
C19	P2	C27	C32	36.8(13)
C19	P2	C27	C28	-149.5(11)
C19	C14	C15	C16	179.6(15)
C19	C14	C13	P1	6.8(15)
C19	C14	C13	C18	-179.6(16)
C21	C20	C25	C24	1(4)
C21	C22	C23	C24	0(5)
C14	C15	C16	C17	0.0
C15	C14	C13	P1	-173.7(12)
C15	C14	C13	C18	0.0
C15	C16	C17	C18	0.0
C16	C17	C18	C13	0.0
C17	C18	C13	P1	173.8(11)
C17	C18	C13	C14	0.0
C13	P1	C1	C6	-106.2(11)
C13	P1	C1	C2	80.1(11)
C13	P1	C7	C12	-151.4(10)

Atom	Atom	Atom	Atom	Angle/°
C13	P1	С7	С8	25.6(12)
C13	C14	C15	C16	0.0
C22	C23	C24	C25	-3(5)
C23	C24	C25	C20	2(4)
C27	P2	C20	C21	-93(2)
C27	P2	C20	C25	86(2)
C27	P2	C19	C14	79.0(19)
C27	C32	C31	C30	0.0
C32	C27	C28	C29	0.0
C32	C31	C30	C29	0.0
C31	C30	C29	C28	0.0
C30	C29	C28	C27	0.0
C28	C27	C32	C31	0.0
C1	P1	C13	C14	-179.7(9)
C1	P1	C13	C18	6.5(11)
C1	P1	C7	C12	96.0(11)
C1	P1	C7	C8	-86.9(12)
C1	C6	C5	C4	0.0
C6	C1	C2	C3	0.0
C6	C5	C4	C3	0.0
C5	C4	C3	C2	0.0
C4	С3	C2	C1	0.0
C2	C1	C6	C5	0.0
C7	P1	C13	C14	65.6(10)
C7	P1	C13	C18	-108.1(10)
C7	P1	C1	C6	4.8(12)
C7	P1	C1	C2	-168.9(9)
C7	C12	C11	C10	0.0
C12	C7	C8	С9	0.0
C12	C11	C10	С9	0.0

Atom	Atom	Atom	Atom	Angle/°
C11	C10	С9	C8	0.0
C10	С9	C8	C7	0.0
C8	C7	C12	C11	0.0
C25	C20	C21	C22	-3(4)

Table 7: Atomic Occupancies for all atoms that are not fully occupied in 17br88a.

Atom	Occupancy			
Br1	0.534			
Br2	0.294			
Cl1	0.466			
Cl2	0.706			

Citations

O.V. Dolomanov and L.J. Bourhis and R.J. Gildea and J.A.K. Howard and H. Puschmann, Olex2: A complete structure solution, refinement and analysis program, *J. Appl. Cryst.*, (2009), **42**, 339-341.

Sheldrick, G.M., Crystal structure refinement with ShelXL, Acta Cryst., (2015), C71, 3-8.

Sheldrick, G.M., ShelXT-Integrated space-group and crystal-structure determination, Acta Cryst., (2015), A71, 3-8.

Software for the Integration of CCD Detector System Bruker Analytical X-ray Systems, Bruker axs, Madison, WI (after 2013).

Stability of **Ia** in DMSO-D₆ followed by ¹H NMR (400MHz)

Stability of Ia in DMSO-D₆ followed by ^{31}P NMR (162MHz)

Stability of Ia in DMSO-D₆/D₂O followed by ¹H NMR (400MHz)

Stability of Ia in DMSO-D₆/D₂O followed by ^{31}P NMR (162MHz)

Stability of **Ib** in DMSO-D₆ followed by ¹H NMR (500MHz)

Stability of \boldsymbol{Ib} in DMSO-D_6 followed by ^{31}P NMR (202MHz)

Stability of Ib in DMSO-D₆/D₂O followed by ¹H NMR (500MHz)

Stability of Ib in DMSO-D₆/D₂O followed by ^{31}P NMR (202MHz)

Stability of Ic in DMSO-D₆ followed by ¹H NMR (400MHz)

Stability of Ic in DMSO-D₆ followed by ³¹P NMR (162MHz)

Stability of Ic in DMSO-D₆/D₂O followed by ^{1}H NMR (400MHz)

Stability of Ic in DMSO-D $_6/D_2O$ followed by ^{31}P NMR (162MHz)

Stability of Id in DMSO-D₆ followed by ¹H NMR (400MHz)

Stability of Id in DMSO-D₆ followed by ^{31}P NMR (162MHz)

Stability of Id in DMSO-D₆/D₂O followed by ¹H NMR (400MHz)

Stability of Id in DMSO-D₆/D₂O followed by ³¹P NMR (162MHz)

Stability of **Ie** in DMSO-D₆ followed by ¹H NMR (400MHz)

Stability of **Ie** in DMSO-D₆ followed by ³¹P NMR (162MHz)

Stability of Ie in DMSO-D₆/D₂O followed by ¹H NMR (400MHz)

Stability of Ie in DMSO-D₆/D₂O followed by ³¹P NMR (162MHz)

Stability of If in DMSO-D₆ followed by ¹H NMR (500MHz)

Stability of If in DMSO-D₆ followed by ³¹P NMR (202MHz)

Stability of If in DMSO-D₆/D₂O followed by ¹H NMR (500MHz)

Stability of If in DMSO-D₆/D₂O followed by ^{31}P NMR (202MHz)

Stability of Ig in DMSO-D₆ followed by ¹H NMR (500MHz)

Stability of Ig in DMSO-D₆ followed by ^{31}P NMR (202MHz)

Stability of Ig in DMSO-D₆/D₂O followed by ¹H NMR (500MHz)

Stability of Ig in DMSO-D₆/D₂O followed by ^{31}P NMR (202MHz)

20. Water solubility of gold complexes Ia-Ig determined by ICP-AES

Procedure : Approximately 1 mg of each product is dissolved in 5 mL of ultra pure water. After one hour of stirring, the suspension was filtered through a 0.45 mm filter and mineralized by mMW with concentrated Trace Metal quality HCl. The gold concentration in solution was further measured by ICP-AES Thermo Electron (ICAP-7000).

Gold complexes	Mass sample dissolved in 5ml water	Elemental analysis	Total Au in the initial sample	Measured Au in solution	Dissolved compound
	mg	% Au	mg	mg	%
la	1.11	22.02	0.24	0.121	49.38
lb	1.08	21.03	0.23	0.153	67.46
lc	1.06	20.77	0.22	0.101	46.04
Id	1.5	23.61	0.35	0.172	48.47
le	1.05	19.65	0.21	0.130	62.80
If	1.14	23.67	0.27	0.207	76.63
lg	1.18	36.53	0.43	0.002	0.43

21. Cells cytotoxity curves of Ia-g. DMSO. oxaliplatin. 5-FU. paclitaxel (A549)

