Thermal conductivity of PbTe-CoSb₃ bulk polycrystalline composite: the role of microstructure and interface thermal resistance

Artur Kosonowski^a, Ashutosh Kumar^b, Taras Parashchuk^b, Raul Cardoso-Gil^c, Krzysztof T. Wojciechowski^{*a}

^aAGH University of Science and Technology Faculty of Materials Science and Ceramics Mickiewicza ave. 30, 30-059 Krakow, Poland

^bThe Lukasiewicz Research Network - Cracow Institute of Technology, Zakopianska 73, 30-418 Krakow, Poland

^cMax-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany *corresponding author: wojciech@agh.edu.pl

~300 μm (CoSb ₃)	Hand grinding in a mortar, sieving (<300μm, >100μm) and decantation of the solution in isopropanol to separate the desired fraction from residual small grains		
~30 μm (CoSb ₃ and PbTe)	Ball milling (agate jar and balls ∳=10mm)	500 mm	15 minutes
~1 μm (CoSb ₃)	Ball milling (agate jar and balls φ=3mm)	500 ipin	6 hours

Table S1. Milling parameters for preparation of PbTe and CoSb₃ powders

Figure S1. XRD patterns and Rietveld refinement results for the $(0.5)PbTe/(0.5)CoSb_3$ composite for different grain sizes of $CoSb_3$ phase

Lorenz number calculation

	PbTe [1][2]	CoSb ₃ [3]
Effective	0.24m	4m _e
mass	0.24111 _e	
Band gap [eV]	0.31	0.06

Table S2. Material parameters used for calculation of the Lorenz number.

Nonparabolicity of the bands in PbTe and $CoSb_3$ has an impact on the electronic contribution to lattice thermal conductivity [4,5]. Thus, the Kane band model [1][6] was used for calculation of the Lorenz number with the following equations:

$$L_{0}(\eta,\beta) = \left(\frac{k_{B}}{e}\right)^{2} \left[\frac{I_{r+1,2}^{2}(\eta,\beta)}{I_{r+1,2}^{0}(\eta,\beta)} - \left(\frac{I_{r+1,2}^{1}(\eta,\beta)}{I_{r+1,2}^{0}(\eta,\beta)}\right)\right],\tag{1}$$

where $k_{\rm B}$ and e denote Boltzmann constant and elementary charge, $I_{n,k}^{m}(\eta,\beta)$ is the three-parametric Fermi integral:

$$I_{n,k}^{m}(\eta,\beta) = \int_{0}^{\infty} \frac{e^{x-\eta} x^{m} (x+\beta x^{2})^{n}}{(1+e^{x-\eta})^{2} (1+2\beta x)^{k}} dx,$$
(2)

where $\eta = \mu/k_B T$, $\beta = k_B T/E_g$, T is the temperature, E_g is a band gap, μ is the chemical potential, which could be defined as:

$$\mu = \frac{k_B}{e} T \cdot \ln\left(\frac{N_v}{n}\right),\tag{3}$$

$$N_{v} = 2 \left(\frac{2\pi m^{*} k_{B} T}{h^{2}} \right)^{\frac{3}{2}},$$
(4)

where N_v is the density of states, m^* is the effective mass, h is Planck's constant and n is the concentration of electrons.

Figure S2. a) Electrical conductivity b) Lorenz number and c) electronic thermal conductivity as a function of temperature in $(1-x)PbTe/(x)CoSb_3$ composite for $0 \le x \le 1$