## Supplementary Information for:

## Fluorinated Metal Organic Frameworks, MFFIVE-Ni-L (M=Fe/Al, L=pyr), with Coordinatively Unsaturated Metal Site for CO<sub>2</sub> Separation from Flue Gas Composition in presence of Humidity by Computational Methods

Athulya S. Palakkal and Renjith S. Pillai\*

Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603 203, Chennai, India

Email: <a href="mailto:renjiths@srmist.edu.in">renjiths@srmist.edu.in</a> / <a href="mailto:renjithspillai@gmail.com">renjithspillai@gmail.com</a>

#### 1. Crystalline Structures of FEFFIVE with Pyrazine organic linker



**Fig. S1**. Crystal structures extracted from experimental X-ray diffraction measurements for FEFFIVE-Ni-Pyr<sup>1</sup>, unit cell ( $1 \times 1 \times 1$ ) and super cell ( $2 \times 2 \times 2$ ) viewed along c and direction, respectively. (Color code: Ni, yellow; Fe, violet; F, blue; C, gray; N, blue; H, white).

#### 2. Microscopic models for the host [Ni (pyrazine)<sub>2</sub>(FeF<sub>5</sub>)<sub>n</sub>] framework.

#### 2.1. Optimization of dry crystal structure.

As consistent with the experimental assessment of the structural symmetry of the solid, the initial symmetry of  $[Ni(pyrazine)_2(FeF_5)_n]$  MOF corresponds to a tetragonal bipyramidal geometry<sup>1</sup>. This MOF is optimized using PBE<sup>2,3</sup> Density Functional Theory (DFT) functional by employing CP2K<sup>4-7</sup> package. The electronic system customarily discussed with the help of Hubbard function.<sup>8</sup>The GGA+U approach made an improvisation to describe the ground state of d-electron system<sup>9,10</sup>. Additionally, used spin-unrestricted Kohn-Sham (UKS) method for the spin polarization to perform ligand-metal interaction.<sup>11</sup>This model is able to approximate the electron pair correlation function. The elements present in the MOF such as Carbon, Oxygen, Nitrogen, Fluorine and Hydrogen, a triple zeta (TZVP-MOLOPT)<sup>12</sup> basis set was considered, for the Iron and Nickel a double zeta (DZVP-MOLOPT)<sup>12</sup> was applied. The CUS-MOF [Ni(pyrazine)<sub>2</sub>(FeF<sub>5</sub>)n] (here after FEFFIVE-Ni-pyr-TB) also compared with the previously optimized isostructure, [Ni(pyrazine)<sub>2</sub>(AlF<sub>5</sub>)n], (hereafter ALFFIVE-Ni-pyr-TB)<sup>13</sup>. The optimized unit cell parameters for these structures are reported in Table S1.

|                         | Lattice Size(Å) |       |       | Angle ( <sup>0</sup> ) |    |    | Cell volume       | Energy    |
|-------------------------|-----------------|-------|-------|------------------------|----|----|-------------------|-----------|
| MOF                     | a               | b     | c     | α                      | β  | γ  | (Å <sup>3</sup> ) | (eV)      |
| FEFFIVE-Ni-             | 7.007           | 7.007 | 7.929 | 90                     | 90 | 90 | 389.298           | -13721.91 |
| Pyr-TB                  |                 |       |       |                        |    |    |                   |           |
| ALFFIVE-Ni-             |                 |       |       |                        |    |    |                   |           |
| pyr-TB <sup>13,14</sup> | 6.901           | 6.901 | 8.015 | 90                     | 90 | 90 | 381.705           | -10416.85 |

**Table S1**. Cell parameters of FEFFIVE-Ni-pyr-TB and ALFFIVE-Ni-pyr-TB<sup>13,14</sup>, obtained by DFT optimization (Dry case).

#### 2.2. Optimization of H<sub>2</sub>O-loaded Crystalline [Ni(pyrazine)<sub>2</sub>(FeF<sub>5</sub>)n]

The saturated water loading capacity for the [Ni(pyrazine)<sub>2</sub>(FeF<sub>5</sub>)n] and [Ni(pyrazine)<sub>2</sub>(AlF<sub>5</sub>)n] is ~22.0 wt% (i.e. 5 H<sub>2</sub>O/u.c ) and 15.85wt% (i.e. 3 H<sub>2</sub>O/u.c) respectively as observed from the experimental water adsorption isotherm<sup>1</sup>. The experimentally obtained saturated capacities of H<sub>2</sub>O were randomly loaded into the optimized dry FEFFIVE-Ni-pyr-TB structure using Material Studio Software suite<sup>15</sup> and further these H<sub>2</sub>O-loaded structures were considered for geometry optimization. These simulations were performed using CP2K package<sup>4-7</sup> at the DFTlevel keeping the same functional and basis set used for the dry structure, where (i) the positions of both the atoms of the MOF framework and the H<sub>2</sub>O molecules, and (ii) its cell parameters were fully relaxed. The trigonal bipyramidal geometry of FeF<sub>5</sub> is changed to square bipyramidal FeF<sub>5</sub>H<sub>2</sub>O upon the optimization of FEFFIVE-Ni-pyr-TB with saturated water. The DFT-optimized H<sub>2</sub>O-loaded FEFFIVE-Ni-pyr-TB is denoted as FEFFIVE-Ni-pyr-SB. The optimized unit cell parameters and slected geometrical parameters for FEFFIVE-Ni-pyr-SBand its isostructural previously DFT-optimized ALFFIVE-Ni-pyr-SB<sup>14</sup>structures are reported in Table S2 and S3. The atomic partial charges of all the atoms are calculated by using REPEAT method <sup>16</sup>(Table S5). In addition to these water molecules per unit cell was progressively added into the FEFFIVE-Ni-pyr-TB models, and further optimized the 1, 2, 3, 4, 5 and 7 H<sub>2</sub>O/u c loaded FEFFIVE-Ni-pyr-TB with the same level of theory as used above.

**Table S2.** Cell parameters of H<sub>2</sub>O loaded FEFFIVE-Ni-pyr-SB and ALFFIVE-Ni-pyr-SB obtained by DFT optimization.

|                     | Lattic | e Size( | Å)    | Angle ( <sup>0</sup> ) |       |       | Cell             | Energy    |
|---------------------|--------|---------|-------|------------------------|-------|-------|------------------|-----------|
| MOF                 | a      | b       | c     | α                      | β     | γ     | volume $(A^0)^3$ | (eV)      |
| FEFFIVE-Ni-         | 7.063  | 7.063   | 7.888 | 90.00                  | 90.00 | 90.00 | 393.501          | -15599.69 |
| Pyr-SB              |        |         |       |                        |       |       |                  |           |
| ALFFIVE-Ni-         |        |         |       |                        |       |       |                  |           |
| py-SB <sup>14</sup> | 6.871  | 6.871   | 8.364 | 90.00                  | 90.00 | 90.00 | 394.870          | -11824.66 |

Table S3. Experimental and simulated bond length and unit cell dimensions.

|                       | FEFFIVE-Ni-py                 | r-SB          |
|-----------------------|-------------------------------|---------------|
| Bond                  | Experimental <sup>1</sup> (Å) | Simulated (Å) |
| Fe-F <sub>equ</sub>   | 1.937                         | 1.618         |
| Fe-Faxial             | 1.951                         | 1.789         |
| Ni-F <sub>axial</sub> | 2.034                         | 2.145         |
| Ni-N                  | 2.107                         | 2.080         |
| Fe-O                  | 1.890                         | 1.604         |
| С-Н                   | 0.930                         | 1.060         |
| a=b                   | 9.892                         | 7.063         |
| с                     | 7.971                         | 7.888         |

**Table S4.** The possible distance of step by step of water loading optimized structure of

 FEFFIVE-Ni-pyr

| No. of Water loaded in | Distance of               | Distance of                             | Distance of          |
|------------------------|---------------------------|-----------------------------------------|----------------------|
| FEFFIVE-Ni-pyr         | $H_{H2O}$ - $H_{organic}$ | O <sub>H2O</sub> -N <sub>Pyrazine</sub> | O <sub>H2O</sub> -Fe |
|                        | (Å)                       | (Å)                                     | (Å)                  |
| 1H <sub>2</sub> O      | 2.490                     | 4.609                                   | 4.412                |
| 2H <sub>2</sub> O      | 2.530                     | 4.317                                   | 4.392                |
| 3H <sub>2</sub> O      | 3.080                     | 4.392                                   | 3.419                |
| 4H <sub>2</sub> O      | 1.470                     | 2.722                                   | 3.728                |
| 5H <sub>2</sub> O      | 1.537                     | 2.347                                   | 1.604                |
| 6H <sub>2</sub> O      | 1.483                     | 3.735                                   | 1.703                |
| 7H <sub>2</sub> O      | 1.508                     | 3.755                                   | 1.717                |

| Atomic     | Cla   | C2a    | F1     | F2     | H1a   | H2a   | Ni    | N1a    | Fe    |
|------------|-------|--------|--------|--------|-------|-------|-------|--------|-------|
| types      |       |        |        |        |       |       |       |        |       |
| Charge (e) | -     | -0.125 | -0.401 | -0.372 | 0.168 | 0.169 | 0.099 | -0.111 | 1.899 |
|            | 0.121 |        |        |        |       |       |       |        |       |
|            |       |        |        |        |       |       |       |        |       |

**Table S5.** Atomic partial charges of FEFFIVE-Ni-pyr-TB structure

## 3. Pore size distribution, pore volume, specific surface area calculations.

The pore size distributions  $(PSD)^{17}$  of optimized FEFFIVE-Ni-pyr and ALFFIVE-Ni-pyr with and without H<sub>2</sub>O loaded were calculated by Gelb and Gubbins<sup>18</sup> methodology, as shown in Fig. S2. Moreover, internal surface area and pore volume is taken to account. In which the internal surface area calculated through the random selection and checking the point of overlap. While the estimation of pore volume based on the insertion of a random point and checking the overlap and fractionalized with the total attempted movement. These strategies are outline through Gelb and Gubbins<sup>18</sup> methodology (Table S6).

| <b>Tuble 50</b> Surface area and 1 ore volume of with 11 v E 10 pyr 1 D/5D W-1 E/11 | Table S6. | Surface area | and Pore | volume | of MFFIVI | E-Ni-pyr- | -TB/SB | M=FE/AL |
|-------------------------------------------------------------------------------------|-----------|--------------|----------|--------|-----------|-----------|--------|---------|
|-------------------------------------------------------------------------------------|-----------|--------------|----------|--------|-----------|-----------|--------|---------|

|                         | FEFFIVE-Ni- | ALFFIVE-Ni- | FEFFIVE-Ni- | ALFFIVE-Ni- |
|-------------------------|-------------|-------------|-------------|-------------|
|                         | pyr-TB      | pyr-TB      | pyr-SB      | pyr-SB      |
| Surface                 | 1034.5      | 1032.4      | 1549.9      | 1947.8      |
| Area(m <sup>2</sup> /g) |             |             |             |             |
| Pore                    | 0.1470      | 0.1462      | 0.1810      | 0.2399      |
| volume(cc/g)            |             |             |             |             |
| (Free volume)           |             |             |             |             |



**Fig. S2.** Pore size distributions for optimized structures of dry (a) FEFFIVE-Ni-pyr-TB (b) ALFFIVE-Ni-pyr-TB and H<sub>2</sub>O loaded structure of (c) FEFFIVE-Ni-pyr-SB and (d) ALFFIVE-Ni-pyr-SB.

#### 4. Interatomic Potentials (Generic Force field).

Initially, the overall interaction between the MOFs and guest molecules were modelled via combination of Lennard-jones and coulombic term (reported in Table S7). The LJ parameters are clarified by using Universal force field (UFF)<sup>19</sup> and DREIDING<sup>20</sup> potentials for respective inorganic and organic part of the atoms in the MOF framework, except for Al which is considered from Faro et .al<sup>13</sup>. In this work, CO<sub>2</sub> adsorbate models were initially considered by EPM2<sup>21</sup>, EPM<sup>21</sup>, TraPPE<sup>22</sup> intermolecular potential, N<sub>2</sub> by TraPPE<sup>22</sup>, MOM<sup>23</sup> and Murad et al three site model<sup>24</sup> and H<sub>2</sub>O by TIP4P2005<sup>25,26</sup>, TIP4PEw <sup>27</sup>, SPCE<sup>28</sup>, TIP5P<sup>29</sup> and TIP4P<sup>30</sup> respectively.

| Atomic |              | LJ                              |
|--------|--------------|---------------------------------|
| type   | $\sigma$ (Å) | $\mathcal{E}/k_{B}(\mathbf{K})$ |
| С      | 3.473        | 47.857                          |
| Н      | 2.846        | 7.649                           |
| Ν      | 3.662        | 34.724                          |
| F      | 3.093        | 38.975                          |
| Ni     | 2.8340       | 7.5483                          |
| Fe     | 2.9120       | 6.5419                          |
| Al     | 1.447        | 108.998                         |

**Table S7.** LJ potential parameters for the atoms of the MFFIVE-Ni-pyr series.

Table S8. Potential parameters and partial charges for the adsorbates

| Model                             | Atomic type       | $\sigma$ (Å) | $\varepsilon / k_B(\mathbf{K})$ | <i>q</i> ( <i>e</i> ) |
|-----------------------------------|-------------------|--------------|---------------------------------|-----------------------|
| TraPPE <sup>22</sup>              | N2_N              | 3.310        | 36.000                          | -0.4820               |
|                                   | N2_COM            | 0.00         | 0.00                            | 0.9640                |
| MOM <sup>23</sup>                 | N2_N              | 4.307        | 99.6381                         | -0.4050               |
| Three site<br>model <sup>24</sup> | <sup>e</sup> N2_N | 3.05         | 36.4332                         | 0.40484               |
| EPM2 <sup>21</sup>                | CO2_C             | 2.757        | 28.129                          | 0.6512                |
|                                   | CO2_O             | 3.033        | 80.507                          | -0.3256               |
| TraPPE <sup>22</sup>              | CO2_C             | 2.80         | 27.0                            | 0.7000                |
|                                   | CO2_O             | 3.05         | 79.0                            | -0.3500               |
| $EPM^{21}$                        | CO2_C             | 2.785        | 28.99                           | 0.6645                |
|                                   | CO2_O             | 2.921        | 49.060                          | -0.3322               |
| TIP4P2005 <sup>25,26</sup>        | O_e               | 3.159        | 93.2                            | 0.0000                |
|                                   | M_e               | 0.00         | 0.00                            | -1.1128               |
| TIP4PEw <sup>27</sup>             | O_e               | 3.1643       | 81.8743                         | 0.000                 |
|                                   | M_e               | 0.00         | 0.0                             | -1.0484               |
| SPCE <sup>28</sup>                | O_e               | 3.166        | 327.095                         | 0.000                 |
|                                   | M_e               | 0.0          | 0.0                             | -0.8746               |
| TIP5P <sup>29</sup>               | O_e               | 3.1200       | 336.8578                        | 0.000                 |
|                                   | M_e               | 0.0          | 0.0                             | -0.2410               |
| TIP4P <sup>30</sup>               | O_e               | 3.153        | 326.088                         | 0.000                 |
|                                   | M_e               | 0.0          | 0.0                             | -1.04                 |

#### 6. GCMC Simulations.

Grand Canonical Monte Carlo (GCMC) simulations were carried out to predict the single component adsorption of gases, H<sub>2</sub>O, CO<sub>2</sub> and N<sub>2</sub>, and co-adsorption of CO<sub>2</sub>/N<sub>2</sub>and CO<sub>2</sub>/N<sub>2</sub>/H<sub>2</sub>O in all the DFT-optimized structures, FEFFIVE-Ni-pyr-TB, ALFFIVE-Ni-pyr-TB, FEFFIVE-Ni-pyr-SB, and ALFFIVE-Ni-pyr-SB, at 298 K by employing the RASPA<sup>31</sup> simulation code.We also conducted ternary adsorption of H2O/CO2/N2, in which simply assume that N<sub>2</sub> does adsorb negligibly at these conditions from their bulk mole fraction (85%).Our simplified flue gases are at total pressure of 1.0 bar at temperature of 298 K with a range of H<sub>2</sub>O mole fraction varying from 0.001% to 0.5%.(E.g. 0.01%H<sub>2</sub>O, 14.99%CO<sub>2</sub>, and  $85\%N_2$  at 1 bar, T = 298K) with various adsorbate models. The simulation boxes were made of  $(4 \times 4 \times 4)$  64 unit cells. In the guest-host interaction the short range dispersion force define through LJ potential and long range electrostatic interaction via Ewald summation technique. The LJ is truncated and lifted to zero by 12 Å. In the given thermodynamic conditions the fugacities of adsorbed species are calculated through Peng- Robinson equation of states  $(EoS)^{32}$ . For each state point,  $2 \times 10^8$  and  $5 \times 10^7$  Monte Carlo steps have been employed for equilibration and production runs, respectively. Three types of trials were considered for the molecules: (i) translation or rotation, (ii) creation / deletion and (iii) exchange of molecular identity. In addition to this, the translation and rotation Monte Carlo steps were only allowed for pre-loaded H<sub>2</sub>O during the GCMC simulation for simulated co-adsorption under prehumidified conditions. The adsorption enthalpy at low coverage ( $\Delta h$ ) for each gas was calculated through configurational-bias Monte Carlo simulations performed in the NVT ensemble using the revised Widom's test particle insertion method.<sup>33</sup>

#### 6.1 Adsorbent selection criteria

There is a number of benchmarks are available to determine the characteristic and performance of an adsorbent in the adsorption process, currently we chosen selectivity (S) of CO<sub>2</sub> over N<sub>2</sub>, working capacity ( $\Delta$ N) and Adsorption Performance Indicator (API)to account the adsorbent performance.

In this work, selectivity of  $CO_2$  over  $N_2$  with the mole fraction of flue gases in power plant is used (15 %  $CO_2$  and 85 %  $N_2$ ),

$$S(CO_2/N_2) = (x_{co_2}/x_{N_2})(y_{N_2}/y_{CO_2})$$
(1)

Where  $x_{co2}$  and  $x_{N2}$  represents the mole fraction of CO<sub>2</sub> and N<sub>2</sub> in the adsorbed phase and  $y_{N_2}$  and  $y_{CO_2}$  represents the mole fraction of N<sub>2</sub> and CO<sub>2</sub> in bulk phase respectively. The calculated selectivity's are shown in the TableS9.

One of the important parameter used in the basic application of selecting the adsorbent is carried out mainly via on working capacity  $(\Delta N)^{34,35}$ . It is determined through the distinction of gas uptake at the stage of high pressure(N<sub>H</sub>) and lower pressure (N<sub>L</sub>), generally expressed as the unit of cc/cc adsorbent (Table S10).

$$(\Delta N) = N_H - N_L \tag{2}$$

Moreover, one of the significant parameter known as Adsorption Performance Indicator (API) proposed by Wiersum et al.<sup>35</sup> to analyse the performance in MOFs,

$$API = (S_{12} - 1)^A * \frac{\Delta N^B}{\Delta H^C}$$
(3)

Where the  $S_{12}$  corresponds to the selectivity of highly adsorbed to least adsorbed,  $\Delta N$  is the working capacity of highly adsorbed species and  $\Delta H$  terms the average enthalpy of adsorbed species. Here all the A, B, C components used to be one, because of the objective of separation.

#### 7. Comparison of the single component isotherms in dry MFFIVE-Ni-pyr-TB (M=FE/AL).



**Fig. S3.** Single component adsorption isotherm for simulated (closed) using general force field and experimental (open) CO<sub>2</sub> by DFT-optimized dry structures FEFFIVE-Ni-pyr-TB (a) and ALFFIVE-Ni-pyr-TB (b) at 298K



**Fig. S4.** Single component adsorption isotherm for simulated (closed) using general force field and experimental (open)  $N_2$  by DFT-optimized dry structures FEFFIVE-Ni-pyr-TB (a) and ALFFIVE-Ni-pyr-TB (b) at 298K



**Fig. S5.** Simulated single component adsorption isotherm for  $H_2O$  in DFT-optimized dry structures by generic force field, FEFFIVE-Ni-pyr-TB (a) and ALFFIVE-Ni-pyr-TB (b) at 298K

#### 7.1. Comparison of the Enthalpy of adsorption



**Fig. S6.** Enthalpy of adsorption for CO<sub>2</sub> in DFT-optimized structures t 298K: FEFFIVE-Nipyr-TB (a) and ALFFIVE-Ni-pyr-TB (b)



**Fig. S7.** Simulated enthalpy of adsorption using generic force field for  $N_2$  in DFT-optimized structures at 298K: FEFFIVE-Ni-pyr-TB (a) and ALFFIVE-Ni-pyr-TB (b)



**Fig. S8.** Simulated enthalpy of adsorption using generic force field for H<sub>2</sub>O in DFT-optimized structures at 298K: FEFFIVE-Ni-pyr-TB (a) and ALFFIVE-Ni-pyr-TB (b)





**Fig. S9.** Simulated (closed) using generic force field and experimental (open) single component adsorption isotherms for  $H_2O$  at 298K in DFT-optimized  $H_2O$ -loaded structure of FEFFIVE-Ni-pyr-SB (a) and ALFFIVE-Ni-pyr-SB (b).



**Fig. S10.** Simulated (closed) using generic force field and experimental (open) single component adsorption isotherms for CO<sub>2</sub> at 298K in DFT-optimized H<sub>2</sub>O-loaded structure of FEFFIVE-Ni-pyr-SB (a) and ALFFIVE-Ni-pyr-SB (b).



**Fig. S11.** Simulated (closed) using generic force field and experimental (open) single component adsorption isotherms for CO<sub>2</sub> at 298K in DFT-optimized H<sub>2</sub>O-loaded structure of FEFFIVE-Ni-pyr-SB (a) and ALFFIVE-Ni-pyr-SB (b).



8.1 Comparison of the Enthalpy of adsorption

**Fig. S12.** Enthalpy of adsorption simulated (closed) using generic force field and experimental (open) for H<sub>2</sub>O in DFT-optimized water loaded structures of FEFFIVE-Ni-pyr-SB (a) and ALFFIVE-Ni-pyr-SB (b) at 298K.



**Fig. S13.** Enthalpy of adsorption simulated (closed) using generic force field and experimental (open) for CO<sub>2</sub> in DFT-optimized water loaded structures of FEFFIVE-Ni-pyr-SB (a) and ALFFIVE-Ni-pyr-SB (b) at 298K.



**Fig. S14.** Enthalpy of adsorption simulated (closed) using generic force field and experimental (open) for  $N_2$  in DFT-optimized water loaded structures of FEFFIVE-Ni-pyr-SB(a) and ALFFIVE-Ni-pyr-SB(b) at 298K.

8.2 Radial Distribution Functions calculated for single component adsorption using generic force filed in FEFFIVE-Ni-pyr-SB, after achieving local flexibility upon H<sub>2</sub>O-loading.(TIP4P<sup>30</sup> model)



**Fig. S15.** Radial distribution functions (RDF) between H<sub>2</sub>O and the atoms of the framework (Fluorine, F: green, Pyrazine hydrogen, H pyr: magenta, Pyrazine Carbon, Cpyr: black) extracted from the single component adsorption in FEFFIVE-Ni-pyr-SB at 1 bar and 298 K.





**Fig. S16.** Radial distribution functions (RDF) between  $CO_2$  and the atoms of the framework (Fluorine, F: green, Pyrazine hydrogen, H<sub>pyr</sub>: magenta, Pyrazine Carbon, C<sub>pyr</sub>: black, Pyrazine nitrogen, N<sub>pyr</sub>: Royal blue) extracted from the single component adsorption in FEFFIVE-Ni-pyr-SB at 1 bar and 298 K: Carbon of  $CO_2$ : C<sub>CO2</sub> (a) and Oxygen of CO<sub>2</sub>: O<sub>CO2</sub> (b).

(c)  $N_2$ 



**Fig. S17.** Radial distribution functions (RDF) between  $N_2$  and the atoms of the framework (Fluorine, F: green, Pyrazine hydrogen, Hpyr: magenta, Pyrazine Carbon, Cpyr: black) extracted from the single component adsorption in FEFFIVE-Ni-pyr-SB at 1 bar and 298 K.

# 9. Co-adsorption using generic force field - CO<sub>2</sub> adsorption in presence of H<sub>2</sub>O in loaded structure based on TIP4P<sup>29</sup> model.



**Fig. S18.** Simulated co-adsorption isotherm for  $CO_2$  in presence of various concentration of water (TIP4P), (a) FEFFIVE-Ni-pyr-SB and (b) ALFFIVE-Ni-pyr-SB. (RH = 0%, green; 4.871%, black; 9.7427%, red ;14.6141%, blue; 19.4855%, violet, 24.0%, pink)

# 9.1. Radial Distribution Functions calculated for single component adsorption of FEFFIVE-Ni-pyr-SB in humid condition.



**Fig. S19.** Radial distribution functions (RDF) between guest molecules (H<sub>2</sub>O) and the atoms of the framework in FEFFIVE-Ni-pyr-SB.(RH=4.871 %, (a); 9.7427 %,(b) ;14.6141%, (c); 19.4855%,(d))

# 10. Separation of $CO_2/N_2$ mixture in presence of humidity by utilizing generic force field.



**Fig. S20.** Simulated selectivity's for  $CO_2/N_2$  from their 15/85 molar ratio gas mixture in DFToptimized H<sub>2</sub>O-loaded structures utilizing generic force field(TIP4P), (a) FEFFIVE-Ni-pyr-SB, (b) ALFFIVE-Ni-pyr-SB (water loaded = 4.871 %, square; 9.7427%, circle; 14.6141%, up-triangle; 19.4855%, diamond ).



**Fig. S21.** Simulated selectivity for  $CO_2/N_2$  from their 15/85 molar ratio gas mixture in DFToptimized H<sub>2</sub>O-loaded structure of FEFFIVE-Ni-pyr-SB utilizing generic force field, (water loaded = 0%,4.871%, 9.7427%, 14.6141%, 19.4855%).

#### 11. Ternary adsorption involves H<sub>2</sub>O, CO<sub>2</sub> and N<sub>2</sub> using Generic Force Field





**Fig. S22.** Simulated Ternary adsorption for H<sub>2</sub>O,CO<sub>2</sub> and N<sub>2</sub> in FEFFIVE-Ni-pyr-SB (left) and ALFFIVE-Ni-pyr-SB (right) using generic forcefield as a function of H<sub>2</sub>O mole fraction at

total pressure of 1.0 bar and temperature of 298 K. Uptake of  $H_2O$  (Left y-axis, closed blue squares) and  $CO_2$  (Right y-axis, red closed circles) with adsorbate model:  $H_2O/CO_2/N_2$  as (a) TIP4P/EPM2/TraPPE, (b) TIP4P2005/EPM2/TraPPE, (c) TIP4PEw/EPM2/TraPPE, (d) TIP5P/EPM2/TraPPE and (e) TIP4PEw/TraPPE/TraPPE.



#### 12. Snapshot of loaded guest molecule in FEFFIVE-Ni-pyr-SB





**Fig. S23.** Maps corresponding occupied positions of  $CO_2$  (red),  $N_2$  (blue) and  $H_2O$ , (with 19. 5 wt %), (cyan) in 1000 equilibrated frames extracted from the GCMC simulations of FEFFIVE-Ni-pyr-SB utilizing generic force field.

#### **13. GCMC Simulations – Using DFT-Derived Force field.**

Interatomic potentials for describing the interaction between the adsorbate and CUS MOF framework in presence of humidity were derived by Quantum mechanically. Therefore, the extra potentials for Fe-H<sub>2</sub>O are derived from DFT energy profile for the interaction between H<sub>2</sub>O and Fe of MFFIVE-Ni-pyr-SB (M=Fe/Al).Where, the binding energy were calculated as follows,

$$\boldsymbol{E}_{\boldsymbol{B}.\boldsymbol{E}} = \boldsymbol{E}_{\boldsymbol{M}\boldsymbol{O}\boldsymbol{F}+\boldsymbol{G}\boldsymbol{u}\boldsymbol{e}\boldsymbol{s}\boldsymbol{t}} - \boldsymbol{E}_{\boldsymbol{M}\boldsymbol{O}\boldsymbol{F}} - \boldsymbol{E}_{\boldsymbol{G}\boldsymbol{u}\boldsymbol{e}\boldsymbol{s}\boldsymbol{t}} \tag{4}$$

Where  $E_{(MOF +Guest)}$  corresponds to the energy of optimized metal organic framework with loaded guest molecule and  $E_{MOF}$  and  $E_{Guest}$  indicates the energy of MOF and guest molecule individually. From the series of binding energy calculations by varying the Fe-adsorbate interatomic distance from 0.1 to 5 Å leads to the potential energy curve of Guest-host interaction in the system. The potential energy curve further evaluates for the derivation of new force field parameters to represent guest-host interaction. Grand canonical Monte Carlo (GCMC) was performed to determine the single component adsorption and adsorption enthalpy of guest molecule such as CO<sub>2</sub>, N<sub>2</sub> and H<sub>2</sub>O at 298K. Additionally binary adsorption, adsorption in presence of water and ternary were performed carefully.

#### 13.1 Interatomic Potential parameters- DFT-Derived FF.

The interaction between guests molecules with MFFIVE-pyr-SB (M=Fe/Al) framework were explained through Vander Waals contribution, however two more analytical functions are employed to address Vander Waals term

(a) The interaction between any guest molecules with all atoms of the frameworks except open metal site of Fe/Al using standard 12-6 Lennard Jones potential (LJ).(equation5)

$$U_{ij} = \underbrace{\sum_{\substack{i,j \ i < j}} \frac{1}{4\pi\varepsilon_0} \frac{q_i q_j}{r_{ij}}}_{\text{Electrostatic term}} + \underbrace{4\varepsilon_{ij} \left[ \left( \frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left( \frac{\sigma_{ij}}{r_{ij}} \right)^6 \right]}_{\text{Lennard-Jones term}}$$
(5)

Lennard-jones parameters are defined through Universal Field Parameters (UFF)<sup>19</sup> and DREIDING<sup>20</sup> generic fields for the inorganic and organic part of MOF framework, respectively. $\varepsilon_{ij}$  and  $\sigma_{ij}$  indicates the interacting pair LJ parameter and the interaction parameters obtained through Lorentz-Berthelot mixing rules.(i.e., a geometric combining rule for the energy and an arithmetic one for the atomic size:  $\varepsilon_{ij} = (\varepsilon_i \varepsilon_j)^{1/2}$  and  $\sigma_{ij} = (\sigma_i + \sigma_j)/2$ ). The second term is the Columbic contribution between point charges  $q_i$  and  $q_j$  separated by a distance  $r_{ij}$ .)

(b) The interaction between open metal site, Al/Fe, and guest molecule through Buckingham analytical function<sup>36</sup>.(equation 6)

$$U_{ij} = \sum_{\substack{i,j \\ i < j}} \frac{1}{4\pi\varepsilon_0} \frac{q_i q_j}{r_{ij}}}{\sum_{\text{Electrostatic term}}} + \underbrace{\left[A_{ij} e^{-B_{ij} r_{ij}} - S_g \frac{C_{ij}}{r_{ij}^6}\right]}_{\text{Buckingham term}}$$
(6)

A, B and C are the conventional Buckingham parameters for repulsive and attractive contribution respectively and Sg indicates the global scaling factor for the dispersion energies. The DFT derived energy profile represented in Fig.S18 and S19 detailed as below.

**Table S9**: Buckingham parameters associated with the Fe/Al (III)-CUS-MOF with Adsorbates.

|                      | _                    | Buckingham F          | arameters                                 |
|----------------------|----------------------|-----------------------|-------------------------------------------|
| Adsorbates           | A(kJ/mol)            | ${ m B}({ m A}^0)$ -1 | C(kJ mol <sup>-1</sup> A <sup>0 6</sup> ) |
| Fe-Oe                | $7.06 	imes 10^8$    | 10.19                 | 558.556                                   |
| Fe-C_CO <sub>2</sub> | $3.34	imes10^6$      | 2.57                  | $192.06 \times 10^{3}$                    |
| Fe-O_CO <sub>2</sub> | $1.11 \times 10^{7}$ | 2.66                  | $114.41 	imes 10^4$                       |
| Fe- N <sub>2</sub>   | $7.58	imes10^4$      | 3.67                  | 1000                                      |
| Al-Oe                | $8.87 \times 10^{5}$ | 3.63                  | 5774                                      |
| Al-C_CO <sub>2</sub> | $9.69 \times 10^{6}$ | 8.5                   | $273.69 \times 10^{3}$                    |
| Al-O_CO <sub>2</sub> | $9.62 \times 10^{6}$ | 10.3                  | $739.13 \times 10^{2}$                    |
| Al- N <sub>2</sub>   | $9.68 \times 10^{5}$ | 8.79                  | 820                                       |

13.1. Pathway of gases interaction towards framework of FEFFIVE-Ni-pyr-SB and ALFFIVE-Ni-pyr-SB





**Fig. S24.** The systematic energetic pathway of interaction of guest molecule to the framework of FEFFIVE-Ni-pyr-SB (left) and ALFFIVE-Ni-pyr-SB (right) towards the  $H_2O$  (a),  $CO_2$  (b) and  $N_2$  (c) guest molecule

# **13.2.** Force field parameterization for MFFIVE-Ni-pyr-SB (M=FE/AL) frame work *vs* guest interaction profile.

#### (a) H<sub>2</sub>O interaction potential graph



(b) CO2 interaction potential graph





Fig. S25. Comparison of DFT-Derived FF fitted curve (red circles) on the DFT interaction energy profile (black squares) for FEFFIVE-Ni-pyr-SB (left) and ALFFIVE-Ni-pyr-SB (right) towards the  $H_2O(a)$ ,  $CO_2(b)$  and  $N_2(c)$  guest molecule.

4

r(A⁰)

5

2

r(A⁰)

1

3

#### Comparison of Isotherms (Simulated by DFT-derived FF 14. vs **Experimental**)



**Fig. S26.** Simulated DFT-derived FF (full symbol) and experimental (open symbol) single component adsorption isotherm for H<sub>2</sub>O in FEFFIVE-Ni-pyr-SB (a) and ALFFIVE-Ni-pyr-SB (b) at 298K

CO<sub>2</sub> –EPM2 MODEL



 $N_2$  –TraPPE MODEL



**Fig. S27.** Simulated (full symbol) by DFT-Derived FF and experimental (open symbol) single component adsorption isotherm for CO<sub>2</sub>, N<sub>2</sub> in FEFFIVE-Ni-pyr-SB (left) and ALFFIVE-Ni-pyr-SB (right) at 298K



## **15.Enthalpy of Adsorption**



**Fig. S28.** Simulated enthalpy of adsorption with DFT-Derived FF for H<sub>2</sub>O (a) CO<sub>2</sub> (b) and N<sub>2</sub> (c) in FEFFIVE-Ni-pyr-SB (square) and ALFFIVE-Ni-pyr-SB (sphere) at 298K

### 16. Co-adsorption – CO<sub>2</sub> adsorption in wet structures using newly DFT-Derived FF.



**Fig. S29 :** Simulated co-adsorption isotherm for  $CO_2$  in presence of various concentration of water, (a) FEFFIVE-Ni-pyr-SB and (b) ALFFIVE-Ni-pyr-SB using newly DFT-derived FF (RH = 0%, green; 4.871%, black; 9.7427%, red; 14.6141%, blue; 19.4855%, violet, 24.343%, pink)



**Fig. S30.** Evolution of  $CO_2$  uptake as a function of the amount of pre-adsorbed water on a series of MOFs.<sup>14,37</sup> (Green colour specify the present work)

# **16.1.** Radial Distribution Functions calculated for single component adsorption using DFT-derived FF.





**Fig. S31.** Radial distribution functions (RDF) between guest molecules (H<sub>2</sub>O) and the atoms of the framework in FEFFIVE-Ni-pyr-SB with DFT-derived FF. (RH=4.871 %, (a); 9.7427%, (b); 14.6141%, (c); 19.4855%, (d); 24.343%, (e)).

17. Separation of  $CO_2/N_2$  mixture in presence of humidity using DFT-derived FF.



**Fig. S32**. Simulated selectivity's for  $CO_2/N_2$  with 15/85 molar ratio gas mixture in FEFFIVE-Ni-pyr-SB using newly DFT-Derived FF.

#### 18. Ternary adsorption utilizing DFT-derived FF involvesH<sub>2</sub>O, CO<sub>2</sub> and N<sub>2</sub>



**Fig. S33.** Ternary co-adsorption for the flue gas composition,  $H_2O$ ,  $CO_2$  and  $N_2$ , in FEFFIVE-Ni-pyr-SB (a) and ALFFIVE-Ni-pyr-SB (b) by using newly DFT-derived FF. Uptake of  $H_2O$  (Left y-axis, closed blue squares) and  $CO_2$  (Right y-axis, red closed circles) as a function of  $H_2O$  mole fraction at total pressure of 1.0 bar and temperature of 298 K.

#### 18.1 Comparison of Radial Distribution Function of adsorbate interaction.



**Fig. S34:** Radial distribution functions (RDF) between guest molecules (H<sub>2</sub>O) having different models and CO<sub>2</sub> model for FEFFIVE-Ni-pyr (left) and ALFFIVE-Ni-pyr (right) at 1bar (a, b) and 10 bar (c, d).





**Fig. S35:** Radial distribution functions (RDF) between guest molecules (H<sub>2</sub>O) having different models and N<sub>2</sub> (TraPPE) model for FEFFIVE-Ni-pyr (left) and ALFFIVE-Ni-pyr (right) at 1bar (a, b) and 10 bar (c, d).

| Table S10.    | Comparison     | of $CO_2$ / | N <sub>2</sub> selectivity | for a | series | of MOFs | and | conventional |
|---------------|----------------|-------------|----------------------------|-------|--------|---------|-----|--------------|
| adsorbents in | n dry conditio | ns at 1 bar | and 298-303K               |       |        |         |     |              |

| Name                                                         | Mixture    | %CO <sub>2</sub> | in | Selectivity | Calculation               | Ref  |
|--------------------------------------------------------------|------------|------------------|----|-------------|---------------------------|------|
|                                                              |            | mixture          |    |             | method                    |      |
| eea-MOF-4                                                    | $CO_2/N_2$ | 10               |    | 18          | IAST <sup>38</sup>        | [38] |
| rtl-MOF-2                                                    | $CO_2/N_2$ | 10               |    | 38          | IAST <sup>38</sup>        | [38] |
| SIFSIX-2Cu-i                                                 | $CO_2/N_2$ | 10               |    | 72          | Measurement <sup>39</sup> | [39] |
| Eufcu-MOF                                                    | $CO_2/N_2$ | 10               |    | 82          | IAST <sup>40</sup>        | [40] |
| SIFSIX-3-Cu                                                  | $CO_2/N_2$ | 10               |    | 15000       | IAST <sup>41</sup>        | [41] |
| Zn <sub>4</sub> (pydc) <sub>4</sub> (DMF) <sub>2</sub> ·3DMF | $CO_2/N_2$ | 15               |    | 42          | IAST <sup>42</sup>        | [42] |
| UiO-66 (Zr) BTEC                                             | $CO_2/N_2$ | 15               |    | 56          | Measurement <sup>43</sup> | [43] |
| Ni/DOBDC                                                     | $CO_2/N_2$ | 15               |    | 38          | Measurement <sup>44</sup> | [44] |
| CAU-13(Al)                                                   | $CO_2/N_2$ | 15               |    | 22 *        | IAST                      | [45] |
| CPO-27(Ni)                                                   | $CO_2/N_2$ | 15               |    | 13 *        | IAST                      | [45] |
| CuBTC                                                        | $CO_2/N_2$ | 15               |    | 19 *        | IAST                      | [45] |
| MIL-100(Fe)                                                  | $CO_2/N_2$ | 15               |    | 47 *        | IAST                      | [45] |
| MIL-101(Cr)                                                  | $CO_2/N_2$ | 15               |    | 53 *        | IAST                      | [45] |
| MIL-102(Cr)                                                  | $CO_2/N_2$ | 15               |    | 41 *        | IAST                      | [45] |
| MIL-125(Ti)                                                  | $CO_2/N_2$ | 15               |    | 12 *        | IAST                      | [45] |
| MIL-125(Ti)_NH <sub>2</sub>                                  | $CO_2/N_2$ | 15               |    | 18 *        | IAST                      | [45] |
| MIL-140A(Zr)                                                 | $CO_2/N_2$ | 15               |    | 10 *        | IAST                      | [45] |
| MIL-47(V)                                                    | $CO_2/N_2$ | 15               |    | /           |                           | [45] |
| MIL53(Al)_NH <sub>2</sub>                                    | $CO_2/N_2$ | 15               |    | 877 *       | IAST                      | [45] |
| MIL-68(Ga)                                                   | $CO_2/N_2$ | 15               |    | 12 *        | IAST                      | [45] |
| MIL-69(Al)                                                   | $CO_2/N_2$ | 15               |    | 120 *       | IAST                      | [45] |
| MIL-69(Fe)                                                   | $CO_2/N_2$ | 15               |    | 6 *         | IAST                      | [45] |
| MIL-91(Al)                                                   | $CO_2/N_2$ | 15               |    | 68 *        | IAST                      | [45] |
| MIL-91(Ti) HT                                                | $CO_2/N_2$ | 15               |    | 150 *       | IAST                      | [45] |

| NaX                            | $CO_2/N_2$ | 15 | /        |      | [45] |
|--------------------------------|------------|----|----------|------|------|
| ScBDC                          | $CO_2/N_2$ | 15 | 40 *     | IAST | [45] |
| ScBDC_NH <sub>2</sub>          | $CO_2/N_2$ | 15 | 120 *    | IAST | [45] |
| STA-12(Ni)                     | $CO_2/N_2$ | 15 | /        |      | [45] |
| Takeda 5A                      | $CO_2/N_2$ | 15 | 19 *     | IAST | [45] |
| UiO-66 (Zr)                    | $CO_2/N_2$ | 15 | 12 *     | IAST | [45] |
| UiO-66(Zr)_Br                  | $CO_2/N_2$ | 15 | 30 *     | IAST | [45] |
| UiO-66(Zr)_BTeC                | $CO_2/N_2$ | 15 | 30 *     | IAST | [45] |
| UiO-66( $Zr$ )_NH <sub>2</sub> | $CO_2/N_2$ | 15 | 37 *     | IAST | [45] |
| EEEEU/E Ni mun (Dav)           | $CO_2/N_2$ | 15 | ~        | GCMC | This |
| FEFFIVE-INI-pyr (Dry)          |            |    |          |      | work |
| FEFFIVE-Ni-pyr-SB              | $CO_2/N_2$ | 15 | $\infty$ | GCMC | This |
| 4.871% of H <sub>2</sub> O     |            |    |          |      | work |
| FEFFIVE-Ni-pyr-SB              | $CO_2/N_2$ | 15 | 8489     | GCMC | This |
| 9.742% of H <sub>2</sub> O     |            |    |          |      | work |
| FEFFIVE-Ni-pyr-SB              | $CO_2/N_2$ | 15 | 1.454    | GCMC | This |
| 14.614% of H <sub>2</sub> O    |            |    |          |      | work |
| FEFFIVE-Ni-pyr-SB              | $CO_2/N_2$ | 15 | 0        | GCMC | This |
| 19.485% of H <sub>2</sub> O    |            |    |          |      | work |
| FEFFIVE-Ni-pyr-SB-FF           | $CO_2/N_2$ | 15 | 80       | GCMC | This |
| 4.871% of H <sub>2</sub> O     |            |    |          |      | work |
| FEFFIVE-Ni-pyr-SB-FF           | $CO_2/N_2$ | 15 | ∞        | GCMC | This |
| 9.742% of H <sub>2</sub> O     |            |    |          |      | work |
| FEFFIVE-Ni-pyr-SB-FF           | $CO_2/N_2$ | 15 | 9218     | GCMC | This |
| 14.614% of H <sub>2</sub> O    |            |    |          |      | work |
| FEFFIVE-Ni-pyr-SB-FF           | $CO_2/N_2$ | 15 | 4278     | GCMC | This |
| 19.485% of H <sub>2</sub> O    |            |    |          |      | work |
| FEFFIVE-Ni-pyr-SB-FF           | $CO_2/N_2$ | 15 | 0        | GCMC | This |
| 24.343% of H <sub>2</sub> O    |            |    |          |      | work |
| * 202 K · ·                    | 4 30072    |    |          |      |      |

\* 303 K, remaining at 298K
FF means derived force field

| Table S11.   | Comparison    | of $CO_2$ v | working | capacities | for a | a series | of | MOFs | and | conventio | onal |
|--------------|---------------|-------------|---------|------------|-------|----------|----|------|-----|-----------|------|
| adsorbents a | at 298 – 303K |             |         |            |       |          |    |      |     |           |      |

| Sample                      | WC[CO <sub>2</sub> /N <sub>2</sub> ] / cm <sup>3</sup> .cm <sup>-3</sup> | Experimental/Simulation               | Ref  |
|-----------------------------|--------------------------------------------------------------------------|---------------------------------------|------|
|                             | (0-1 bar, 303K)                                                          |                                       |      |
| CAU-13(Al)                  | 35                                                                       | Experimental <sup>46</sup>            | [46] |
| CPO-27(Ni)                  | 175                                                                      | Experimental <sup>47</sup>            | [47] |
| CuBTC                       | 180                                                                      | Experimental <sup>48</sup>            | [48] |
| MIL-100(Fe)                 | 136.2                                                                    | Experimental/Simulation <sup>49</sup> | [49] |
| MIL-101(Cr)                 | 112                                                                      | Experimental/Simulation <sup>49</sup> | [49] |
| MIL-102(Cr)                 | 73                                                                       | Simulation <sup>50</sup>              | [50] |
| MIL-125(Ti)                 | 153                                                                      | Experimental <sup>51</sup>            | [51] |
| MIL-125(Ti)_NH <sub>2</sub> | 129                                                                      | Experimental <sup>51</sup>            | [51] |
| MIL-140A(Zr)                | 69.45                                                                    | Experimental <sup>52</sup>            | [52] |
| MIL-47(V)                   | 162                                                                      | Experimental <sup>53</sup>            | [53] |
| MIL53(Al)_NH <sub>2</sub>   | 10.1                                                                     | Experimental <sup>54</sup>            | [54] |
| MIL-68(Ga)                  | 75                                                                       | Experimental <sup>55</sup>            | [55] |

| 31.5        | Experimental/Simulation <sup>56</sup>                                                                                                                                                                | [56]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 50.9        | Experimental/Simulation                                                                                                                                                                              | [45]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 70.5        | Experimental <sup>57</sup>                                                                                                                                                                           | [57]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 73.1        | Experimental/Simulation <sup>58</sup>                                                                                                                                                                | [58]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 31.7        | Experimental <sup>58</sup>                                                                                                                                                                           | [58]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 242         | Experimental <sup>59</sup>                                                                                                                                                                           | [59]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 110         | Experimental <sup>59</sup>                                                                                                                                                                           | [59]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 175.2       | Experimental <sup>60</sup>                                                                                                                                                                           | [60]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 87.06       | Experimental <sup>61</sup>                                                                                                                                                                           | [61]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 125         | Experimental <sup>61</sup>                                                                                                                                                                           | [61]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 93.52+      | Simulation                                                                                                                                                                                           | This                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                      | work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $58.70^{+}$ | Simulation                                                                                                                                                                                           | This                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 20.00+      |                                                                                                                                                                                                      | work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 38.80       | Simulation                                                                                                                                                                                           | I his                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12 55+      | Simulation                                                                                                                                                                                           | This                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12.33       | Simulation                                                                                                                                                                                           | work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $0^{+}$     | Simulation                                                                                                                                                                                           | This                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                      | work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 57.53+      | Simulation                                                                                                                                                                                           | This                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                      | work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 46.54+      | Simulation                                                                                                                                                                                           | This                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 22.47+      |                                                                                                                                                                                                      | work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 22.47       | Simulation                                                                                                                                                                                           | This                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.86+       | Cimulation                                                                                                                                                                                           | WORK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.80        | Simulation                                                                                                                                                                                           | Inis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $0^+$       | Simulation                                                                                                                                                                                           | This                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0           | Simulation                                                                                                                                                                                           | work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                      | ,, OIK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | 31.5<br>50.9<br>70.5<br>73.1<br>31.7<br>242<br>110<br>175.2<br>87.06<br>125<br>$93.52^+$<br>$58.70^+$<br>$38.80^+$<br>$12.55^+$<br>$0^+$<br>$57.53^+$<br>$46.54^+$<br>$22.47^+$<br>$0.86^+$<br>$0^+$ | $31.5$ Experimental/Simulation $50.9$ Experimental/Simulation $70.5$ Experimental $73.1$ Experimental $31.7$ Experimental $242$ Experimental $59$ Experimental $10$ Experimental $87.06$ Experimental $88.70^+$ Simulation $58.70^+$ Simulation $58.70^+$ Simulation $12.55^+$ Simulation $0^+$ Simulation $46.54^+$ Simulation $22.47^+$ Simulation $0.86^+$ Simulation $0^+$ Simulation $0^+$ Simulation |

#### **References:**

- 1. A. Cadiau, Y. Belmabkhout, K. Adil, PM .Bhatt ,R.S. Pillai, A. Shkurenko, C. Martineau-Corcos, G. Maurin and M. Eddaoudi, *Science*., 2017, **356**, 731-735.
- 2. J. P. Perdew, *Phys Rev B.*, 1986, 33, 8822-8824.
- 3. J.P.Perdew, K.Burke, and M. Ernzerhot, *Phys.Rev.Lett.* 1996, 77, 3865-3868.
- 4. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing and J. Hutter, *Comput Phys Commun.*,2005, **167**, 103-128.
- 5. J. VandeVondele and J. Hutter, J. Chem. Phys., 2003, 118, 4365-4369.

- 6. B. G. Lippert, J. H. Parrinello and Michele, *Mol. Phys.*, 1997, 92, 477-488.
- 7. G. Lippert, J. Hutter and M. Parrinello, *TheorChem Acc.*, 1999, 103, 124-140.
- 8. L. Wang, T. Maxisch and G.Ceder, Phys. Rev. B.,2006,73, 195107-195112.
- W. L. Queen, M. R. Hudson, E. D. Bloch, J. A. Mason, M. I. Gonzalez, J. S. Lee, D. Gygi, J. D. Howe, K. Lee, T. A. Darwish, M. James, V. K. Peterson, S. J. Teat, B. Smit, J. B. Neaton, J. R. Long and C. M. Brown, *Chem. Sci.*, 2014, 5, 4569–4581.
- 10. S. Gueddida, S. Lebègue and M. Badawi, *Appl.Surf.Sci.*, 2020, 533, 147422.
- 11. K. Boguslawski, C.R. Jacob and M. Reiher, J. Chem. Phys., 2013, 138, 044111-044127.
- **12.** J. VandeVondele and J. Hutter, J. Chem. Phys., 2007, **127**, 114105—114113.
- 13. T. M. C. Faro, G. P. Thim and M. S. Skaf, J. Chem. Phys., 2010, 132, 114509-114517.
- 14. R.S. Pillai and C.H. Suresh, Phys. Chem. Chem. Phys., 2019, 21, 16127–16136.
- 15. Materials Studio 7.0, Accelrys Software Inc., San Diego, CA 92121, USA.
- 16. C. Campana, B. Mussard and T.Woo, J. Chem. Theory Comput., 2009, 5, 2866–2878.
- 17. G. Opletal, A. Barnard, 2018. PorosityPlus. v1. CSIRO. Software Collection. https://doi.org/10.25919/5b8e0ffa8afaa.
- 18. L. D. Gelb and K. E. Gubbins, *Langmuir.*, 1998, 15, 305-308
- **19.** A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard and W. M. Skiff, *J. Am. Chem. Soc.* 1992, **114**, 10024-10035.
- 20. S. L. Mayo, B. D. Olafson and W. A. Goddard, J. Phys. Chem., 1990, 94, 8897-8909.
- 21. J. G. Harris and K.H. Yungt , J. Phys. chem. 1995, 99, 12021–12024
- 22. M.G. Martin and J.I. Siepmann, J. Phys. Chem. B. 1998, 102, 2569-2577.
- 23. J. Vekeman, N. Faginas Lago, I. Cuesta, Inmaculada, J. Sanchez-Marín and A. Merás, Computational Science and Its Applications – ICCSA 2018.2018,563-578.
- 24.S. Murad, K.E. Gubbins, In Computer Modeling of Matter; P. Lykos (Ed.), ACS symposium Series 86; American Chemical Society: Washington DC, 1978, pp. 62.
- 25. J. L. F. Abascal and C. Vega, J. Chem. Phys. 2005, 123, 234505.
  26. Z. Hu, Y. Wang, S. Farooq and D. Zhao, AIChE J., 2017, 63, 4103-4114.

- **27.**H. W. Horn, W. C. Swope, J. W. Pitera, J. D. Madura, T. J. Dick, G. L. Hura, and T. Head-Gordon, *J. Chem. Phys.*,2004,**120**,9665-9678.
- 28. H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem, 1987, 91, 6269-6271.
- 29. M.W. Mahoney and W. L. Jorgensen, J. Chem. Phys, 2000,112,8910-8922.
- **30.**W L. Jorgensen, J. Chandrasekhar, J D. Madura, R W. Impey, M L. Klein, *J.Chem.Phys.*1983,**79**,926-935.
- **31.** D. Dubbeldam, S. Calero, D. E. Ellis and R. Q. Snurr, *Mol Simulat.*, 2016, **42**, 81-101.
- 32. D.Y. Peng and D.B. Robinson, Ind. Eng. Chem. Fundam., 1976, 15, 59-64.
- **33.** T. J. H. Vlugt, E. Garcia-Perez, D. Dubbeldam, S. Ban and S. Calero, *J.Chem. Theory Comput.*, 2008, **4**, 1107-1118.
- 34. Z.Sumer and S. Keskin, Ind. Eng. Chem. Res. 2016, 55, 10404–10419.
- **35.**A.D.Wiersum, J.S.Chang, C.Serre and P.L. Llewellyn, *Langmuir.*, 2013, **29**, 3301–3309.
- 36.R. Mercado, B. Vlaisavljevich, L.-C. Lin, K. Lee, Y.Lee, J.A. Mason, D.J. Xiao, M.I. Gonzalez, M. T. Kapelewski, J.B Neaton and B. Smit, J. Phys. Chem. C .,2016, 120, 12590–12604
- 37. N.Chanut, S. Bourrelly, B. Kuchta, C. Serre, J.-S. Chang, P.A. Wright, P.L. Llewellyn, *ChemSusChem.*, 2017, 10, 1543-1553.
- **38.**Z.J. Chen, K. Adil, L.J. Weselinski, Y. Belmabkhout and M. Eddaoudi, J. Mater. Chem. A.,2015, **3**, 6276-6281.
- 39. P. Nugent, Y. Belmabkhout, S.D. Burd, A.J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L.Wojtas, M. Eddaoudi and M.J. Zaworotko, *Nature.*, 2013, 495, 80-84.
- 40. D. X. Xue, Y. Belmabkhout, O. Shekhah, H. Jiang, K. Adil, A.J. Cairns and M. Eddaoudi, J. Am. Chem. Soc., 2015, 137, 5034-5040.
- **41.** O. Shekhah, Y. Belmabkhout, Z. Chen, V. Guillerm, A. Cairns, K. Adil and M. Eddaoudi, Nat. Commun., 2014, **5**, 4228-4231.

- **42.**S.R. Ahrenholtz, C. Landaverde-Alvarado, M. Whiting, S.Y. Lin, C. Slebodnick, E. Marand and A.J. Morris, *Inorg. Chem.*, 2015, **54**, 4328-4336.
- 43. Q. Yang, S. Vaesen, F. Ragon, A.D. Wiersum, D. Wu, A. Lago, T. Devic, C. Martineau, F. Taulelle, P.L. Llewellyn, H.Jobic, C. Zhong, C.Serre, G. De Weireld and G. Maurin, *Angew. Chem. Int. Edit.*, 2013, 52, 10316-10320.
- 44.J. Liu, J.Tian, P.K. Thallapally and B.P. McGrail, J. Phys. Chem. C., 2012, 116, 9575-9581.
- 45.V. Benoit, R.S. Pillai, A.Orsi, P. Normand, H.Jobic, F.Nouar, P.Billemont, E. Bloch, S.Bourrelly, T. Devic, P.A. Wright, G. de Weireld, C.Serre, G.Maurin and P.L. Llewellyn, J. Mater. Chem. A., 2016, 4, 1383-1389.
- **46.** F.Niekiel, J.Lannoeye, H.Reinsch, A.S. Munn, A.Heerwig, I.Zizak, S.Kaskel, R.I. Walton, D. de Vos, P.L. Llewellyn, A.Lieb, G. Maurin and N. Stock, *Inorg. Chem.*, 2014, **53**, 4610-4620.
- 47. W.L. Queen, M.R. Hudson, E.D. Bloch, J.A. Mason, M.I. Gonzalez, J.S. Lee, D.Gygi, J.D. Howe, K. Lee, T.A.Darwish, M. James, V.K. Peterson, S.J. Teat, B.Smit, J.B.Neaton, J.R. Long and C.M. Brown, *Chem. Sci.*, 2014, 5, 4569-4581.
- **48.**L. Grajciar, A.D. Wiersum, P.L. Llewellyn, J.S. Chang and P. Nachtigall, *J. Phys. Chem. C.*,2011, **115**, 17925-17933.
- **49.** P.L. Llewellyn, S.Bourrelly, C.Serre, A.Vimont, M.Daturi, L.Hamon, G. De Weireld, J.S.; Chang, D.Y. Hong, Y.Kyu Hwang, S.HwaJhung and G.Férey, *Langmuir.*, 2008, **24**, 7245-7250.
- 50. D.Damasceno Borges, M.Prakash, N.A.Ramsahye, P.L. Llewellyn, S.Surblé, P.Horcajada, C.Serre and G.Maurin, *Mol. Simulat.*, 2015, 41, 1357-1370.
- 51. S. Vaesen V.Guillerm, Q. Yang, A.D.Wiersum, B.Marszalek, B. Gil, A.Vimont, M.Daturi, T.Devic, P.L. Llewellyn, C.Serre, G.Maurin and G. De Weireld, *Chem. Commun.*, 2013, 49, 10082-10084.
- 52. G.D. Pirngruber, L.Hamon, S. Bourrelly, P.L. Llewellyn, E. Lenoir, V. Guillerm, C.Serre and T.Devic, *ChemSusChem.*, 2012, 5, 762-776.

- 53. P.L. Llewellyn, S.Bourrelly, C. Vagner, N. Heymans, H. Leclerc, A.houfi, P.Bazin, A.Vimont, M.Daturi, T.Devic, C.Serre, G. De Weireld and G.Maurin, *J. Phys. Chem. C.*, 2013, 117, 962-970.
- 54. S.Couck, J.F.Denayer, G.V. Baron, T. Remy, J.Gascon and F. Kapteijn, *J. Am. Chem. Soc.*, 2009, **131**, 6326-6327.
- **55.** Q. Yang, S.Vaesen, M. Vishnuvarthan, F.Ragon, C.Serre, A.Vimont, M. Daturi, G. De Weireld and G.Maurin, *J. Mater. Chem.*, 2012, **22**, 10210-10220
- 56. P.L. Llewellyn, M. Garcia-Rates, L.Gaberova, S.R. Miller, T.Devic, J.C.Lavalley, S.Bourrelly,
  E. Bloch, Y.Filinchuk, P.A. Wright, C.Serre, A.Vimont and G.Maurin, *J. Phys. Chem. C.*, 2015, 119, 4208-4216.
- 57. A.D. Wiersum, J.S. Chang, C.Serre and P.L. Llewellyn, *Langmuir.*, 2013, 29, 3301-3309.
- 58. R.S.Pillai, V. Benoit, A.Orsi, P.L. Llewellyn, P.A. Wright and G.Maurin, J. Phys. Chem. C., 2015, 119, 23592-23598.
- 59.S.R. Miller, G.M. Pearce, P.A. Wright, F.Bonino, S.Chavan, S.Bordiga, I.Margiolaki, N.Guillou, G.Férey, S.Bourrelly and P.L. Llewellyn, J. Am. Chem. Soc., 2008, 130, 15967-15981.
- **60.** Q.Yang, A.D.Wiersum, H.Jobic, V. Guillerm, C. Serre, P.L. Llewellyn and G. Maurin, *J. Phys. Chem. C.*, 2011, **115**, 13768-13774..
- **61.** Q.Yang, A.D.Wiersum, P.L. Llewellyn, V. Guillerm, C.Serred and G.Maurin, *Chem. Commun.*, 2011, **47**, 9603-9605.