Supporting Information

Heterobimetallic Rare Earth Metal-Zinc Catalysts for Reactions of Epoxides and CO₂ under Ambient Conditions

Kuan Yin,^{†,§} Linyan Hua,^{†,§} Liye Qu,[†] Quanyou Yao,[†] Yaorong Wang,[†] Dan

Yuan,*,† Hongpeng You,[‡] Yingming Yao*,†,‡

[†]Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China

[‡]State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China

[§]These authors contributed equally to this work.

*Corresponding author. E-mail: yuandan@suda.edu.cn; yaoym@suda.edu.cn

Contents

1.	Solid state structures of complexes 1-3 and 5-10	S1
2.	NMR spectra of complexes	S6
3.	DOSY analysis of complexes 4 and 11	S12
4.	Crystallographic radius analysis of complexes 4 and 11	513
5.	NMR spectra of cyclic carbonates	S15
6.	Crystallographic data of complexes 1-11	524
7.	Plausible mechanism	542

1. Crystallographic figures of complexes 1-3 and 5-10.

Figure S1. Solid state structure of complex 1·3tol. Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms and solvent molecules are omitted for clarity.

Figure S2. Solid state structure of complex $2 \cdot 3$ tol. Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms and solvent molecules are omitted for clarity.

Figure S3. Solid state structure of complex $3 \cdot \text{tol} \cdot \text{THF}$. Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms and solvent molecules are omitted for clarity.

Figure S4. Solid state structure of complex **5**. Thermal ellipsoids are drawn at the 20% probability level. Hydrogen atoms and solvent molecules are omitted for clarity.

Figure S5. Solid state structure of complex **6**. Thermal ellipsoids are drawn at the 20% probability level. Hydrogen atoms and solvent molecules are omitted for clarity.

Figure S6. Solid state structure of complex 7.4THF. Thermal ellipsoids are drawn at the 20% probability level. Hydrogen atoms and solvent molecules are omitted for clarity.

Figure S7. Solid state structure of complex 8.2THF.hex. Thermal ellipsoids are drawn at the 20% probability level. Hydrogen atoms and solvent molecules are omitted for clarity.

Figure S8. Solid state structure of complex 9.4THF. Thermal ellipsoids are drawn at the 20% probability level. Hydrogen atoms and solvent molecules are omitted for clarity.

Figure S9. Solid state structure of complex 10.4THF. Thermal ellipsoids are drawn at the 20% probability level. Hydrogen atoms and solvent molecules are omitted for clarity.

2. NMR spectra of complexes

Figure S10. ¹H NMR spectrum of LH₃ in CDCl₃

Figure S11. ¹³C NMR spectrum of LH₃ in CDCl₃

Figure S13. ¹³C NMR spectrum of complex **1** in THF-*d8* (poor resolution due to low solubility)

Figure S14. ¹H NMR spectrum of complex 4 in THF-d8

Figure S15. ¹³C NMR spectrum of complex 4 in THF-*d8*

Figure S16. ¹H NMR spectrum of complex 7 in THF-d8

Figure S17. ¹³C NMR spectrum of complex 7 in THF-*d8*

Figure S19. ¹³C NMR spectrum of complex 11 in THF-d8

Figure S20. Variable temperature ¹H NMR spectra of complex 11 (600 MHz, Tol-*d8*)

3. DOSY analysis of complexes 4 and 11

Figure S21. ¹H DOSY spectrum of LaCp₃(THF), H₃L, complexes **4** and **11.** Conditions: all samples were dissolved in THF-*d8* with the same concentration of 0.056 M, 25 °C. The values of the translational diffusion coefficient (*D*) were calculated by the Bruker Topspin 3.2 program.

Compound	theoretical M _w (g/mol)	$\log M_{\rm w}$	$\times 10^6 \mathrm{D}$ (cm ² /s)	log D	calculated M _w (g/mol)	% error
LaCp ₃ (THF)	406	2.61	7.58	-5.12	406	0.00
H ₃ L	542	2.73	6.55	-5.18	545	0.55
4	1498	3.18	4.02	-5.40	1461	2.47
11	1776	3.25	3.61	-5.44	1815	2.20

Table S1 D-Mw Correlation Result of DOSY Data

4. Crystallographic radius analysis of complexes 4 and 11

Table S2 Comparison of the dimensions of complexes **4** and **11** in the solid state as determined by X-ray crystallography and the dimensions in solution as determined by DOSY NMR experiments.

Complay	Hydrodynamic radius		Crystalline radius		
Complex	R_{h} (Å)	R _{max} (Å)	R _{min} (Å)	R _{average} (Å)	
4	11.6 ± 0.5	12.1 ± 0.5	9.0 ± 0.5	10.6 ± 0.5	
11	12.9 ± 0.5	13.1 ± 0.5	10.8 ± 0.5	12.0 ± 0.5	

Figure S22. Geometrical parameters (a = 20.6, b = 18.2, c = 15.6 Å) used for the volume estimation of complex **4** based on its solid-state structure. Following an ellipsoidal model [V = $4/3 \pi (a/2 x b/2 x c/2)$] was used for volume estimation of 3062 Å³.

Figure S23. Geometrical parameters (a = 22.4, b = 19.1, c = 21.5 Å) used for the volume estimation of complex **11** based on its solid-state structure. Following an ellipsoidal model [V = $4/3 \pi$ (a/2 x b/2 x c/2)] was used for volume estimation of 4816 Å³.

5. NMR spectra of cyclic carbonates

¹H NMR spectrum of **4-butyl-1,3-dioxolan-2-one** in CDCl₃

 $^1\mathrm{H}$ NMR spectrum of 12c in CDCl_3

¹H NMR spectrum of **12e** in CDCl₃

¹H NMR spectrum of 12f in CDCl₃

30	29	27	5	8	98	6	88
r.	⊾.	⊾.	⊾.	⊾.	<u>ن</u>	<u>ن</u>	œ
_		~	5	1	~	_	_

00	62 52 23 23 23 24 11 12 11 12 11 12
ບ່.ບໍ	* * * * * * * * * * * *
\sim	

¹H NMR spectrum of **12g** in CDCl₃

¹H NMR spectrum of **12h** in CDCl₃

S19

¹H NMR spectrum of 12k (purified) in CDCl₃

¹H NMR spectrum of **12k** (mixture) in CDCl₃

¹H NMR spectrum of **12l** (purified) in CDCl₃

¹H NMR spectrum of **12l** (mixture) in CDCl₃

¹H NMR spectrum of **12m** (mixture) in CDCl₃

6. Crystallographic data of complexes 1-11

complexes	1·3tol	2 ·3tol
Empirical formula	$C_{89}H_{128}N_2O_8Y_2$	$C_{89}H_{128}N_2O_8Yb_2$
Formula weight	1531.75	1700.01
Temperature/K	99.99	120.01
Crystal system	Triclinic	triclinic
Space group	P-1	P-1
a/Å	9.8400(16)	9.824(2)
b/Å	15.103(3)	15.246(4)
c/Å	15.585(3)	16.151(4)
$\alpha/^{\circ}$	65.375(5)	62.587(6)
β/°	80.978(5)	81.046(7)
γ/°	77.304(5)	78.095(7)
Volume/Å ³	2048.4(6)	2096.2(9)
Ζ	1	1
$\rho_{calc} g/cm^3$	1.242	1.347
μ/mm^{-1}	1.465	2.271
F(000)	818.0	880.0
2θ range for data collection/°	4.732 to 52.742	4.7 to 52.744
Reflections collected	61436	103495
	8384,	8576,
Independent reflections	$[R_{int} = 0.1021]$	$[R_{int} = 0.1070]$
Data/restraints/parameters	8384/7/7448	8570/20/402
Goodness-of-fit on F ²	1.041	1.051
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0501,$ $wR_2 = 0.1231$	$R_1 = 0.0496$, w $R_2 = 0.1146$
Final R indexes [all data]	$R_1 = 0.0665,$ $wR_2 = 0.1306$	$R_1 = 0.0639,$ w $R_2 = 0.1261$
Largest diff. peak/hole / e Å ⁻³	1.26/-1.46	4.05/-1.62

 Table S3 Crystallographic data of complexes 1-2

Table S4 Selected bond lengths [Å] and bond angles [deg] for complex 1

Bond lengths			
Y(1)-N(1)	2.562(3)	Y(1)-O(1)	2.115(4)
Y(1)-O(2)	2.137(2)	Y(1)-O(3)	2.385(2)
Y(1)-O(4 [°])	2.250(2),	Y(1)-O(4)	2.282(2)
O4-(Y1')	2.250(2);		
Bond Angles			
O(1)-Y(1)-N (1)	78.42(2)	O(1)-Y(1)-O(3)	108.71(9)
O(1)-Y(1)-O(4)	113.42(8)	O(1)-Y(1)-O(4 ['])	98.09(8)
O(2)-Y(1)-N(1)	76.08(8)	O(2)-Y(1)-O(1)	119.01(9)
O(2)-Y(1)-O(3)	108.94(8)	O(2)-Y(1)-O(4)	124.67(8)
O(2)-Y(1)-O(4 [°])	87.66(8)	O(3)-Y(1)-N(1)	65.28(8)
O(4)-Y(1)-N(1)	132.57(8)	O(4')-Y(1)-N(1)	158.61(8)
O(4)-Y(1)-O(3)	67.50(7),	O(4')-Y(1)-O(3)	134.54(7),
O(4 [°])-Y(1)-O(4)	68.33(9)	Y(1)-O(4)-Y(1')	111.67(9)
Table S5 Selected	bond lengths [Å] a	and bond angles [deg] fo	r complex 2
Bond lengths			
Yb(1)-N(1)	2.524(5)	Yb(1)-O(1)	2.115(4)
Yb(1)-O(2)	2.118(4)	Yb(1)-O(3)	2.366(4)
Yb(1)-O(4 [°])	2.217(4)	Yb(1)-O(4)	2.251(4)
O4-(Yb1 ['])	2.217(4)		
Bond Angles			
O(1)-Yb(1)-N(1)	76.98(15)	O(1)-Yb(1)-O(3)	108.60(16)
O(1)-Yb(1)-O(4)	125.68(15)	O(1)-Yb(1)-O(4')	87.36(15)
O(2)-Yb(1)-N(1)	78.65(15)	O(2)-Yb(1)-O(3)	110.01(16)
O(2)-Yb(1)-O(1)	119.70(16)	O(2)-Yb(1)-O(4)	124.67(8)
O(2)-Yb(1)-O(4')	96.94(15)	O(3)-Yb(1)-N(1)	65.01(15)
O(4)-Yb(1)-N(1)	133.51(15)	O(4')-Yb(1)-N(1)	158.47(15)
O(4)-Yb(1)-O(3)	68.10(14),	O(4 [°])-Yb(1)-O(3)	134.18(14),
O(4')-Yb(1)-O(4)	67.86(16)	Yb(1)-O(4)-Yb(1')	112.14(16)

 Table S6 Crystallographic data of complexes 3-4

complexes	3 ·tol·THF	4·2tol
Empirical formula	$C_{87}H_{136}N_2O_{11}Nd_2$	$C_{90}H_{136}N_2O_{10}La_2$
Formula weight	1673.45	1683.83
Temperature/K	120.01	120.01
Crystal system	Orthorhombic	orthorhombic
Space group	Pbca	Pbca
a/Å	28.8956(15)	28.9251(15)
b/Å	19.3068(8)	19.4673(10)
c/Å	30.5515(15)	30.6233(16)
$\alpha/^{\circ}$	90.00	90.00
β/°	90.00	90.00
γ/°	90.00	90.00
Volume/Å ³	17044.1(14)	17243.8(15)
Ζ	8	8
$\rho_{calc} g/cm^3$	1.305	1.297
μ/mm^{-1}	1.262	1.034
F(000)	7040.0	7072.0
2θ range for data collection/°	4.4 to 55.00	4.184 to 52.744
Reflections collected	148607	221409
Independent reflections	19509 [$R_{int} = 0.0647$]	17626 [R _{int} = 0.0633]
Data/restraints/parameters	19509/299/990	17626/12/921
Goodness-of-fit on F ²	1.116	1.109
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0371,$ w $R_2 = 0.769$	$R_1 = 0.0375,$ $wR_2 = 0.0830$
Final R indexes [all data]	$R_1 = 0.0617$ $wR_2 = 0.0926$	$R_1 = 0.0465$ $wR_2 = 0.0867$
Largest diff. peak/hole / e Å ⁻³	1.11/-1.10	1.69/-0.89

Table S7 Selected bond lengths [Å] and bond angles [deg] for complex 3

Bond lengths			
Nd(1)-O(1)	2.377(2)	Nd(1)-O(2)	2.582(2)
Nd(1)-O(3)	2.262(2)	Nd(1)-O(4)	2.262(2)
Nd(1)-O(5)	2.375(2)	Nd(1)-O(9)	2.511(2)
Nd(1)-N(1)	2.702(3)	Nd(2)-O(1)	2.380(2)
Nd(2)-O(5)	2.388(2)	Nd(2)-O(6)	2.527(2)
Nd(2)-O(7)	2.274(2)	Nd(2)-O(8)	2.284(2)
Nd(2)-O(10)	2.534(3)	Nd(2)-N(2)	2.718(3)
Bond angles			
O(1)-Nd(1)-O(2)	66.82(7)	O(1)-Nd(1)-O(9)	142.85(8)
O(1)-Nd(1)-N(1)	130.22(8)	O(2)-Nd(1)-N(1)	64.29(7)
O(3)-Nd(1)-O(1)	90.00(8)	O(3)-Nd(1)-O(2)	83.09(8)
O(3)-Nd(1)-O(5)	116.72(8)	O(3)-Nd(1)-O(9)	77.36(8)
O(3)-Nd(1)-N(1)	75.61(8)	O(4)-Nd(1)-O(1)	119.60(8)
O(4)-Nd(1)-O(2)	93.65(8)	O(4)-Nd(1)-O(3)	146.29(8)
O(4)-Nd(1)-O(5)	90.89(8)	O(4)-Nd(1)-O(9)	86.03(8)
O(4)-Nd(1)-N(1)	72.84(8)	O(5)-Nd(1)-O(1)	68.13(8)
O(5)-Nd(1)-O(2)	130.34(7)	O(5)-Nd(1)-O(9)	86.47(8)
O(5)-Nd(1)-N(1)	159.79(8)	O(9)-Nd(1)-O(2)	143.16(7)
O(9)-Nd(1)-N(1)	80.64(8)	O(1)-Nd(2)-O(5)	67.86(8)
O(1)-Nd(2)-O(6)	120.31(8)	O(1)-Nd(2)-O(10)	88.14(8)
O(1)-Nd(2)-N(2)	160.85(8)	O(5)-Nd(2)-O(6)	68.28(8)
O(5)-Nd(2)-O(10)	138.79(8)	O(5)-Nd(2)-N(2)	127.10(8)
O(6)-Nd(2)-O(10)	149.64(8)	O(6)-Nd(2)-N(2)	64.36(8)
O(7)-Nd(2)-O(1)	87.45(8)	O(7)-Nd(2)-O(5)	123.06(8)
O(7)-Nd(2)-O(6)	84.30(8)	O(7)-Nd(2)-O(8)	145.54(8)
O(7)-Nd(2)-O(10)	86.84(9)	O(7)-Nd(2)-N(2)	74.25(8)
O(8)-Nd(2)-O(1)	123.01(8)	O(8)-Nd(2)-O(5)	86.37(8)
O(8)-Nd(2)-O(6)	91.97(8)	O(8)-Nd(2)-O(10)	79.25(9)
O(8)-Nd(2)-N(2)	73.71(8)	O(10)-Nd(2)-N(2)	85.29(9)
Nd(1)-O(1)-Nd(2)	111.13(9)	Nd(1)-O(5)-Nd(2)	110.95(9)

Table S8 Selected bond lengths [Å] and bond angles [deg] for complex 4

Bond lengths			
La(1)-N(1)	2.766(3)	La(1)-O(1)	2.300(2)
La(1)-O(2)	2.318(2)	La(1)-O(3)	2.644(2)
La(1)-O(4)	2.424(2)	La(1)-O(8)	2.422(2)
La(1)-O(9)	2.611(2)	La(2)-N(2)	2.779(3)
La(2)-O(4)	2.435(2)	La(2)-O(5)	2.337(2)
La(2)-O(6)	2.314(2)	La(2)-O(7)	2.592(2)
La(2)-O(8)	2.438(2)	La(2)-O(10)	2.595(3)
Bond angles			
O(1)-La(1)-N(1)	71.91(8)	O(1)-La(1)-O(2)	144.23(8)
O(1)-La(1)-O(3)	92.83(8)	O(1)-La(1)-O(4)	119.27(8)
O(1)-La(1)-O(8)	91.56(8)	O(1)-La(1)-O(9)	85.96(8)
O(2)-La(1)-N(1)	74.47(8)	O(2)-La(1)-O(3)	82.47(8)
O(2)-La(1)-O(4)	91.02(8)	O(2)-La(1)-O(8)	118.60(8)
O(2)-La(1)-O(9)	77.22(8)	O(3)-La(1)-N(1)	62.92(7)
O(4)-La(1)-N(1)	127.67(8)	O(4)-La(1)-O(3)	64.58(7)
O(4)-La(1)-O(9)	144.83(8)	O(8)-La(1)-N(1)	160.63(8)
O(8)-La(1)-O(3)	129.82(7)	O(8)-La(1)-O(4)	68.97(7)
O(8)-La(1)-O(9)	87.60(8)	O(9)-La(1)-N(1)	81.37(8)
O(9)-La(1)-O(3)	142.57(7)	O(4)-La(2)-N(2)	161.25(8)
O(4)-La(2)-O(7)	119.97(8)	O(4)-La(2)-O(8)	68.51(7)
O(4)-La(2)-O(10)	88.57(8)	O(5)-La(2)-N(2)	72.43(8)
O(5)-La(2)-O(4)	124.28(8)	O(5)-La(2)-O(7)	91.29(8)
O(5)-La(2)-O(8)	87.23(8)	O(5)-La(2)-O(10)	79.03(9)
O(6)-La(2)-N(2)	73.17(8)	O(6)-La(2)-O(4)	88.51(8)
O(6)-La(2)-O(5)	143.44(8)	O(6)-La(2)-O(7)	83.98(8)
O(6)-La(2)-O(8)	123.06(8)	O(6)-La(2)-O(10)	87.00(9)
O(7)-La(2)-N(2)	63.11(8)	O(7)-La(2)-O(10)	149.68(8)
O(8)-La(2)-N(2)	124.86(8)	O(8)-La(2)-O(7)	66.90(8)
O(8)-La(2)-O(10)	139.91(9)	O(10)-La(2)-N(2)	86.57(9)
La(1)-O(4)-La(2)	109.83(8)	La(1)-O(8)-La(2)	109.81(8)

 Table S9 Crystallographic data of complexes 5-6

complexes	5	6
Empirical formula	$C_{80}H_{126}N_{2}O_{14}Sm_{2}Zn \\$	$C_{80}H_{126}N_2O_{14}Nd_2Zn\\$
Formula weight	1705.89	1693.67
Temperature/K	296(2)	293 (2)
Crystal system	Triclinic	Triclinic
Space group	P-1	P-1
a/Å	17.005(3)	17.271(8)
b/Å	17.245(3)	17.417(8)
c/Å	17.816(3)	17.976(8)
a/°	108.783(4)	108.994(12)
β/°	93.579(4)	93.290(14)
γ/°	90.473(4)	90.941(14)
Volume/ $Å^3$	4934 5(15)	5101(4)
7	2)	2
\mathcal{L}	2	2
p _{calc} g/cm ³	1.148	1.103
μ/mm^{-1}	1.465	1.284
F(000)	1772.0	1764.0
2θ range for data collection/°	4.538 to 51.362	4.492 to 51.362
Reflections collected	67549	105338
	18455	10320
Independent reflections	$[P_{-} = 0.2201]$	[P - 0.1287]
	$[R_{int} - 0.2291]$	$[\mathbf{R}_{\text{int}} - 0.1287]$
Data/restraints/parameters	18455/1926/906	19329/1778/906
Goodness-of-fit on F ²	1.023	1.030
	$R_1 = 0.1063$	$B_1 = 0.1306$
Final R indexes [I>=2 σ (I)]	$wR_2 = 0.2735$	$wR_2 = 0.3237$
	$R_{\rm c} = 0.2220$	$R_{1} = 0.2021$
Final R indexes [all data]	$m_1 = 0.2220$ $m_2 = 0.2216$	$R_1 = 0.2021$ $mD_1 = 0.2046$
	$WK_2 = 0.3310$	$WK_2 = 0.3940$
Largest diff. peak/hole / e Å ⁻³	1.43/-1.72	4.62/-1.89

Table S10 Selected bond lengths $[\text{\AA}]$ and bond angles [deg] for complex 5

Bond lengths			
Sm(1)-O(1)	2.541(11)	Sm(2)-O(11)	2.529(10)
Sm(1)-O(2)	2.175(11)	Sm(2)-O(12)	2.180(11)
Sm(1)-O(3)	2.559(10)	Sm(2)-O(13)	2.535(9)
Sm(1)-O(4)	2.185(10)	Sm(2)-O(14)	2.163(11)
Sm(1)-O(5)	2.339(9)	Sm(2)-N(2)	2.605(14)
Sm(1)-O(6)	2.348(11)	Zn(1)-O(5)	1.933(9)
Sm(1)-N(1)	2.673(11)	Zn(1)-O(7)	1.945(11)
Sm(2)-O(9)	2.358(11)	Zn(1)-O(8)	1.924(12)
Sm(2)-O(10)	2.335(9)	Zn(1)-O(10)	1.940(10)
Bond angles			
O(1)-Sm(1)-O(3)	141.3(3)	O(10)-Sm(2)-O(11)	66.5(4)
O(1)-Sm(1)-O(1)	79.2 (3)	O(10)-Sm(2)-O(13)	150.5(4)
O(2)-Sm(1)-O(1)	82.4(4)	O(10)-Sm(2)-N(2)	131.1(4)
O(2)-Sm(1)-O(3)	91.1(3)	O(11)-Sm(2)-O(13)	143.0(3)
O(2)-Sm(1)-O(4)	149.0(4)	O(11)-Sm(2)-N(2)	64.6(4)
O(2)-Sm(1)-O(5)	103.1(3)	O(12)-Sm(2)-O(9)	101.1(4)
O(2)-Sm(1)-O(6)	98.3(4)	O(12)-Sm(2)-O(10)	101.5(4)
O(2)-Sm(1)-N(1)	72.4(3)	O(12)-Sm(2)-O(11)	87.5(4)
O(3)-Sm(1)-N(1)	65.1(3)	O(12)-Sm(2)-O(13)	83.6(4)
O(4)-Sm(1)-O(1)	81.9(4)	O(12)-Sm(2)-N(2)	76.2(5)
O(4)-Sm(1)-O(3)	86.2(3)	O(13)-Sm(2)-N(2)	78.4(4)
O(4)-Sm(1)-O(5)	103.8(4)	O(14)-Sm(2)-O(9)	100.6(4)
O(4)-Sm(1)-O(6)	102.4(4)	O(14)-Sm(2)-O(10)	102.3(4)
O(4)-Sm(1)-N(1)	76.7(3)	O(14)-Sm(2)-O(11)	86.1(4)
O(5)-Sm(1)-O(1)	150.3(3)	O(14)-Sm(2)-O(12)	150.5(4)
O(5)-Sm(1)-O(3)	65.6(3)	O(14)-Sm(2)-O(13)	84.3(3)
O(5)-Sm(1)-O(6)	77.1(3)	O(14)-Sm(2)-N(2)	75.1(4)

O(5)-Sm(1)-N(1)	130.5(3)	O(5)-Zn(1)-O(7)	113.0(4)
O(6)-Sm(1)-O(1)	73.2(4)	O(5)-Zn(1)-O(10)	109.2(4)
O(6)-Sm(1)-O(3)	142.7(3)	O(8)-Zn(1)-O(5)	106.1(5)
O(6)-Sm(1)-N(1)	152.2(4)	O(8)-Zn(1)-O(7)	109.4(5)
O(9)-Sm(2)-O(11)	144.8(4)	O(8)-Zn(1)-O(10)	113.1(4)
O(9)-Sm(2)-O(13)	72.2(3)	O(10)-Zn(1)-O(7)	106.2(5)
O(9)-Sm(2)-N(2)	150.6(4)	Zn(1)-O(5)-Sm(1)	125.2(5)
O(10)-Sm(2)-O(9)	78.4(3)	Zn(1)-O(10)-Sm(2)	123.9(5)

Table S11 Selected bond lengths [Å] and bond angles [deg] for complex 6

Bond lengths			
Nd(1)-O(1)	2.569(10)	Nd(2)-O(11)	2.222(11)
Nd(1)-O(2)	2.236(12)	Nd(2)-O(12)	2.609(11)
Nd(1)-O(3)	2.570(10)	Nd(2)-O(13)	2.251(11)
Nd(1)-O(4)	2.213(13)	Nd(2)-O(14)	2.591(13)
Nd(1)-O(5)	2.348(11)	Nd(2)-N(2)	2.715(12)
Nd(1)-O(6)	2.414(13)	Zn(1)-O(5)	1.945(13)
Nd(1)-N(1)	2.683(14)	Zn(1)-O(7)	1.940(13)
Nd(2)-O(9)	2.407(13)	Zn(1)-O(8)	1.988(14)
Nd(2)-O(10)	2.399(12)	Zn(1)-O(10)	1.931(11)
Bond angles			
O(1)-Nd(1)-O(3)	144.0(4)	O(10)-Nd(2)-O(12)	65.1(4)
O(1)-Nd(1)-O(1)	79.7 (4)	O(10)-Nd(2)-O(14)	151.4(4)
O(2)-Nd(1)-O(1)	83.5(4)	O(10)-Nd(2)-N(2)	128.4(4)
O(2)-Nd(1)-O(3)	87.7(4)	O(11)-Nd(2)-O(9)	98.7(5)
O(2)-Nd(1)-O(5)	102.2(4)	O(11)-Nd(2)-O(10)	104.0(4)
O(2)-Nd(1)-O(6)	101.2(5)	O(11)-Nd(2)-O(12)	91.3(4)
O(2)-Nd(1)-N(1)	75.8(5)	O(11)-Nd(2)-O(13)	146.7(4)
O(3)-Nd(1)-N(1)	64.3(4)	O(11)-Nd(2)-O(14)	73.5(4)
		S31	

O(4)-Nd(1)-O(1)	83.8(4)	O(11)-Nd(2)-N(2)	83.13(4)
O(4)-Nd(1)-O(2)	148.7(5)	O(12)-Nd(2)-N(2)	63.5(4)
O(4)-Nd(1)-O(3)	86.0(4)	O(13)-Nd(2)-O(9)	103.4(4)
O(4)-Nd(1)-O(5)	103.3(4)	O(13)-Nd(2)-O(10)	104.6(4)
O(4)-Nd(1)-O(6)	101.6(4)	O(13)-Nd(2)-O(12)	85.5(4)
O(4)-Nd(1)-N(1)	73.9(5)	O(13)-Nd(2)-O(14)	80.6(4)
O(5)-Nd(1)-O(1)	149.4(4)	O(13)-Nd(2)-N(2)	75.4(4)
O(5)-Nd(1)-O(3)	66.6(4)	O(14)-Nd(2)-O(12)	143.3(4)
O(5)-Nd(1)-O(6)	78.0(4)	O(14)-Nd(2)-N(2)	80.1(4)
O(5)-Nd(1)-N(1)	130.9(4)	O(5)-Zn(1)-O(8)	104.5(6)
O(6)-Nd(1)-O(1)	71.4(4)	O(7)-Zn(1)-O(5)	114.1(5)
O(6)-Nd(1)-O(3)	144.6(4)	O(7)-Zn(1)-O(8)	110.2(6)
O(6)-Nd(1)-N(1)	151.1(4)	O(10)-Zn(1)-O(5)	109.9(5)
O(9)-Nd(2)-O(12)	143.8(4)	O(10)-Zn(1)-O(7)	103.5(5)
O(9)-Nd(2)-O(14)	72.8(4)	O(10)-Zn(1)-N(8)	115.0(5)
O(9)-Nd(2)-N(2)	152.6(4)	Zn(1)-O(5)-Nd(1)	125.5(5)
O(10)-Nd(2)-O(9)	78.7(4)	Zn(1)-O(10)-Nd(2)	124.0(6)

Table S12 Crystallographic data of complexes 7-8

complexes	7 ·4THF	8·2THF·hex
Empirical formula	$C_{106}H_{166}N_2O_{16}Y_2Zn$	$C_{104}H_{164}N_2O_{14}Yb_2Zn$
Formula weight	1967.59	2077.81
Temperature/K	120(2)	296.15(2)
Crystal system	Triclinic	triclinic
Space group	P-1	P-1
a/Å	15.3715(19)	13.7365(7)
b/Å	18.856(2)	18.4813(9)
c/Å	19.968(3)	23.8894(11)

$\alpha/^{\circ}$	96.829(4)	111.217(2)
β/°	97.583(4)	97.959(2)
γ/°	111.939(4)	102.216(2)
Volume/Å ³	5231.6(12)	5369.5(5)
Ζ	2	2
$\rho_{calc} g/cm^3$	1.249	1.285
μ/mm^{-1}	1.389	2.006
F(000)	2104.0	2168.0
2θ range for data collection/°	4.416 to 52.744	4.512 to 52.744
Reflections collected	184194	293922
Independent reflections	21369 $[R_{int} = 0.1265]$	21942 $[R_{int} = 0.0645]$
Data/restraints/parameters	21369/134/1028	21942/2073/1069
Goodness-of-fit on F ²	1.036	1.063
Final R indexes $[I \ge 2 \sigma (I)]$	$R_1 = 0.0514,$ $wR_2 = 0.1237$ $R_1 = 0.0892$	$R_1 = 0.0326,$ $wR_2 = 0.0797$ $R_1 = 0.0455$
Final K indexes [all data]	$wR_2 = 0.1386$	$wR_2 = 0.0882$
Largest diff. peak/hole / e Å ⁻³	0.52/-0.64	1.74/-1.73

Table S13 Selected bond lengths [Å] and bond angles [deg] for complex 7

Bond lengths			
Y(1)-O(1)	2.132(2)	Zn(1)-O(8)	1.925(2)
Y(1)-O(2)	2.502(2)	Y(2)-O(7)	2.301(2)
Y(1)-O(3)	2.141(2)	Y(2)-O(8)	2.278(2)
Y(1)-O(4)	2.462(2),	Y(2)-O(9)	2.158(2)
Y(1)-O(5)	2.296(2)	Y(2)-O(10)	2.508(2)
Y(1)-O(6)	2.277(2)	Y(2)-O(11)	2.142(2)
Zn(1)-O(5)	1.961(2)	Y(2)-O(12)	2.476(2)
Zn(1)-O(6)	1.929(2)	Y(1)-N(1)	2.644(3)
Zn(1)-O(7)	2.301(2)	Y(2)-N(2)	2.624(3)
Bond angles			

O(1)-Y(1)-O(2)	85.34(9)	O(8)-Y(2)-O(10)	65.31(7)
O(1)-Y(1)-O(3)	150.86(9)	O(8)-Y(2)-O(12)	148.16(8)
O(1)-Y(1)-O(4)	81.99(9)	O(9)-Y(2)-N(2)	78.25(8)
O(1)-Y(1)-O(5)	104.64(8)	O(9)-Y(2)-O(7)	102.16(8)
O(1)-Y(1)-O(6)	102.03(9	O(9)-Y(2)-O(8)	104.09(8)
O(1)-Y(1)-N(1)	75.46(9)	O(9)-Y(2)-O(10)	88.29(8)
O(2)-Y(1)-N(1)	65.46(8)	O(9)-Y(2)-O(12)	80.95(8)
O(3)-Y(1)-N(1)	76.74(8)	O(10)-Y(2)-N(2)	64.75(7)
O(3)-Y(1)-O(2)	91.01(8)	O(11)-Y(2)-N(2)	75.64(8)
O(3)-Y(1)-O(4)	85.34(9)	O(11)-Y(2)-O(7)	98.73(8)
O(3)-Y(1)-O(5)	98.49(8)	O(11)-Y(2)-O(8)	101.99(8)
O(3)-Y(1)-O(6)	102.68(8)	O(11)-Y(2)-O(9)	151.15(8)
O(4)-Y(1)-N(1)	81.23(8)	O(11)-Y(2)-O(10)	91.52(8)
O(4)-Y(1)-O(2)	146.40(8)	O(11)-Y(2)-O(12)	83.43(8)
O(5)-Y(1)-N(1)	159.96(8)	O(12)-Y(2)-N(2)	81.93(8)
O(5)-Y(1)-O(2)	134.50(8)	O(12)-Y(2)-O(10)	146.46(7)
O(5)-Y(1)-O(4)	78.97(8)	O(6)-Zn(1)-O(5)	83.41 (9)
O(6)-Y(1)-N(1)	131.00(8)	O(6)-Zn(1)-O(7)	115.28(9)
O(6)-Y(1)-O(2)	65.56(8)	O(7)-Zn(1)-O(5)	136.68(10)
O(6)-Y(1)-O(4)	147.68(8)	O(8)-Zn(1)-O(5)	112.20(9)
O(6)-Y(1)-O(5)	68.94(8)	O(8)-Zn(1)-O(6)	134.55(10)
O(7)-Y(2)-N(2)	161.39(8)	O(8)-Zn(1)-O(7)	83.05(9)
O(7)-Y(2)-O(10)	133.69(7)	Zn(1)-O(5)-Y(1)	102.91(9)
O(7)-Y(2)-O(12)	79.79(7)	Zn(1)-O(6)-Y(1)	104.63(10)
O(8)-Y(2)-N(2)	129.89(8)	Zn(1)-O(7)-Y(2)	103.29(9)
O(8)-Y(2)-O(7)	68.39(8)	Zn(1)-O(8)-Y(2)	105.18(16)

Table S14 Selected bond lengths [Å] and bond angles [deg] for complex 8 $S34$

Bond lengths			
Zn(1)-O(5)	1.928(3)	Yb(1)-O(4)	2.474(3)
Zn(1)-O(10)	1.931(3)	Yb(1)-N(1)	2.595(3)
Zn(1)-O(1)	1.953(3)	Yb(2)-O(8)	2.110(3)
Zn(1)-O(6)	1.958(3)	Yb(2)-O(7)	2.127(3)
Yb(1)-O(3)	2.112(3)	Yb(2)-O(10)	2.233(3)
Yb(1)-O(2)	2.127(3)	Yb(2)-O(6)	2.277(3)
Yb(1)-O(5)	2.233(3)	Yb(2)-O(12)	2.454(3)
Yb(1)-O(1)	2.269(3)	Yb(2)-O(9)	2.465(3)
Yb(1)-O(11)	2.466(3)	Yb(2)-N(2)	2.593(3)
Bond angles			
O(5)-Zn(1)-O(10)	133.65(12)	O(4)-Yb(1)-N(1)	65.26(10)
O(5)-Zn(1)-O(1)	81.73(11)	O(8)-Yb(2)-O(7)	153.42(10)
O(1)0-Zn(1)-O(1)	114.57(11)	O(8)-Yb(2)-O(10)	99.51(10)
O(5)-Zn(1)-O6	114.88(12)	O(7)-Yb(2)-O(10)	104.04(11)
O(10)-Zn(1)-O(6)	82.10(11)	O(8)-Yb(2)-O(6)	100.14(10)
O(1)-Zn(1)-O(6)	138.69(12)	O(7)-Yb(2)-O(6)	99.67(10)
O(3)-Yb(1)-O(2)	153.18(10)	O(10)-Yb(2)-O(6)	68.97(9)
O(3)-Yb(1)-O(5)	99.32(11)	O(8)-Yb(2)-O(12)	82.86(10)
O(2)-Yb(1)-O(5)	104.57(11)	O(7)-Yb(2)-O(12)	83.67(11)
O(3)-Yb(1)-O(1)	105.48(10)	O(10)-Yb(2)-O(12)	147.95(10)
O(2)-Yb(1)-O(1)	94.55(10)	O(6)-Yb(2)-O(12)	79.11(10)
O(5)-Yb(1)-O(1)	68.66(9)	O(8)-Yb(2)-O(9)	91.09(10)
O(3)-Yb(1)-O(11)	82.12(11)	O(7)-Yb(2)-O(9)	87.39(10)
O(2)-Yb(1)-O(11)	84.26(11)	O(10)-Yb(2)-O(9)	66.04(9)
O(5)-Yb(1)-O(11)	147.40(10)	O(6)-Yb(2)-O(9)	134.83(9)
O(1)-Yb(1)-O(11)	79.51(10)	O(12)-Yb(2)-O(9)	145.99(9)
O(3)-Yb(1)-O(4)	89.51(11)	O(8)-Yb(2)-N(2)	76.90(10)

O(2)-Yb(1)-O(4)	89.34(11)	O(7)-Yb(2)-N(2)	78.40(10)
O(5)-Yb(1)-O(4)	65.67(9)	O(10)-Yb(2)-N(2)	131.03(10)
O(1)-Yb(1)-O(4)	133.62(9)	O(6)-Yb(2)-N(2)	159.94(10)
O(11)-Yb(1)-O(4)	146.74(10)	O(12)-Yb(2)-N(2)	80.83(10)
O(3)-Yb(1)-N(1)	77.16(10)	O(9)-Yb(2)-N(2)	65.23(9)
O(2)-Yb(1)-N(1)	78.05(10)	Zn(1)-O(1)-Yb(1)	103.71(11)
O(5)-Yb(1)-N(1)	130.82(10)	Zn(1)-O(5)-Yb(1)	105.90(11)
O(1)-Yb(1)-N(1)	160.22(10)	Zn(1)-O(6)-Yb(2)	103.06(11)
O(11)-Yb(1)-N(1)	81.49(10)	Zn(1)-O(10)-Yb(2)	105.60(11)

Table S15 Crystallographic data of complexes 9-11

complexes	9 ·4THF	10·4THF	11 ·4THF
Empirical formula	$C_{154}H_{262}N_2O_{28}Sm_2Zn$	$C_{94}H_{142}N_2O_{13}Nd_2Zn$	C ₁₀₆ H ₁₆₆ N ₂ O ₁₆ La ₂ Zn
Formula weight	2955.71	1854.79	2067.59
Temperature/K	120(2)	296(2)	296(2)
Crystal system	Triclinic	Triclinic	Triclinic
Space group	P-1	P-1	P-1
a/Å	15.4179(6)	15.5910(8)	15.652(2)
b/Å	19.0726(8)	19.2543(10)	19.351(3)
c/Å	19.8412(8)	20.0408(10)	20.081(3)
α/°	96.9020(10)	96.615(2)	96.633(4)
β/°	97.1110(10)	97.694(2)	97.800(4)
γ/°	111.8820(10)	111.723(2)	111.422(4)
Volume/Å ³	5284.1(4)	5449.2(5)	5519.1(12)
Z	2	2	2
$\rho_{calc} g/cm^3$	1.858	1.130	1.244
μ/mm^{-1}	1.421	1.207	1.034
F(000)	3150.0	974.0	2176.0
2θ range for data collection/°	4.206 to 55.038	4.4 to 52.12	4.568 to 55.044

Reflections collected	109255	314402	317522
Independent reflections	24239 [$R_{int} = 0.0707$]	25095 [R _{int} = 0.0692]	25376 [$R_{int} = 0.0786$]
Data/restraints/parameters	24239/26/998	25095/66/1032	25376/261/1247
Goodness-of-fit on F ²	1.017	1.094	1.045
Final R indexes [I>=2 σ (I)] Final R indexes [all data]	$R_1 = 0.0391,$ $wR_2 = 0.0999$ $R_1 = 0.0574,$	$R_1 = 0.0565,$ $wR_2 = 0.1900$ $R_1 = 0.0815$	$R_1 = 0.0408,$ $wR_2 = 0.0925$ $R_1 = 0.0681$
Largest diff. peak/hole / e Å ⁻³	$wR_2 = 0.1136$ 1.97/-0.85	$wR_2 = 0.2112$ 2.51/-1.67	wR ₂ = 0.1039 0.94/-0.79

Table S16 Selected bond lengths [Å] and bond angles [deg] for complex 9

Bond lengths				
Sm(1)-Zn(1)	3.3888(4)	Sm(2)-O(8)	2.355(2)	
Sm(1)-O(1)	2.538(2)	Sm(2)-O(9)	2.563(2)	
Sm(1)-O(2)	2.197(2)	Sm(2)-O(10)	2.192(2)	
Sm(1)-O(3)	2.563(2)	Sm(2)-O(11)	2.203(2)	
Sm(1)-O(4)	2.216(2)	Sm(2)-O(12)	2.536(3)	
Sm(1)-O(5)	2.335(2)	Sm(2)-N(2)	2.691(3)	
Sm(1)-O(6)	2.353(2)	Zn(1)-O(5)	1.931(2)	
Sm(1)-N(1)	2.675(3)	Zn(1)-O(6)	1.950(2)	
Sm(2)-Zn(1)	3.3784(4)	Zn(1)-O(7)	1.932(2)	
Sm(2)-O(7)	2.334(2)	Zn(1)-O(8)	1.959(2)	
Bond angles				
O(2)-Sm(1)-O(3)	90.47(8)	O(8)-Sm(2)-O(10)	147.95(11)	
O(2)-Sm(1)-O(4)	148.47(9)	O(8)-Sm(2)-N(11)	128.91(12)	
O(2)-Sm(1)-O(5)	102.68(9)	O(9)-Sm(2)-O(7)	99.30(12)	
O(2)-Sm(1)-O(6)	98.79(9)	O(9)-Sm(2)-O(8)	103.00(12)	
O(3)-Sm(1)-N(1)	64.11(8)	O(10)-Sm(2)-O(7)	104.19(9)	
O(4)-Sm(1)-N(1)	76.58(8)	O(10)-Sm(2)-O(8)	106.41(9)	
		S37		

O(4)-Sm(1)-O(1)	80.46(8)	O(10)-Sm(2)-O(9)	84.83(9)
O(4)-Sm(1)-O(3)	88.76(8)	O(10)-Sm(2)-O(11)	147.99(9)
O(4)-Sm(1)-O(5)	105.28(9)	O(10)-Sm(2)-O(12)	81.83(9)
O(4)-Sm(1)-O(6)	105.15(9)	O(11)-Sm(2)-N(2)	75.70(9)
O(5)-Sm(1)-N(1)	128.25(8)	O(11)-Sm(2)-O(7)	102.94(9)
O(5)-Sm(1)-O(1)	148.19(8)	O(11)-Sm(2)-O(8)	99.25(9)
O(5)-Sm(1)-O(3)	64.24(8)	O(11)-Sm(2)-O(9)	91.75(9)
O(5)-Sm(1)-O(6)	67.42(8)	O(11)-Sm(2)-O(12)	84.22(9)
O(6)-Sm(1)-N(1)	163.73(8)	O(12)-Sm(2)-N(2)	83.09(9)
O(6)-Sm(1)-O(1)	80.83(8)	O(12)-Sm(2)-O(9)	147.29(8)
O(6)-Sm(1)-O(3)	131.64(8)	O(5)-Zn(1)-O(6)	84.20(10)
O(7)-Sm(2)-N(2)	129.04(9)	O(5)-Zn(1)-O(7)	111.74(10)
O(7)-Sm(2)-O(8)	68.07(8)	O(5)-Zn(1)-O(8)	136.15(14)
O(7)-Sm(2)-O(9)	64.60(8)	O(6)-Zn(1)-O(8)	134.63(10)
O(7)-Sm(2)-O(12)	147.87(9)	O(7)-Zn(1)-O(6)	113.45(10)
O(8)-Sm(2)-O(9)	132.66(8)	O(7)-Zn(1)-O(8)	84.81(10)
O(8)-Sm(2)-O(12)	79.91(8)	Zn(1)-O(5)-Sm(1)	104.78(10)
O(8)-Sm(2)-N(2)	162.69(9)	Zn(1)-O(6)-Sm(1)	103.54(10)
O(9)-Sm(2)-N(2)	64.54(8)	Zn(1)-O(7)-Sm(2)	104.34(10)
O(10)-Sm(2)-N(2)	74.13(9)	Zn(1)-O(8)-Sm(2)	102.71(10)

Table S17 Selected bond	lengths [Å] and bond angles	[deg] for complex 10
-------------------------	------------	-------------------	----------------------

Bond lengths				
Nd(1)-Zn(1)	3.3995(4)	Nd(2)-O(8)	2.223(2)	
Nd(1)-O(1)	2.389(2)	Nd(2)-O(9)	2.240(2)	
Nd(1)-O(2)	2.217(2)	Nd(2)-O(10)	2.597(2)	
Nd(1)-O(3)	2.221(2)	Nd(2)-O(11)	2.369(2)	
Nd(1)-O(4)	2.587(2)	Nd(2)-O(12)	2.573(2)	
Nd(1)-O(5)	2.367(2)	Nd(2)-N(2)	2.713(2)	

Nd(1)-O(6)	2.566(2)	Zn(1)-O(1)	1.958(2)
Nd(1)-N(1)	2.722(3)	Zn(1)-O(5)	1.932(2)
Nd(2)-Zn(1)	3.4122(4)	Zn(1)-O(7)	1.954(2)
Nd(2)-O(7)	2.384(2)	Zn(1)-O(11)	1.933(2)
Bond angles			
O(1)-Nd(1)-O(4)	131.63(7)	O(8)-Nd(2)-O(10)	90.26(8)
O(1)-Nd(1)-O(6)	80.10(8)	O(8)-Nd(2)-O(11)	103.02(8)
O(1)-Nd(1)-N(1)	164.16(8)	O(8)-Nd(2)-O(12)	82.09(8)
O(2)-Nd(1)-O(1)	106.79(8)	O(8)-Nd(2)-N(2)	74.04(8)
O(2)-Nd(1)-O(3)	146.99(9)	O(9)-Nd(2)-O(7)	105.52(8)
O(2)-Nd(1)-O(4)	84.73(9)	O(9)-Nd(2)-O(10)	89.41(8)
O(2)-Nd(1)-O(5)	104.41(9)	O(9)-Nd(2)-O(11)	106.78(8)
O(2)-Nd(1)-O(6)	82.24(9)	O(9)-Nd(2)-O(12)	80.59(8)
O(2)-Nd(1)-N(1)	73.67(8)	O(9)-Nd(2)-N(2)	75.84(8)
O(3)-Nd(1)-O(1)	100.78(8)	O(10)-Nd(2)-N(2)	63.48(7)
O(3)-Nd(1)-O(4)	90.41(8)	O(11)-Nd(2)-O(7)	67.11(7)
O(3)-Nd(1)-O(5)	102.62(9)	O(11)-Nd(2)-O(10)	63.47(7)
O(3)-Nd(1)-O(6)	85.01(9)	O(11)-Nd(2)-O(12)	148.55(8)
O(3)-Nd(1)-N(1)	74.86(8)	O(11)-Nd(2)-N(2)	126.83(7)
O(4)-Nd(1)-N(1)	64.11(8)	O(12)-Nd(2)-O(10)	147.98(7)
O(5)-Nd(1)-O(1)	67.64(8)	O(12)-Nd(2)-N(2)	84.55(8)
O(5)-Nd(1)-O(4)	63.99(7)	O(5)-Zn(1)-O(1)	85.78(9)
O(5)-Nd(1)-O(6)	147.67(8)	O(5)-Zn(1)-O(7)	112.91(10)
O(5)-Nd(1)-N(1)	128.01(8)	O(5)-Zn(1)-O(11)	135.61(10)
O(6)-Nd(1)-O(4)	148.14(8)	O(7)-Zn(1)-O(1)	133.39(10)
O(6)-Nd(1)-N(1)	84.32(9)	O(11)-Zn(1)-O(1)	111.59(10)
O(7)-Nd(2)-O(10)	130.57(7)	O(11)-Zn(1)-O(7)	85.06(9)
O(7)-Nd(2)-O(12)	81.44(8)	Zn(1)-O(1)-Nd(1)	102.42(9)

0(0) 110(2) 0(5)	140.41(0)	$\Sigma \Pi(1) O(11) \Pi \Pi(2)$	104.50(7)
O(8)-Nd(2)-O(9)	146 41(8)	7n(1)-O(11)-Nd(2)	104 50(9)
O(8)-Nd(2)-O(7)	100.05(8)	Zn(1)-O(7)-Nd(2)	103.30(9)
O(7)-Nd(2)-N(2)	165.46(8)	Zn(1)-O(5)-Nd(1)	104.08(9)

 Table S18 Selected bond lengths [Å] and bond angles [deg] for complex 11

Bond lengths			
La(1)-O(1)	2.436(2)	La(2)-O(8)	2.270(2)
La(1)-O(2)	2.290(2)	La(2)-O(9)	2.418(2)
La(1)-O(3)	2.272(2)	La(2)-O(10)	2.647(2)
La(1)-O(4)	2.658(2)	La(2)-O(12)	2.615(2)
La(1)-O(5)	2.424(2)	La(2)-N(2)	2.779(3)
La(1)-O(11)	2.622(2)	Zn(1)-O(1)	1.952(2)
La(1)-N(1)	2.768(2)	Zn(1)-O(5)	1.933(2)
La(2)-O(6)	2.443(2)	Zn(1)-O(6)	1.958(2)
La(2)-O(7)	2.270(2)	Zn(1)-O(9)	1.935(2)
Bond angles			
O(1)-La(1)-O(4)	128.98(7)	O(7)-La(2)-O(9)	105.63(9)
O(1)-La(1)-O(11)	82.64(8)	O(7)-La(2)-O(10)	84.47(8)
O(1)-La(1)-N(1)	167.77(7)	O(7)-La(2)-O(12)	82.45(9)
O(2)-La(1)-O(1)	107.36(8)	O(7)-La(2)-N(2)	72.42(8)
O(2)-La(1)-O(4)	89.16(7)	O(8)-La(2)-O(6)	102.76(8)
O(2)-La(1)-O(5)	107.69(8)	O(8)-La(2)-O(9)	102.64(8)
O(2)-La(1)-O(11)	80.57(8)	O(8)-La(2)-O(10)	89.59(8)
O(2)-La(1)-N(1)	74.59(7)	O(8)-La(2)-O(12)	85.11(9)
O(3)-La(1)-O(1)	101.30(8)	O(8)-La(2)-N(2)	73.69(8)
O(3)-La(1)-O(2)	144.08(8)	O(9)-La(2)-O(6)	66.98(7)
O(3)-La(1)-O(4)	89.32(7)	O(9)-La(2)-O(10)	63.07(7)
O(3)-La(1)-O(5)	103.33(8)	O(9)-La(2)-O(12)	147.63(8)
O(3)-La(1)-O(11)	82.15(8)	O(9)-La(2)-N(2) S40	126.01(8)

O(3)-La(1)-N(1)	72.95(7)	O(10)-La(2)-N(2)	63.05(8)
O(4)-La(1)-N(1)	62.55(7)	O(12)-La(2)-O(10)	149.16(8)
O(5)-La(1)-O(1)	66.38(7)	O(12)-La(2)-N(2)	86.36(9)
O(5)-La(1)-O(4)	62.62(7)	O(1)-Zn(1)-O(6)	131.14(10)
O(5)-La(1)-O(11)	149.02(7)	O(5)-Zn(1)-O(1)	86.43(9)
O(5)-La(1)-N(1)	125.07(7)	O(5)-Zn(1)-O(6)	111.02(10)
O(11)-La(1)-O(4)	148.36(7)	O(5)-Zn(1)-O(9)	135.69(10)
O(11)-La(1)-N(1)	85.84(8)	O(9)-Zn(1)-O(1)	112.19(10)
O(6)-La(2)-O(10)	130.03(7)	O(9)-Zn(1)-O(6)	87.11(9)
O(6)-La(2)-O(12)	80.68(8)	Zn(1)-O(1)-La(1)	103.06(9)
O(6)-La(2)-N(2)	166.84(8)	Zn(1)-O(5)-La(1)	104.11(9)
O(7)-La(2)-O(6)	107.81(8)	Zn(1)-O(6)-La(2)	102.15(9)
O(7)-La(2)-O(8)	144.48(8)	Zn(1)-O(9)-La(2)	103.70(9)

7. Plausible mechanism

Synergism between metal centers is proposed to explain the enhanced activity of the heterobimetallic system (**Figure S24**). The catalytic cycle starts with the coordination of epoxide with one of the rare earth metal centers, followed by attack of the co-catalyst (NBu₄Br) to cause ring-opening process. CO_2 may be activated by the zinc center, which is attacked by the alkoxide group resulting from ring-opening. In addition, Zn center contributes to stabilizing the resulting carbonate, as has been proved computationally. Finally, an intramolecular nucleophilic substitution leads to cyclization along with the release of the bromide anion.

Figure S24. Proposed mechanism for the cycloaddition reaction