Supporting Information

Regulating the Magnetic Dynamics of Mononuclear β -Diketone Dy(III) Single-Molecule Magnets through Substitution Effect on Capping N-Donor Coligands

Jing Xi,^{a#} Xiufang Ma,^{a,d#} Peipei Cen,^b Yuewei Wu,^a Yi-Quan Zhang,^{*,c} Yan Guo,^a Jinhui Yang,^{*,a} Danian Tian,^b and Xiangyu Liu^{*,a,d}

^a State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China

^b College of Public Health and Management, Ningxia Medical University, Yinchuan 750021, China

^c Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China

^d State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China

These authors contributed equally to this work.

*Corresponding author Dr. Xiangyu Liu E-mail: xiangyuliu432@126.com

Prof. Jinhui Yang E-mail: lyjhmp@163.com

Prof. Yi-Quan Zhang zhangyiquan@njnu.edu.cn

Contents

1. Ab initio calculational details.

2. References

Fig. S1 View of the complexes 1-5 molecular structure with thermal ellipsoids drawn at 50% probability level

Fig. S2 Crystal packing diagram for complex 1

Fig. S3 Crystal packing diagram for complex 2

Fig. S4 Crystal packing diagram for complex 3

Fig. S5 Crystal packing diagram for complex 4

Fig. S6 Crystal packing diagram for complex 5

Fig. S7 PXRD curves of 1 (a), 2 (b), 3 (c), 4 (d) and 5 (e)

Fig. S8 Plots of $\chi_M T$ vs log *T* for **1** (a), **2** (b), **3** (c), **4** (d) and **5** (e).

Fig. S9 *M* vs. *H*/*T* data for complexes 1-5 at different temperatures.

Fig. S10 M vs. H curves for 1 (a), 2 (b), 3 (c), 4 (d) and 5 (e) at 2 K. The red lines correspond to the *PHI* calculations.

Fig. S11 Temperature dependent in-phase (χ') of the ac susceptibilities for 1 (a), 2 (b), 3 (c), 4 (d) and 5 (e) under zero dc field.

Fig. S12 Frequency dependent in-phase (χ') of the ac susceptibilities for 1 (a), 2 (b), 3 (c), 4 (d) and 5 (e) under zero dc field.

Fig. S13 Temperature dependent in-phase (χ') of the ac susceptibilities for 1 (a), 2 (b), 3(c), 4 (d) and 5 (e) under the external dc fields.

Fig. S14 Frequency dependent in-phase (χ') of the ac susceptibilities for 1 (a), 2 (b), 3(c), 4 (d) and 5 (e) under the external dc fields.

Fig. S15 Cole-Cole plots under the static dc fields for 1 (a), 2 (b), 3 (c), 4 (d) and 5 (e). The solid lines represent the best fit to the measured results.

Table S1. Crystal Data and Structure Refinement Details for 1-5

Table S2. Selected bond lengths (Å) and bond angles (°) for 1-5

Table S3. Dy (III) ions geometry analysis of 1-5 by SHAPE 2.1 software.

Table S4. Relevant structural parameters in square anti-prism geometry, α angle and ϕ angle for 1-4

Table S5. Crystal field parameters for 1-5 fitted from $\chi_M T vs. T$ and M vs. H simultaneously

Table S6. Energy levels and g for 1-5 fitted from $\chi_M T vs$. T and M vs. H simultaneously

Table S7. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under zero dc field of 1

Table S8. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under zero dc field of 2

Table S9. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under zero dc field of 3

Table S10. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under zero dc field of 4

Table S11. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under zero dc field of 5

Table S12. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 1500 Oe dc field of 1.

Table S13. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 1200 Oe dc field of 2.

Table S14. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 1200 Oe dc field of 3.

Table S15. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 1200 Oe de field of 4.

Table S16. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 1200 Oe dc field of 5.

Table S17. Calculated energy levels (cm⁻¹), $g(g_x, g_y, g_z)$ tensors and predominant m_J values of the lowest eight Kramers doublets (KDs) of complexes 1-5 using CASSCF/RASSI-SO with MOLCAS 8.4.

Table S18. Wave functions with definite projection of the total moment $| m_J >$ for the lowest two KDs of complexes 1-5 using CASSCF/RASSI-SO with MOLCAS 8.4.

1. Ab initio calculational details

Complete-active-space self-consistent field (CASSCF) calculations on complexes **1-5** on the basis of single-crystal X-ray determined geometry have been carried out with MOLCAS 8.4^{S1} program package.

The basis sets for all atoms are atomic natural orbitals from the MOLCAS ANO-RCC library: ANO-RCC-VTZP for Dy^{III}; VTZ for close O and N; VDZ for distant atoms. The calculations employed the second order Douglas-Kroll-Hess Hamiltonian, where scalar relativistic contractions were taken into account in the basis set and the spin-orbit couplings were handled separately in the restricted active space state interaction (RASSI-SO) procedure. For complexes **1-5**, active electrons in 7 active spaces include all *f* electrons (CAS(9 in 7)) in the CASSCF calculation. To exclude all the doubts, we calculated all the roots in the active space. We have mixed the maximum number of spin-free state which was possible with our hardware (all from 21 sextets, 128 from 224 quadruplets, 130 from 490 doublets). SINGLE_ANISO^{S2} program was used to obtain the energy levels, *g* tensors, predominant m_J values, magnetic axes, *et al.*, based on the above CASSCF/RASSI-SO calculations.

2. References

F. Aquilante, J. Autschbach, R. K. Carlson, L. F. Chibotaru, M. G. Delcey, L. De Vico, I. Fdez. Galván, N. Ferré, L. M. Frutos, L. Gagliardi, M. Garavelli, A. Giussani, C. E. Hoyer, G. Li Manni, H. Lischka, D. Ma, P. Å. Malmqvist, T. Müller, A. Nenov, M. Olivucci, T. B. Pedersen, D. Peng, F. Plasser, B. Pritchard, M. Reiher, I. Rivalta, I. Schapiro, J. Segarra-Martí, M. Stenrup, D. G. Truhlar, L. Ungur, A. Valentini, S. Vancoillie, V. Veryazov, V. P. Vysotskiy, O. Weingart, F. Zapata, R. Lindh, MOLCAS 8: New Capabilities for Multiconfigurational Quantum Chemical Calculations across the Periodic Table, *J. Comput. Chem.*, 2016, 37, 506.
 (a) Chibotaru, L. F.; Ungur, L.; Soncini, A. *Angew. Chem. Int. Ed.*, 2008, 47, 4126. (b) Ungur, L.; Van den Heuvel, W.; Chibotaru, L. F. *New J. Chem.*, 2009, 33, 1224. (c) Chibotaru, L. F.; Ungur, L.; Aronica, C.; Elmoll, H.; Pilet, G.; Luneau, D. *J. Am. Chem. Soc.*, 2008, 130, 12445.

Fig. S1 View of the complexes **1-5** molecular structure with thermal ellipsoids drawn at 50% probability level (Dy yellow, Br gold, O red, N blue, F green, C grey). H atoms are omitted for clarity.

Fig. S2 Crystal packing diagram for complex 1

Fig. S3 Crystal packing diagram for complex 2

Fig. S4 Crystal packing diagram for complex 3

Fig. S5 Crystal packing diagram for complex 4

Fig. S6 Crystal packing diagram for complex 5

Fig. S8 Plots of $\chi_M T$ vs log *T* for **1** (a), **2** (b), **3** (c), **4** (d) and **5** (e).

Fig. S9 M vs. H/T data for complexes 1-5 at different temperatures.

Fig. S10 M vs. H curves for 1 (a), 2 (b), 3 (c), 4 (d) and 5 (e) at 2 K. The red lines correspond to the *PHI* calculations.

Fig. S11 Temperature dependent in-phase (χ') of the ac susceptibilities for 1 (a), 2 (b), 3 (c), 4 (d) and 5 (e) under zero dc field.

Fig. S12 Frequency dependent in-phase (χ') of the ac susceptibilities for 1 (a), 2 (b), 3 (c), 4 (d) and 5 (e) under zero dc field.

Fig. S13 Temperature dependent in-phase (χ') of the ac susceptibilities for 1 (a), 2 (b), 3(c), 4 (d) and 5 (e) under the external dc fields.

Fig. S14 Frequency dependent in-phase (χ') of the ac susceptibilities for 1 (a), 2 (b), 3(c), 4 (d) and 5 (e) under the external dc fields.

Fig. S15 Cole-Cole plots under the static dc fields for 1 (a), 2 (b), 3 (c), 4 (d) and 5 (e). The solid lines represent the best fit to the measured results.

	1	2	3	4	5
Empirical formula	$C_{52}H_{31}BrDyF_9N_2O_6$	$C_{52}H_{30}Br_2DyF_9N_2O_6$	$C_{54}H_{36}DyF_9N_2O_6$	$C_{60}H_{48}DyF_9N_2O_6$	C ₅₄ H ₃₆ DyF ₉ N ₂ O ₆
Formula weight	1193.20	1272.10	1142.35	1226.50	1142.35
Crystal system	orthorhombic	monoclinic	orthorhombic	triclinic	monoclinic
Space group	$Pca2_1$	$P2_1/n$	$Pca2_1$	Pl	$P2_1/n$
Temperature (K)	296.0	293.0	150.0	150.0	296.0
a (Å)	20.699(5)	18.614(5)	20.2733(19)	12.6768(13)	11.554(2)
b (Å)	11.435(3)	11.155(3)	11.7442(10)	15.0227(14)	28.108(5)
<i>c</i> (Å)	20.275(5)	23.874(6)	19.7019(18)	16.5274(14)	15.250(3)
α (°)	90	90	90	81.837(7)	90
β (°)	90	101.322(8)	90	73.573(8)	104.622(5)
γ (°)	90	90	90	66.289(9)	90
$V(Å^3)$	4799.0(19)	4861(2)	4690.9(7)	2762.7(5)	4792.3(15)
Ζ	4	4	4	2	4
μ (mm ⁻¹)	2.477	3.268	1.683	1.632	1.648
Unique reflections	10550	8469	12358	9615	11028
Observed reflections	43228	77215	47951	15207	41674
R _{int}	0.0421	0.1069	0.0254	0.0556	0.1103
Final R indices [I >2o(I	$R_1 = 0.0322$	$R_1 = 0.0513$	$R_1 = 0.0200$	$R_1 = 0.0525$	R ₁ =0.0851
	$wR_2 = 0.0709$	$wR_2 = 0.0823$	$wR_2 = 0.0435$	$wR_2 = 0.1266$	wR ₂ =0.2003
R indices (all data)	$R_1 = 0.0502$	$R_1 = 0.1210$	$R_1 = 0.0238$	$R_1 = 0.0729$	R ₁ =0.1732
	$wR_2 = 0.0780$	$wR_2 = 0.0985$	$wR_2 = 0.0452$	$wR_2 = 0.1410$	wR ₂ =0.2487

Table S1. Crystal Data and Structure Refinement Details for 1-5.

Table S2. Selected bor	nd lengths (Å)	and bond angles ((°) for 1-5 .
	<u> </u>	0	

Complex 1			
Dy(1)-O(5)	2.328(5)	O(3)-Dy(1)-O(6)	143.84(15)
Dy(1)-O(2)	2.305(4)	O(3)-Dy(1)-N(1)	73.44(16)
Dy(1)-O(4)	2.298(4)	O(4)-Dy(1)-O(1)	118.18(16)
Dy(1)-O(6)	2.341(4)	O(4)-Dy(1)-O(2)	74.02(15)
Dy(1)-O(3)	2.337(4)	O(4)-Dy(1)-O(3)	71.92(15)

Dy(1)-O(1)	2.331(5)	O(4)-Dy(1)-O(5)	77.52(15)
Dy(1)-N(2)	2.555(6)	O(4)-Dy(1)-O(6)	144.03(15)
Dy(1)-N(1)	2.534(6)	O(4)-Dy(1)-N(1)	135.37(17)
O(1)-Dy(1)- O(3)	79.82(18)	O(4)-Dy(1)-N(2)	81.15(17)
O(1)-Dy(1)- O(6)	76.98(16)	O(5)-Dy(1)-O(1)	140.17(17)
O(1)-Dy(1)- N(1)	81.7(2)	O(5)-Dy(1)-O(3)	138.81(16)
O(1)-Dy(1)- N(2)	141.7(2)	O(5)-Dy(1)-O(6)	72.19(15)
O(2)-Dy(1)- O(1)	73.43(16)	O(5)-Dy(1)-N(2)	73.05(15)
O(2)-Dy(1)- O(3)	118.48(16)	O(5)-Dy(1)-N(1)	113.73(18)
O(2)-Dy(1)- O(5)	77.17(15)	O(6)-Dy(1)-N(1)	76.06(16)
O(2)-Dy(1)- O(6)	80.66(14)	O(6)-Dy(1)-N(2)	107.40(16)
O(2)-Dy(1)- N(1)	149.12(19)	O(3)-Dy(1)-N(2)	75.49(18)
O(2)-Dy(1)- N(2)	144.59(18)	N(2)-Dy(1)-N(1)	63.5(2)

Complex 2			
Dy(1)-O(1)	2.327(4)	O(4)-Dy(1)- O(1)	125.35(14)
Dy(1)-O(2)	2.319(4)	O(4)-Dy(1)- O(2)	75.23(14)
Dy(1)-O(3)	2.319(4)	O(4)-Dy(1)- O(3)	72.19(15)
Dy(1)-O(4)	2.294(4)	O(4)-Dy(1)- O(5)	142.75(14)
Dy(1)-O(5)	2.353(4)	O(4)-Dy(1)- O(6)	74.02(14)
Dy(1)-O(6)	2.341(4)	O(4)-Dy(1)- N(1)	134.87(15)
Dy(1)-N(1)	2.543(4)	O(4)-Dy(1)- N(2)	78.78(14)
Dy(1)-N(2)	2.552(4)	O(5)-Dy(1)- N(1)	73.70(14)
O(1)-Dy(1)- O(5)	75.75(14)	O(5)-Dy(1)-N(2)	104.58(14)
O(1)-Dy(1)- O(6)	137.90(14)	O(6)-Dy(1)- O(5)	71.37(14)
O(1)-Dy(1)- N(1)	79.69(14)	O(6)-Dy(1)- N(1)	114.33(14)
O(1)-Dy(1)- N(2)	140.07(14)	O(6)-Dy(1)- N(2)	74.73(14)
O(2)-Dy(1)- O(1)	72.35(13)	N(1)-Dy(1)- N(2)	62.91(14)
O(2)-Dy(1)- O(3)	110.65(14)	C(2)-O(1)- Dy(1)	132.0(4)
O(2)-Dy(1)- O(5)	85.15(14)	C(4)-O(2)- Dy(1)	137.6(4)
O(2)-Dy(1)- O(6)	79.28(14)	C(16)-O(3)- Dy(1)	133.9(4)
O(2)-Dy(1)- N(1)	148.36(15)	C(18)-O(4)- Dy(1)	140.8(4)
O(2)-Dy(1)- N(2)	147.31(14)	C(30)-O(5)- Dy(1)	126.4(4)
O(3)-Dy(1)- O(1)	79.71(15)	C(32)-O(6)- Dy(1)	126.7(4)
O(3)-Dy(1)- O(5)	145.04(15)	C(43)-N(1)- Dy(1)	119.7(4)
O(3)-Dy(1)- O(6)	140.51(14)	C(47)-N(1)- Dy(1)	121.7(3)
O(3)-Dy(1)- N(1)	77.74(15)	C(48)-N(2)- Dy(1)	122.1(4)
O(3)-Dy(1)- N(2)	79.19(14)	C(52)-N(2)- Dy(1)	120.3(3)

Complex 3				
Dy(1)-O(3)	2.324(2)	O(4)-Dy(1)-N(1)	137.92(8)	
Dy(1)-O(6)	2.338(2)	O(4)-Dy(1)-N(2)	77.85(8)	
Dy(1)-O(1)	2.305(2)	O(4)-Dy(1)-O(2)	81.15(7)	
Dy(1)-O(5)	2.319(2)	O(4)-Dy(1)-O(6)	141.64(7)	

Dy(1)-O(4)	2.331(2)	O(5)-Dy(1)-N(1)	106.74(8)
Dy(1)-O(2)	2.343(2)	O(5)-Dy(1)-N(2)	75.52(8)
Dy(1)-N(1)	2.535(2)	O(5)-Dy(1)-O(2)	147.87(7)
Dy(1)-N(2)	2.530(3)	O(5)-Dy(1)-O(3)	79.69(7)
N(1)-Dy(1)-N(2)	64.10(9)	O(5)-Dy(1)-O(4)	78.73(7)
O(1)-Dy(1)-N(1)	71.46(7)	O(5)-Dy(1)-O(6)	71.96(7)
O(1)-Dy(1)-N(2)	139.15(8)	O(6)-Dy(1)-N(1)	75.55(8)
O(1)-Dy(1)-O(2)	73.41(13)	O(6)-Dy(1)-N(2)	116.67(8)
O(1)-Dy(1)-O(3)	74.36(7)	O(6)-Dy(1)-O(2)	135.41(7)
O(1)-Dy(1)-O(4)	119.58(7)	C(2)-O(1)-Dy(1)	130.8(3)
O(1)-Dy(1)-O(5)	140.60(7)	C(43)-N(1)-Dy(1)	120.5(2)
O(1)-Dy(1)-O(6)	74.04(7)	C(47)-N(1)-Dy(1)	117.9(2)
O(2)-Dy(1)-N(1)	73.07(8)	C(48)-N(2)-Dy(1)	120.4(2)
O(2)-Dy(1)-N(2)	75.94(8)	C(52)-N(2)-Dy(1)	121.0(2)
O(3)-Dy(1)-N(1)	149.14(8)	C(11)-O(1)-Dy(1)	140.60(18)
O(3)-Dy(1)-N(2)	144.50(8)	C(13)-O(2)-Dy(1)	131.91(19)
O(3)-Dy(1)-O(2)	117.52(7)	C(25)-O(3)-Dy(1)	138.6(2)
O(3)-Dy(1)-O(4)	72.66(7)	C(27)-O(4)-Dy(1)	131.16(19)
O(3)-Dy(1)-O(6)	78.13(7)	C(36)-O(5)-Dy(1)	133.65(19)

Complex 4			
Dy(1)-O(1)	2.317(3)	O(4)-Dy(1)-O(6)	76.70(13)
Dy(1)-O(2)	2.321(4)	O(4)-Dy(1)-N(1)	81.77(14)
Dy(1)-O(3)	2.335(4)	O(4)-Dy(1)-N(2)	133.89(14)
Dy(1)-O(4)	2.291(4)	O(5)-Dy(1)-O(1)	140.50(13)
Dy(1)-O(5)	2.316(3)	O(5)-Dy(1)-O(2)	78.69(13)
Dy(1)-O(6)	2.331(3)	O(5)-Dy(1)-O(3)	76.07(14)
Dy(1)-N(1)	2.528(4)	O(5)-Dy(1)-O(6)	72.03(12)
Dy(1)-N(2)	2.523(4)	O(5)-Dy(1)-N(1)	141.25(13)
O(1)-Dy(1)-O(2)	72.90(12)	O(5)-Dy(1)-N(2)	80.60(13)
O(1)-Dy(1)-O(3)	140.90(13)	O(6)-Dy(1)-O(3)	115.54(14)
O(1)-Dy(1)-O(6)	76.87(12)	O(6)-Dy(1)-N(1)	146.67(13)
O(1)-Dy(1)-N(1)	73.41(13)	O(6)-Dy(1)-N(2)	147.13(13)
O(1)-Dy(1)-N(2)	117.18(14)	N(2)-Dy(1)-N(1)	63.26(13)
O(2)-Dy(1)-O(3)	142.92(13)	C(2)-O(1)-Dy(1)	130.8(3)
O(2)-Dy(1)-O(6)	81.09(13)	C(4)-O(2)-Dy(1)	135.7(3)
O(2)-Dy(1)-N(1)	103.90(14)	C(16)-O(3)-Dy(1)	134.2(3)
O(2)-Dy(1)-N(2)	75.90(14)	C(18)-O(4)-Dy(1)	139.8(3)
O(3)-Dy(1)-N(1)	80.47(15)	C(30)-O(5)-Dy(1)	132.8(3)
O(3)-Dy(1)-N(2)	73.55(15)	C(32)-O(6)-Dy(1)	138.4(3)
O(4)-Dy(1)-O(1)	76.10(13)	C(43)-N(1)-Dy(1)	119.7(3)
O(4)-Dy(1)-O(2)	145.15(12)	C(47)-N(1)-Dy(1)	123.1(3)
O(4)-Dy(1)-O(3)	71.72(13)	C(48)-N(1)-Dy(1)	122.8(3)
O(4)-Dy(1)-O(5)	118.35(14)	C(52)-N(1)-Dy(1)	120.0(3)

Complex 5			
Dy(1)-O(1)	2.351(7)	O(5)-Dy(1)-O(2)	151.5(2)
Dy(1)-O(2)	2.344(7)	O(5)-Dy(1)-O(3)	133.7(3)
Dy(1)-O(3)	2.352(7)	O(5)-Dy(1)-O(4)	75.8(3)
Dy(1)-O(4)	2.335(7)	O(5)-Dy(1)-N(1)	74.5(3)
Dy(1)-O(5)	2.332(8)	O(5)-Dy(1)-N(2)	117.8(3)
Dy(1)-O(6)	2.319(7)	O(6)-Dy(1)-O(1)	154.6(3)
Dy(1)-N(1)	2.538(8)	O(6)-Dy(1)-O(2)	133.6(3)
Dy(1)-N(2)	2.518(8)	O(6)-Dy(1)-O(3)	73.9(3)
O(1)-Dy(1)-O(3)	121.5(3)	O(6)-Dy(1)-O(4)	87.2(3)
O(1)-Dy(1)-N(1)	75.8(3)	O(6)-Dy(1)-O(5)	72.4(3)
O(1)-Dy(1)-N(2)	124.1(3)	O(6)-Dy(1)-N(1)	103.4(3)
O(1)-Dy(1)-O(2)	71.8(3)	O(6)-Dy(1)-N(2)	75.2(3)
O(2)-Dy(1)-O(3)	73.1(2)	N(2)-Dy(1)-N(1)	63.5(3)
O(2)-Dy(1)-N(1)	86.0(3)	C(2)-O(1)-Dy(1)	131.8(7)
O(2)-Dy(1)-N(2)	68.9(3)	C(4)-O(2)-Dy(1)	139.0(7)
O(3)-Dy(1)-N(1)	144.8(3)	C(16)-O(3)-Dy(1)	128.9(6)
O(3)-Dy(1)-N(2)	82.4(3)	C(18)-O(4)-Dy(1)	133.8(7)
O(4)-Dy(1)-O(1)	80.1(3)	C(30)-O(5)-Dy(1)	132.0(7)
O(4)-Dy(1)-O(2)	111.9(3)	C(32)-O(6)-Dy(1)	138.5(7)
O(4)-Dy(1)-O(3)	71.6(3)	C(43)-N(1)-Dy(1)	119.8(7)
O(4)-Dy(1)-N(1)	143.5(3)	C(47)-N(1)-Dy(1)	120.5(6)
O(4)-Dy(1)-N(2)	151.8(3)	C(48)-N(2)-Dy(1)	120.5(6)
O(5)-Dy(1)-O(1)	83.1(3)	C(52)-N(2)-Dy(1)	121.2(7)

Table S3. Dy (III) ions geometry analysis of 1-5 by SHAPE 2.1 software.

Configuration	ABOXIY, 1	ABOXIY, 2	ABOXIY, 3	ABOXIY, 4	ABOXIY, 5
Hexagonal bipyramid (D_{6h})	16.942	16.505	15.512	15.992	12.969
Cube (O_h)	9.979	10.182	9.566	9.912	6.552
Square antiprism (D_{4d})	0.451	0.753	0.525	0.624	1.348
Triangular dodecahedron (D_{2d})	2.363	1.516	2.257	1.831	1.056
Johnson gyrobifastigium J26 (D_{2d})	16.263	15.306	14.984	15.613	15.261
Johnson elongated triangular bipyramid J14 (D_{3h})	27.488	28.213	27.668	27.796	28.575
Biaugmented trigonal prism J50 (C_{2v})	2.737	2.752	2.473	2.382	3.084
Biaugmented trigonal prism (C_{2v})	2.152	2.059	1.960	1.817	2.455
Snub siphenoid J84 (D _{2d})	5.296	4.273	5.013	4.740	4.497
Triakis tetrahedron (T_d)	10.732	10.968	10.417	10.714	7.336

23.780

23.624

α angle (°)	1	ϕ angle (°)	1
01	60.799	O5-Dy-O4	45.679
02	58.376	O4-Dy-N2	48.407
N1	53.598	O2-Dy-O5	42.573
N2	48.803	O2-Dy-O6	43.302
03	60.129	O3-Dy-N1	40.889
O4	57.404	O3-Dy-N2	43.46
05	60.164	O6-Dy-O1	48.562
06	58.593	O1-Dy-N1	47.364
Deviation	57.233	Deviation	45.030
Sum of deviation to ideal	2 102	Sum of deviation to ideal	0.020
54.74°	2.493	45°	0.050
a angle (°)	2	ø angle (°)	2
01	63 564	φ under ()	/8 851
02	54 073	01 Dy N1	46.184
N1	52 028	$O_2 D_V O_5$	40.184
N2	48 704	02-Dy-05	41.207
N2	46.704	02-Dy-00	41.207
03	50.588	03-Dy-N1	40.711
04	01.814	O3-Dy-N2	43.284
05	55.88	04-Dy-06	45.686
06	61.291	O4-Dy-N2	50.037
Deviation	56.868	Deviation	45.055
54.74°	2.128	45°	0.055
α angle (°)	3	\u00ed angle (°)	3
01	57.851	O1-Dy-O6	45.777
02	60.185	O1-Dy-N1	44.008
N1	49.381	O2-Dy-N1	41.841
N2	54 550	O2-Dv-N2	48 388

Table S4. Relevant structural parameters in square anti-prism geometry, α angle and ϕ angle for 1-4.

03	57.395	O3-Dy-O5	44.669
O4	61.754	O3-Dy-O6	45.558
O5	57.369	O4-Dy-O5	42.084
O6	62.123	O4-Dy-N2	47.701
Deviation	57.576	Deviation	45.003
Sum of deviation to ideal 54.74°	2.836	Sum of deviation to ideal 45°	0.003
α angle (°)	4	ϕ angle (°)	4
01	62.264	O1-Dy-O6	41.560
02	56.939	O1-Dy-O4	44.139
N1	46.945	O2-Dy-O5	49.813
N2	54.959	O2-Dy-O6	44.906
O3	57.458	O3-Dy-N1	44.552
O4	59.516	O3-Dy-N2	39.641
O5	58.822	O4-Dy-O1	44.139
O6	58.082	O4-Dy-N1	50.182
Deviation	56.873	Deviation	44.867
Sum of deviation to ideal 54.74°	2.133	Sum of deviation to ideal 45°	0.133

Fable S5.	Crystal fie	ld parameters	for 1-5	5 fitted from	$\chi_M T vs.$	T and M vs.	<i>H</i> simultaneously.
------------------	-------------	---------------	---------	---------------	----------------	---------------	--------------------------

	B_{0}^{2}	B_{0}^{4}	B_2^4	B_{0}^{6}	g
1	481	-10	179	8	
2	282	-76	27	-426	$g_{\rm x} = g_{\rm y} = 1.13, g_{\rm z} = 1.62$
3	25	127	1280	338	
4	-221	85	995	19	
5	-360	72	1011	-19	

Table S6. Energy levels and g for 1-5 fitted from $\chi_M T vs. T$ and M vs. H simultaneously.

KDa.		1		2		3
KD8	E/cm ⁻¹	g	E/cm^{-1}	g	E/cm^{-1}	g
		0.0000		0.0000		0.0004
1	0	0.0000	0	0.0000	0	0.0066
		19.9230		24.2959		17.1223

		0.0000		0.0000		0.6460
2	94	0.0000	141	0.0000	57	2.4864
		17.2586		11.3440		17.4283
		0.0000		0.0000		0.0764
3	213	0.0000	161	0.0000	366	0.0785
		14.6903		14.5800		15.4029
		0.0000		0.0004		3.2004
4	317	0.0001	176	0.0004	458	6.4134
		12.0612		8.1001		8.1014
		0.0847		0.0000		1.4295
5	396	0.1121	219	0.0000	794	1.4902
		9.3601		17.8201		6.7636
		3.6826		0.1642		0.0885
6	443	5.4555	262	0.1642	824	0.1291
		5.7376		4.8595		18.6467
		1.7573		0.0000		0.0707
7	470	5.1389	404	0.0000	996	0.1245
		11.6793		21.0599		11.9002
		0.0066		1.6195		0.0607
8	513	0.0398	429	8.8754	1079	0.1145
		18.7480		9.2039		9.8486
		4		5		
IZD						
KDs	E/cm ⁻¹	g	E/cm ⁻¹	g		
KDs	E/cm ⁻¹	g 0.0351	E/cm ⁻¹	g 0.1046		
KDs 1	<i>E</i> /cm ⁻¹	g 0.0351 0.0448	<i>E</i> /cm ⁻¹	g 0.1046 0.1879		
KDs 1	<i>E</i> /cm ⁻¹	<i>g</i> 0.0351 0.0448 19.2174	<i>E</i> /cm ⁻¹	<i>g</i> 0.1046 0.1879 19.3334		
KDs	<i>E</i> /cm ⁻¹	<i>g</i> 0.0351 0.0448 19.2174 6.1174	<i>E</i> /cm ⁻¹	g 0.1046 0.1879 19.3334 0.2972		
KDs 1	<i>E</i> /cm ⁻¹ 0 170	<i>g</i> 0.0351 0.0448 19.2174 6.1174 7.2742	<i>E</i> /cm ⁻¹ 0 153	g 0.1046 0.1879 19.3334 0.2972 2.5281		
KDs 1	<i>E</i> /cm ⁻¹ 0 170	<i>g</i> 0.0351 0.0448 19.2174 6.1174 7.2742 8.0199	<i>E</i> /cm ⁻¹ 0 153	<i>g</i> 0.1046 0.1879 19.3334 0.2972 2.5281 12.7694		
KDs 1 2	E/cm ⁻¹ 0 170	<i>g</i> 0.0351 0.0448 19.2174 6.1174 7.2742 8.0199 0.9674	E/cm ⁻¹ 0 153	<i>g</i> 0.1046 0.1879 19.3334 0.2972 2.5281 12.7694 2.7519		
KDs 1 2 3	E/cm ⁻¹ 0 170 189	<i>g</i> 0.0351 0.0448 19.2174 6.1174 7.2742 8.0199 0.9674 1.8274	E/cm ⁻¹ 0 153 189	<i>g</i> 0.1046 0.1879 19.3334 0.2972 2.5281 12.7694 2.7519 7.3756		
KDs 1 2 3	E/cm ⁻¹ 0 170 189	<i>g</i> 0.0351 0.0448 19.2174 6.1174 7.2742 8.0199 0.9674 1.8274 14.1202	E/cm ⁻¹ 0 153 189	<i>g</i> 0.1046 0.1879 19.3334 0.2972 2.5281 12.7694 2.7519 7.3756 11.9988		
KDs 1 2 3	E/cm ⁻¹ 0 170 189	<i>g</i> 0.0351 0.0448 19.2174 6.1174 7.2742 8.0199 0.9674 1.8274 14.1202 4.0808	E/cm ⁻¹ 0 153 189	<i>g</i> 0.1046 0.1879 19.3334 0.2972 2.5281 12.7694 2.7519 7.3756 11.9988 1.3585		
KDs 1 2 3 4	E/cm ⁻¹ 0 170 189 222	g 0.0351 0.0448 19.2174 6.1174 7.2742 8.0199 0.9674 1.8274 14.1202 4.0808 4.6249	E/cm ⁻¹ 0 153 189 248	g 0.1046 0.1879 19.3334 0.2972 2.5281 12.7694 2.7519 7.3756 11.9988 1.3585 5.5176		
KDs 1 2 3 4	E/cm ⁻¹ 0 170 189 222	g 0.0351 0.0448 19.2174 6.1174 7.2742 8.0199 0.9674 1.8274 14.1202 4.0808 4.6249 8.6008	E/cm ⁻¹ 0 153 189 248	g 0.1046 0.1879 19.3334 0.2972 2.5281 12.7694 2.7519 7.3756 11.9988 1.3585 5.5176 9.8502		
KDs 1 2 3 4	E/cm ⁻¹ 0 170 189 222	g 0.0351 0.0448 19.2174 6.1174 7.2742 8.0199 0.9674 1.8274 14.1202 4.0808 4.6249 8.6008 1.7911	E/cm ⁻¹ 0 153 189 248	g 0.1046 0.1879 19.3334 0.2972 2.5281 12.7694 2.7519 7.3756 11.9988 1.3585 5.5176 9.8502 2.6661		
KDs 1 2 3 4 5	E/cm ⁻¹ 0 170 189 222 296	g 0.0351 0.0448 19.2174 6.1174 7.2742 8.0199 0.9674 1.8274 14.1202 4.0808 4.6249 8.6008 1.7911 7.4430	E/cm ⁻¹ 0 153 189 248 296	g 0.1046 0.1879 19.3334 0.2972 2.5281 12.7694 2.7519 7.3756 11.9988 1.3585 5.5176 9.8502 2.6661 3.4102		
KDs 1 2 3 4 5	<i>E</i> /cm ⁻¹ 0 170 189 222 296	g 0.0351 0.0448 19.2174 6.1174 7.2742 8.0199 0.9674 1.8274 14.1202 4.0808 4.6249 8.6008 1.7911 7.4430 8.6394	E/cm ⁻¹ 0 153 189 248 296	g 0.1046 0.1879 19.3334 0.2972 2.5281 12.7694 2.7519 7.3756 11.9988 1.3585 5.5176 9.8502 2.6661 3.4102 13.3867		
KDs 1 2 3 4 5	E/cm ⁻¹ 0 170 189 222 296	g 0.0351 0.0448 19.2174 6.1174 7.2742 8.0199 0.9674 1.8274 14.1202 4.0808 4.6249 8.6008 1.7911 7.4430 8.6394 2.3871	E/cm ⁻¹ 0 153 189 248 296	g 0.1046 0.1879 19.3334 0.2972 2.5281 12.7694 2.7519 7.3756 11.9988 1.3585 5.5176 9.8502 2.6661 3.4102 13.3867 0.7005		
KDs 1 2 3 4 5 6	<i>E</i> /cm ⁻¹ 0 170 189 222 296 329	g 0.0351 0.0448 19.2174 6.1174 7.2742 8.0199 0.9674 1.8274 14.1202 4.0808 4.6249 8.6008 1.7911 7.4430 8.6394 2.3871 4.7180	E/cm ⁻¹ 0 153 189 248 296 349	g 0.1046 0.1879 19.3334 0.2972 2.5281 12.7694 2.7519 7.3756 11.9988 1.3585 5.5176 9.8502 2.6661 3.4102 13.3867 0.7005 1.0388		
KDs 1 2 3 4 5 6	<i>E</i> /cm ⁻¹ 0 170 189 222 296 329	g 0.0351 0.0448 19.2174 6.1174 7.2742 8.0199 0.9674 1.8274 14.1202 4.0808 4.6249 8.6008 1.7911 7.4430 8.6394 2.3871 4.7180 11.7344	E/cm ⁻¹ 0 153 189 248 296 349	g 0.1046 0.1879 19.3334 0.2972 2.5281 12.7694 2.7519 7.3756 11.9988 1.3585 5.5176 9.8502 2.6661 3.4102 13.3867 0.7005 1.0388 15.2153		
KDs 1 2 3 4 5 6	<i>E</i> /cm ⁻¹ 0 170 189 222 296 329	g 0.0351 0.0448 19.2174 6.1174 7.2742 8.0199 0.9674 1.8274 14.1202 4.0808 4.6249 8.6008 1.7911 7.4430 8.6394 2.3871 4.7180 11.7344 0.0048	E/cm ⁻¹ 0 153 189 248 296 349	g 0.1046 0.1879 19.3334 0.2972 2.5281 12.7694 2.7519 7.3756 11.9988 1.3585 5.5176 9.8502 2.6661 3.4102 13.3867 0.7005 1.0388 15.2153 0.0006		
KDs 1 1 2 3 4 5 6 7	<i>E</i> /cm ⁻¹ 0 170 189 222 296 329 508	g 0.0351 0.0448 19.2174 6.1174 7.2742 8.0199 0.9674 1.8274 14.1202 4.0808 4.6249 8.6008 1.7911 7.4430 8.6394 2.3871 4.7180 11.7344 0.0048 0.0691	E/cm ⁻¹ 0 153 189 248 296 349 589	g 0.1046 0.1879 19.3334 0.2972 2.5281 12.7694 2.7519 7.3756 11.9988 1.3585 5.5176 9.8502 2.6661 3.4102 13.3867 0.7005 1.0388 15.2153 0.0006 0.0265		

		0.0248		0.0069
8	536	0.0635	603	0.0270
		16.0517		16.9433

Table S7. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under zero dc field of 1.

<i>T</i> (K)	$\chi_{ m T}$	χs	α	
3.0	2.146	0.238	0.159	
4.0	1.610	0.182	0.154	
5.0	1.288	0.149	0.145	
6.0	1.072	0.128	0.130	
6.5	0.989	0.120	0.120	
7.0	0.918	0.112	0.110	
7.5	0.856	0.105	0.100	
8.0	0.802	0.098	0.090	
8.5	0.755	0.091	0.081	
9.0	0.713	0.084	0.072	
9.5	0.675	0.079	0.065	
10.0	0.641	0.073	0.060	
10.5	0.611	0.070	0.055	
11.0	0.583	0.069	0.052	
12.0	0.534	0.066	0.052	
13.0	0.494	0.022	0.056	
14.0	0.459	0.010	0.032	

number number		$\chi(0)$		· · ·
<i>T</i> (K)	χ _T	χs	α	
3.0	2.738	0.306	0.168	_
4.0	2.042	0.231	0.168	
5.0	1.628	0.185	0.166	
6.0	1.352	0.158	0.155	
6.5	1.247	0.147	0.147	
7.0	1.155	0.138	0.137	
7.5	1.077	0.129	0.126	
8.0	1.007	0.122	0.114	
8.5	0.947	0.115	0.102	
9.0	0.893	0.107	0.091	
9.5	0.845	0.101	0.081	
10.0	0.802	0.094	0.072	
10.5	0.763	0.087	0.063	
11.0	0.728	0.081	0.056	
11.5	0.696	0.074	0.050	
12.0	0.666	0.068	0.045	
12.5	0.639	0.063	0.041	
13.0	0.615	0.057	0.038	

13.5	0.592	0.051	0.035	
14.0	0.570	0.046	0.031	
15.0	0.533	0.025	0.029	
16.0	0.500	0.014	0.015	
17.0	0.472	0.003	0.013	

Table S9. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under zero dc field of **3**.

<i>T</i> (K)	χт	χs	α	
3.0	2.060	0.306	0.152	
4.0	1.549	0.225	0.154	
5.0	1.242	0.179	0.152	
6.0	1.036	0.152	0.140	
7.0	0.889	0.133	0.125	
8.0	0.778	0.121	0.105	
9.0	0.692	0.104	0.092	
10.0	0.623	0.091	0.078	
11.0	0.567	0.080	0.059	
12.0	0.520	0.045	0.045	
13.0	0.480	0.019	0.018	
14.0	0.447	0.021	0.011	
15.0	0.418	0.029	0.015	
16.0	0.393	0.048	0.019	

Table S10. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under zero dc field of 4.

		1 0	
$T(\mathbf{K})$	Xτ	χs	α
2.0	3.489	0.279	0.207
3.0	2.319	0.192	0.205
4.0	1.732	0.148	0.196
4.5	1.535	0.134	0.187
5.0	1.377	0.124	0.175
5.5	1.249	0.115	0.162
6.0	1.141	0.108	0.147
6.5	1.050	0.100	0.133
7.0	0.973	0.093	0.118
7.5	0.906	0.086	0.106
8.0	0.849	0.079	0.095
8.5	0.797	0.073	0.085
9.0	0.752	0.067	0.076
9.5	0.712	0.061	0.069
10.0	0.675	0.055	0.063
10.5	0.643	0.049	0.059
11.0	0.614	0.043	0.057
11.5	0.587	0.037	0.055
12.0	0.562	0.034	0.054

12.5	0.539	0.033	0.054	
13.0	0.519	0.033	0.052	

$T(\mathbf{K})$	$\chi_{ m T}$	χs	α
3.0	2.131	0.187	0.134
3.5	1.828	0.163	0.135
4.0	1.602	0.142	0.136
4.5	1.425	0.128	0.136
5.0	1.283	0.116	0.136
5.5	1.167	0.108	0.135
6.0	1.070	0.101	0.132
6.5	0.988	0.096	0.127
7.0	0.918	0.089	0.124
7.5	0.857	0.086	0.116
8.0	0.803	0.084	0.108
8.5	0.756	0.082	0.099
9.0	0.714	0.080	0.089
9.5	0.676	0.079	0.079
10.0	0.642	0.075	0.068
10.5	0.612	0.067	0.058
11.0	0.584	0.059	0.047
11.5	0.558	0.049	0.039
12.0	0.535	0.029	0.035
12.5	0.514	0.009	0.032
13.0	0.495	0.002	0.019
13.5	0.476	0.002	0.004
14.0	0.459	0.003	0.004

Table S11. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under zero dc field of 5.

Table S12. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 1500 Oe dc field of **1**.

<i>T</i> (K)	$\chi_{ m T}$	χs	α
4.0	1.664	0.042	0.192
5.0	1.284	0.039	0.125
6.0	1.059	0.035	0.092
7.0	0.907	0.031	0.073
7.5	0.849	0.029	0.074
8.0	0.797	0.028	0.070
8.5	0.752	0.026	0.073
9.0	0.709	0.025	0.077
9.5	0.673	0.030	0.089
10.0	0.640	0.024	0.101
10.5	0.611	0.028	0.112
11.0	0.582	0.032	0.125
11.5	0.557	0.040	0.136

12.0	0.536	0.049	0.150	
12.5	0.513	0.072	0.141	
13.0	0.492	0.079	0.136	
13.5	0.475	0.085	0.134	
14.0	0.458	0.066	0.118	
15.0	0.428	0.058	0.056	

Table S13. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 1200 Oe dc field of **2**.

<i>T</i> (K)	χ _T	χs	α
4.0	1.801	0.102	0.218
5.0	1.844	0.019	0.173
6.0	1.378	0.018	0.107
7.0	1.141	0.068	0.041
8.0	0.998	0.061	0.037
9.0	0.887	0.055	0.034
10.0	0.799	0.049	0.037
11.0	0.726	0.042	0.038
12.0	0.666	0.037	0.041
13.0	0.615	0.031	0.044
14.0	0.571	0.030	0.045
15.0	0.533	0.033	0.042
16.0	0.500	0.015	0.030
17.0	0.472	0.018	0.037
18.0	0.446	0.015	0.058
19.0	0.423	0.016	0.009
20.0	0.402	0.014	0.014

Table S14. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 1200 Oe dc field of 3.

	· •	* *	
<i>T</i> (K)	$\chi_{ m T}$	χs	α
4.0	1.505	0.002	0.108
5.0	1.198	0.005	0.101
6.0	1.011	0.001	0.105
7.0	0.874	0.002	0.106
8.0	0.769	0.003	0.108
9.0	0.686	0.004	0.106
10.0	0.618	0.006	0.102
11.0	0.563	0.001	0.094
12.0	0.517	0.003	0.077
13.0	0.477	0.004	0.053
14.0	0.444	0.001	0.032
15.0	0.415	0.001	0.040
16.0	0.390	0.003	0.053
17.0	0.368	0.005	0.060
18.0	0.348	0.001	0.053

19.0	0.331	0.001	0.072

<i>T</i> (K)	$\chi_{ m T}$	χs	α
3.0	0.187	0.012	0.226
4.0	1.743	0.031	0.132
5.0	1.355	0.048	0.093
6.0	1.125	0.095	0.078
6.5	1.040	0.011	0.079
7.0	0.965	0.012	0.078
7.5	0.902	0.016	0.078
8.0	0.844	0.015	0.079
8.5	0.795	0.011	0.078
9.0	0.752	0.073	0.080
9.5	0.710	0.011	0.079
10.0	0.674	0.095	0.081
10.5	0.643	0.010	0.084
11.0	0.614	0.081	0.090
11.5	0.587	0.011	0.097
12.0	0.563	0.018	0.107
12.5	0.540	0.027	0.116
13.0	0.520	0.040	0.121
14.0	0.482	0.085	0.104
15.0	0.449	0.017	0.057
16.0	0.422	0.042	0.035
17.0	0.398	0.069	0.044
18.0	0.376	0.010	0.056

 Table S15. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 1200 Oe dc field of 4.

Table S16. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 1200 Oe dc field of **5**.

<i>T</i> (K)	$\chi_{ m T}$	χs	α	
4.0	2.571	0.025	0.245	
4.5	1.624	0.028	0.156	
5.0	1.332	0.029	0.107	
5.5	1.187	0.027	0.088	
6.0	1.079	0.029	0.069	
6.5	0.993	0.028	0.064	
7.0	0.919	0.027	0.059	
7.5	0.858	0.028	0.055	
8.0	0.807	0.028	0.054	
8.5	0.760	0.029	0.053	
9.0	0.717	0.029	0.056	
9.5	0.679	0.030	0.054	
10.0	0.646	0.032	0.055	
10.5	0.616	0.028	0.068	

11.0	0.587	0.026	0.074	
11.5	0.561	0.027	0.075	
12.0	0.540	0.020	0.089	
12.5	0.517	0.016	0.093	
13.0	0.497	0.006	0.098	
13.5	0.479	0.002	0.098	
14.0	0.462	0.003	0.083	
14.5	0.446	0.001	0.064	
15.0	0.431	0.001	0.046	
15.5	0.419	0.001	0.034	
16.0	0.406	0.0001	0.025	
17.0	0.382	0.0004	0.024	
18.0	0.362	0.0006	0.030	
19.0	0.343	0.0007	0.038	

Table S17. Calculated energy levels (cm⁻¹), $g(g_x, g_y, g_z)$ tensors and predominant m_J values of the lowest eight Kramers doublets (KDs) of complexes 1-5 using CASSCF/RASSI-SO with MOLCAS 8.4.

KD _a	1			2		3			
KDS	E/cm ⁻¹	g	m_J	E/cm^{-1}	g	m_J	E/cm ⁻¹	g	m_J
		0.004			0.003			0.082	
1	0.0	0.009	±15/2	0.0	0.007	±15/2	0.0	0.118	±15/2
		19.561			19.499			19.407	
		0.218			0.159			0.617	
2	121.7	0.444	±13/2	142.5	0.208	±13/2	76.1	0.730	$\pm 1/2$
		16.673			16.174			18.857	
		2.802			2.831			0.550	
3	162.8	5.776	±9/2	209.5	3.167	$\pm 3/2$	110.6	1.711	±13/2
		12.612			15.452			15.632	
		8.072			1.568			3.076	
4	186.9	4.172	±7/2	231.5	4.360	±9/2	155.5	5.273	±9/2
		0.053			9.748			11.268	
		1.775			3.558			3.136	
5	226.0	2.707	±5/2	269.6	5.151	$\pm 5/2$	207.8	4.745	$\pm 5/2$
		11.587			8.185			12.660	
		0.646			1.111			0.082	
6	275.4	0.837	$\pm 3/2$	291.5	3.098	±7/2	275.0	1.792	$\pm 3/2$
		16.362			14.836			17.914	
		0.191			0.181			0.160	
7	341.1	0.292	±1/2	362.7	0.281	$\pm 1/2$	290.5	1.529	±7/2
		19.510			19.194			17.630	
		0.011			0.036			0.023	
8	477.1	0.020	±11/2	465.0	0.083	±11/2	456.9	0.045	$\pm 11/2$
		19.729			19.563			19.583	
KDs		4			5				

	E/cm ⁻¹	g	m _J	E/cm ⁻¹	g	m_J
		0.006			0.012	
1	0.0	0.011	±15/2	0.0	0.019	$\pm 15/2$
		19.471			19.492	
		0.394			0.999	
2	130.3	1.030	±13/2	153.4	2.020	$\pm 13/2$
		15.723			13.547	
		1.918			2.687	
3	166.4	2.896	±1/2	174.1	4.466	$\pm 1/2$
		15.702			12.053	
		0.288			2.400	
4	201.5	3.856	±9/2	213.1	4.281	±7/2
		10.614			10.640	
		3.401			0.597	
5	231.0	5.565	±7/2	285.8	3.831	$\pm 5/2$
		10.514			12.136	
		0.348			1.043	
6	284.9	0.589	±5/2	315.8	3.086	$\pm 9/2$
		16.747			15.366	
		0.173			0.106	
7	321.7	0.355	±3/2	410.1	0.315	$\pm 3/2$
		19.085			16.800	
		0.007			0.071	
8	467.3	0.013	±11/2	462.8	0.319	±11/2
		19.695			18.245	

Table S18. Wave functions with definite projection of the total moment $| m_J >$ for the lowest two KDs of complexes 1-5 using CASSCF/RASSI-SO with MOLCAS 8.4.

	E/cm^{-1}	wave functions
1	0.0	94% ±15/2>
1	121.7	78% ±13/2>+14% ±11/2>
2	0.0	94% ±15/2>
2	142.5	82% ±13/2>+12% ±9/2>
2	0.0	94% ±15/2>
3	76.1	12% ±7/2>+17% ±5/2>+26% ±3/2>+32% ±1/2>
4	0.0	94% ±15/2>
4	130.3	74% ±13/2>+12% ±9/2>
5	0.0	94% ±15/2>
5	153.4	54% ±13/2>+26% ±9/2>