Supporting Information

Effect of Diol Isomers/Water Mixtures on the Stability of Zn-MOF-74

Carmen González-Galán,^a Salvador R. G. Balestra,^{a,b*} Azahara Luna-Triguero,^{a,c} Rafael Maria Madero-Castro,^a Ana Paula Zaderenko,^a and Sofia Calero^{a,d*}

- a) Department of Physical, Chemical, and Natural Systems, Universidad Pablo de Olavide. Ctra. Utrera km 1. ES-41013 Seville, Spain.
- b) Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Inés de la Cruz 3, 28039 Madrid, Spain.
- c) Energy Technology, Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- d) Materials Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

Figure S1. Structure of Zn-MOF-74 with the Carbon atom in blue, the Hydrogen atom in white, the Oxygen atom in red and the metallic centre (Zn) in brown.

Code S2. Input used to carry out energy minimizations using LAMMPS code.

units real boundary p p p atom_style full pair_style reax/c NULL pair_modify tail yes box tilt large read_data p1.data # Pair potentials pair_coeff * * Han.reax C C H H O Zn O O O C # Recalculate charges fix qeq_thermo all qeq/reax 1 0.0 10.0 1e-6 reax/c # Minimisation Step: minimize 1.0e-10 1.0e-10 1000 1000 unfix qeq_thermo

Figure S3. *Radial distribution functions of the oxygen of the molecules (blue) and the oxygen and hydrogen of the molecules (red).*

Equation S1. Pore condensation degree.

$$c(n_1, n_2, n_3) = \frac{3}{N\sqrt{6}} \cdot \sqrt{(\bar{n} - n_1)^2 + (\bar{n} - n_2)^2 + (\bar{n} - n_3)^2}$$

In this equation,

 $c(n_1, n_2, n_3)$: pore condensation degree

N: total number of molecules

 \bar{n} : average number of molecules per pore

n_i: number of molecules for each pore (*i*=1,2,3)

Figure S4. Snapshot of the configuration of the framework with five molecules of catechol in the same pore (the same for resorcinol).

Figure S5. Snapshot of the π -stacking present for the molecules of catechol corresponding to the initial configuration N=5 (all the molecules in the same pore, c=1).

Figure S6. Snapshot of the configuration of Zn-MOF-74 with (a) a lower content, (b) 10.4 % and (c) a higher content of water. We have reproduced the water instability of Zn-MOF-74 using a ReaxFF. We selected three points to study the behavior of Zn-MOF-74 against water: (i) 10.4 % of water, the amount that causes the structural collapse, (ii) a lower content and (iii) a higher content of water. We obtained the same results described in previous works.^{37,38} We reproduced the volume change until the 10.4 % of water, when the structural collapse happened.