Supporting Information

Cr,Yb-Codoped Ca₂LaHf₂Al₃O₁₂ Garnet Phosphor: Electronic Structure, Broadband NIR Emission and Energy Transfer Properties

Dayu Huang,^{a,b} Qiuyun Ouyang^{a,*} Hui Xiao,^b Bo Wang,^{c,*} Hongzhou Lian,^{b,*} Qingguang Zeng^c and Jun Lin^{b,c}

^aKey Laboratory of In-Fiber Integrated Optics, Ministry Education of China, and College of Physics and Opotoelectronic Engineering, Harbin Engineering University, Harbin 150001, China

^bState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China ^cSchool of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020, P.R. China

x (mmol)	$CaCO_{3}(g)$	$La_2O_3(g)$	$HfO_{2}(g)$	$Al_2O_3(g)$	$CrO_2(g)$
0.003	0.2	0.1629	0.4197	0.1529	0.0002
0.004	0.2	0.1629	0.4192	0.1529	0.0003
0.005	0.2	0.1629	0.4188	0.1529	0.0004
0.01	0.2	0.1629	0.4168	0.1529	0.0008
0.015	0.2	0.1629	0.4147	0.1529	0.0011
0.02	0.2	0.1629	0.4127	0.1529	0.0015
0.03	0.2	0.1629	0.4084	0.1529	0.0022
0.04	0.2	0.1629	0.4041	0.1529	0.003
0.05	0.2	0.1629	0.3999	0.1529	0.0037
			_		

Table S1. Quantities of materials used for Ca₂LaHf₂Al₃O₁₂:xCr³⁺ (x = 0.003-0.05)

samples.

			, , , , , , , , , , , , , , , , , , , ,	r ····		
x (mmol)	CaCO ₃	$La_2O_3(g)$	$HfO_2(g)$	$Al_2O_3(g)$	$CrO_2(g)$	$Yb_2O_3(g)$
	(g)					
0.003	0.1996	0.1629	0.4168	0.1529	0.0022	0.0006
0.004	0.1994	0.1629	0.4168	0.1529	0.0022	0.0008
0.005	0.1992	0.1629	0.4168	0.1529	0.0022	0.001
0.01	0.1982	0.1629	0.4168	0.1529	0.0022	0.002
0.015	0.1972	0.1629	0.4168	0.1529	0.0022	0.003
0.02	0.1962	0.1629	0.4168	0.1529	0.0022	0.004
0.03	0.1942	0.1629	0.4168	0.1529	0.0022	0.006
0.04	0.1922	0.1629	0.4168	0.1529	0.0022	0.008
0.05	0.1902	0.1629	0.4168	0.1529	0.0022	0.01

Table S2. Quantities of materials used for Ca₂LaHf₂Al₃O₁₂:0.01Cr³⁺,*y*Yb³⁺ (*y* = 0.003-0.05) samples.

Formula	$Ca_2LaHf_2Al_3O_{12}$	$Ca_2GdZr_2Al_3O_{12}$
symmetry	Cubic	Cubic
space group	Ia-3d	Ia-3d
a/Å	12.604	12.5057
$V/Å^3$	2002.8	1955.79
Ζ	8	8
R_{wp} (%)	4.3	
R _p (%)	5.6	

Table S3. Crystallographic data for Ca2LaHf2Al3O12 and Ca2GdZr2Al3O12.

Cr ³⁺ concentration (mmol)	Hf-O Bond Distances (Å)
0.003	1.939
0.004	1.942
0.005	1.946
0.01	1.952
0.015	1.961
0.02	1.970
0.03	1.976
0.04	1.983
0.05	1.990

 Table S4. Variation of the average Hf-O bond lengths.

x	η(T)(%)	IQE $(xCr^{3+})(\%)$	IQE (0.01Cr ³⁺ ,yYb ⁴⁺)(%)
0.003	2	17	6
0.004	6	18	9
0.005	9	20	11
0.01	16	33	11
0.015	33	23	13
0.02	36	24	14
0.03	40	22	14
0.04	46	23	17
0.05	39	21	16

Table S5. Energy transfer efficiencies and IQE as a function of the concentration.

_

Figure S1. (a-c) XRD patterns of Ca₂LaHf₂Al₃O₁₂:xCr³⁺, Ca₂LaHf₂Al₃O₁₂:yYb³⁺ and Ca₂LaHf₂Al₃O₁₂:0.01Cr³⁺,yYb³⁺. (d) XRD Rietveld refinements of the host.

Figure S2. Structure diagram of $Ca_2GdZr_2Al_3O_{12}$ compound, and coordination environment of (Al/Zr/Gd/Ca) atoms.

Figure S3. (a-f) Ca 2p, Cr 2p, La 3d, Hf 4f, Al 2p and Yb 4d XPS of $Ca_2LaHf_2Al_3O_{12}$: 0.01Cr³⁺, 0.01Yb³⁺ sample.

Figure S4. SEM image and mapping images of a $Ca_2LaHf_2Al_3O_{12}:0.01Cr^{3+}, 0.01Yb^{3+}$ sample, and Ca, La, Hf, Al, O, Cr and Yb elemental mapping images of $Ca_2LaHf_2Al_3O_{12}:0.01Cr^{3+}, 0.01Yb^{3+}$ sample.

Figure S5. Relationship of $(\alpha hv)^2$ versus photon energy hv in the Ca₂LaHf₂Al₃O₁₂ sample.

Figure S6. PL spectra of Ca₂LaHf₂Al₃O₁₂:xCr³⁺ (λ_{ex} = 460 nm).

Figure S7. The Rietveld refinement fit of the XRD patterns of (a-f) $Ca_2LaHf_2Al_3O_{12}:xCr^{3+}$ by using the GSAS program.

Figure S8. (a-b) Decay time of Cr^{3+} in $Ca_2LaHf_2Al_3O_{12}$: xCr^{3+} phosphors under excitation at 460 nm and monitored at 780 nm. (c-d) Decay time of Yb³⁺ in $Ca_2LaHf_2Al_3O_{12}$: $0.01Cr^{3+}$, yYb^{3+} phosphors under excitation at 460 nm and monitored at 980 nm.

Figure S9. Schematic energy level diagrams of Cr³⁺ and Yb³⁺ involved ET process.

Figure S10. (a) Temperature-dependent PL spectra (-175~200 °C) and (b) Temperature dependence of the normalized intensity of $Ca_2LaHf_2Al_3O_{12}$:0.01Cr³⁺ and $Ca_2LaHf_2Al_3O_{12}$:0.01Cr³⁺,0.01Yb³⁺.

Figure S11. Temperature-dependent PL spectra (-175~200 °C) and normalized results of $Ca_2LaHf_2Al_3O_{12}$: 0.01Cr³⁺, 0.01Yb³⁺.

Figure S12. The dependent-temperature XRD patterns of Ca₂LaHf₂Al₃O₁₂ sample.

Figure S13. Fitting results of square of full width at half maximum (FWHM²) as a function of 1/2kT.

The diffraction points in the red circle in SAED image correspond to the main diffraction lattice planes (0 2 4) and (2 3 3) of the Ca₂LaHf₂Al₃O₁₂ lattice, respectively, by selecting the largest diffraction point as the diffraction center. The planes (0 2 4) and (2 3 3) in a hexagonal system can be calculated by theoretical function.^[1] The distance between adjacent crystal fringes is measured in crystal planes (0 2 4) and (2 3 3), and the d-spacing values are 0.2759 and 0.263 nm, respectively. The angle between the two crystal planes can be calculated by the following correlation function:

$$\cos\varphi = \frac{\frac{h_{l}h_{2}}{a^{2}} + \frac{k_{l}k_{2}}{b^{2}} + \frac{l_{l}l_{2}}{c^{2}}}{\sqrt{\left(\frac{h_{l}^{2}}{a^{2}} + \frac{k_{l}^{2}}{b^{2}} + \frac{l_{l}^{2}}{c^{2}}\right)\left(\frac{h_{2}^{2}}{a^{2}} + \frac{k_{2}^{2}}{b^{2}} + \frac{l_{2}^{2}}{c^{2}}\right)}}$$
(1)

a = b = c = 12.34 represent the crystal lattice parameters of Ca₂LaHf₂Al₃O₁₂. *h*, *k* and *l* are indices of crystal planes (0 2 4) and (2 3 3), respectively. The crystal planes angle is 31° between (0 2 4) and (2 3 3) planes.

Its value is estimated through fitting the temperature-dependent full width at FWHM of emission peaks:^[2, 3]

$$FWHM = 2.36\sqrt{S}\psi\omega\sqrt{\coth\left(\frac{\psi\omega}{2kT}\right)}$$
(2)

In which k is the Boltzmann constant, ω is the phonon frequency, and

$$coth(x) = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

It can be converted to

$$FWHM^{2} = 5.57 \times S \times (\psi\omega)^{2} \left(1 + \frac{l}{\frac{\psi\omega}{kT} - l}\right)$$
(3)
$$\approx 10^{-3}$$

According to $\frac{\psi\omega}{kT} \approx$

Formula (3) is transformed into

$$FWHM^{2} = 5.57 \times S \times (\psi\omega)^{2} \left(1 + \frac{l}{\frac{\psi\omega}{2kT}} \right)$$
(4)

Approximately equal to

$$FWHM^{2} = a + \frac{b}{\frac{1}{2kT}}$$
(5)

Where $a = 5.57 \times S \times (\psi \omega)^2$ and $b = 5.57 \times S \times (\psi \omega)$.

References

- 1 E. Hitzer, Math. Meth. Appl. Sci., 2011, 34, 1421-1429.
- 2 K. M. Mccall, C. C. Stoumpos, S. S. Kostina, M. G. Kanatzidis, B. W. Wessels, *Chem. Mater.*, 2017, **29**, 4129-4145.

J. J. Luo, X. M. Wang, S. R. Li, J. Liu, Y. M. Guo, G. D. Niu, L. Yao, Y. H. Fu, L.
Gao, Q. S. Dong, C. Y. Zhao, M. Y. Leng, F. S. Ma, W. X. Liang, L. D. Wang, S. Y.
Jin, J. B. Han, L. J. Zhang, J. Etheridge, J. B. Wang, Y. F. Yan, E. H. Sargent, J. Tang, *Nature*, 2018, 563, 541-545.