Supporting information

An unusual Pd(III) oxidation state in the Pd–Cl chain complex with high thermal stability and electrical conductivity

Mohammad Rasel Mian,[†] Masanori Wakizaka,^{*,†} Takefumi Yoshida,[†] Hiroaki Iguchi,^{*,†} Shinya Takaishi,[†] Unjila Afrin,[†] Tatsuya Miyamoto,[‡] Hiroshi Okamoto,[‡] Hisaaki Tanaka,[§] Shin-ichi Kuroda, [§] Brian K. Breedlove,[†] and Masahiro Yamashita^{*,†,⊥}

[†]Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Sendai 980-8578, Japan.

[‡]Department of Advance Material Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan.

[§]Department of Applied Physics, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan

¹School of Materials Science and Engineering, Nankai University, Tianjin 300350, China,

E-mail: masanori.wakizaka.a7@tohoku.ac.jp, h-iguchi@tohoku.ac.jp, yamasita.m@gmail.com

Table of Contents

- 1. Crystallographic parameters for **1-Cl** (Table S1)
- 2. Schematic band structure of Pd(II/IV) MV state and Pd(III) AV state (Figure S1)
- 3. Optical gap of several PdCl chain complexes (Table S2)
- 4. Arrhenius plot for **1-Cl** (Figure S2)
- 5. Seebeck coefficient plot for **1-Cl** (Figure S3)
- 6. Spin susceptibility of **1-Cl** (Figure S4)
- 7. Simulation for the distribution of chain length in **1-Cl** (Figure S5)
- 8. References

	1-Cl
Radiation type, wavelength	Μο Κα, 0.71073 Å
Empirical formula	$C_8H_{24}Cl_3N_4O_4Pd$
Formula weight	453.08 g/mol
Crystal system	Monoclinic
Space group	<i>C</i> 2
Crystal size	$0.58 \times 0.04 \times 0.03 \text{ mm}^3$
Unit cell dimensions	a = 22.3546(18) Å
	b = 4.9468(4) Å
	c = 7.1164(6) Å
	$\beta = 100.900(2)^{\circ}$
Volume	$V = 772.76(11) \text{ Å}^3$
Temperature	100 K
Z	2
Density (calculated)	1.947 Mg/m ³
Absorption coefficient	1.736 mm^{-1}
$R_1, wR_2 [I > 2\sigma(I)]$	0.0333, 0.0558
R_1, wR_2 [all data]	0.0389, 0.0576
F (000)	458
Goodness of fit on F^2	1.017
Absolute structure parameter	0.07(4)

 Table S1. Crystallographic details of compound 1-Cl.

Figure S1. Schematic energy diagram and band structure of a) a Pd(II/IV) MV state and b) a Pd(III) AV state. *U*: on-site Coulomb repulsion, UHB: upper Hubbard band, LHB: lower Hubbard band.

Compounds	Optical gap / eV
$[Pd(NH_3)_2Cl_3]^{S1}$	1.65
$[Pd(en)_2Cl](ClO_4)_2^{S2}$	2.05
$[Pd(en)_2Cl](BF_4)_2^{S3}$	1.86
$[Pd(tn)_2Cl](ClO_4)_2^{S3}$	2.03
$[Pd(tn)_2Cl](BF_4)_2^{S3}$	1.90
1-Cl	1.0
[Pd(chxn) ₂ Cl]Cl ₂ ^{S4}	~1.1
$[Pd(pn)_2Cl](ClO_4)_2^{S3}$	2.41
[Pd(pn) ₂ Cl](BF ₄) ₂ ^{S3}	2.14

Table S2. Optical gap energy for several PdCl chain complexes

en = ethylenediamine, tn = trimethylenediamine, pn = propylenediamine, chxn = 1R,2R-diaminocyclohexane.

Figure S2. Arrhenius plot for **1-Cl**. Data were extracted from the cooling process. Solid red line is the best fitted line in the range 100–300 K.

The raw data were fitted by Arrhenius equation:

$$ln(\rho) = ln(\rho_0) + E_a/kT$$

where ρ_0 , E_a and k represent the electrical resistivity at higher temperature limit, activation energy and Boltzmann constant, respectively. The fitting afforded an E_a value of 86 meV. This value is much lower than half of E_{CT} (1.0 eV), although we can assume the relation $2E_a = E_{CT}$ for an intrinsic semiconductor. This is because of the existence of a small number of Pd(II) ions as impurities, i.e., electron carriers, which has been clarified from the Seebeck coefficient.

Figure S3. Seebeck coefficient plot for **1-Cl** at room temperature. Solid red line is the best fitted line. Raw data were fitted by equation.

dV = -SdT

where dV, dT and S represented the voltage difference, temperature difference and Seeback coefficient, respectively. Fitting afforded an S value of -0.458 mV/K.

Figure S4. (a) Temperature dependence of the spin susceptibility (χ) of **1-Cl**. The inverse of χ is shown in the inset. (b) Temperature dependence of ESR linewidth (ΔH) of **1-Cl**. ESR signal could not be measured over 200 K due to the extreme broadening.

Figure S5. Simulation of the distribution of chain length (number of Pd ions) of **1-Cl** with a standard deviations (S.D.) of 10% (black line), 20% (blue line), and 30% (red line) estimated from the spin impurity level of 0.11% assuming the Gaussian distribution.

References

- S1 L. V. Interrante, K. W. Browall, Inorg. Chem. 1973, 13, 1162–1166.
- S2 Y. Wada, T. Mitani, M. Yamashita, T. Kida, J. Phys. Soc. Jpn. 1985, 54, 3143–3153.
- S3 N. Matsumoto, M. Yamashita, S. Kida, Bull. Chem. Soc. Jpn. 1978, 51, 2334–2337.
- S4 H. Matsuzaki, K. Iwano, T. Aizawa, M. Ono, H. Kishida, M. Yamashita, H. Okamoto, *Phys. Rev. B* 2004, *70*, 035204.