SUPPORTING INFORMATION

The unexpected reactivity of 9-iodo-*nido*-carborane: from nucleophilic substitution reactions to the synthesis of tricobalt tris(dicarbollide) Na[4,4',4"-(MeOCH₂CH₂O)₃-3,3',3"-Co₃(µ³-O)(µ³-S)(1,2-C₂B₉H₁₀)

Marina Yu. Stogniy, Sergey A. Anufriev, Akim V. Shmal'ko, Sergey M. Antropov, Aleksei A. Anisimov, Kyrill Yu. Suponitsky, Oleg A. Filippov, Igor B. Sivaev

Figure 1S	2
Figure 2S	2
Figure 3S	3
Figure 4S	3
Table 1S	4
Table 2S	5
NMR spectra	6
[9-I-7,8-C ₂ B ₉ H ₁₁][NHMe ₃] (Me₃NH[1])	6
[9-HO-7,8-C ₂ B ₉ H ₁₁][NHMe ₃] (Me₃NH[2])	7
[9-HO -7,8-C ₂ B ₉ H ₁₁][NBu ₄] (Bu ₄ N[2])	9
[9-Cl-11-HO-7,8-C2B9H10][NHMe3] (Me3NH[3])	10
[9-Br-11-HO-7,8-C ₂ B ₉ H ₁₀][NHMe ₃] (Me₃NH[4])	12
[9-I-11-HO-7,8-C ₂ B ₉ H ₁₀][NBu ₄] (Bu₄N[5])	14
9-(Me2NCH2CH2NMe2)-7,8-C2B9H11 (6)	16
9-(C5H5N)-7,8-C2B9H11 (7)	17
9-(Et ₃ N)-7,8-C ₂ B ₉ H ₁₁ (8)	19
[9-(MeOCH ₂ CH ₂ O)-7,8-C ₂ B ₉ H ₁₁][K] (K [9])	22
[9-(MeOCH2CH2O)-7,8-C2B9H11][NHMe3] (Me3NH[9])	25
bis-Complex rac-isomer [4,4'-I2-3,3-Co(1,2-C2B9H10)2][NBu4] (Bu4N[10a])	26
<i>bis</i> -Complex <i>meso</i> -isomer [4,7'-I ₂ -3,3-Co(1,2-C ₂ B ₉ H ₁₀) ₂][NBu ₄] (Bu₄N[10b])	29
bis-Complex rac-isomer [4,4'-(MeOCH2CH2O)2-3,3-Co(1,2-C2B9H10)2][K](K[11a])	32
bis-Complex meso-isomer [4,7'-(MeOCH2CH2O)2-3,3-Co(1,2-C2B9H10)2][K](K[11b])	37
tris-Complex rac-isomer [4,4',4"-(MeOCH2CH2O)3-3,3',3"-Co3(µ3-O)(µ3-S)(1,2-C2B9H10)	3][Na] (12)
	42
[10-(MeOCH2CH2O)-7,8-C2B9H11][NHMe3] (Me3NH[13])	45
bis-Complex [8,8'-(MeOCH2CH2O)2-3,3-Co(1,2-C2B9H10)2][K] (K[14])	47
bis-Complex first isomer [4,4'-(MeOCH2CH2O)2-3,3-Fe(1,2-C2B9H10)2][K](K[11a])	51
bis-Complex second isomer [4,4'-(MeOCH2CH2O)2-3,3-Fe(1,2-C2B9H10)2][K](K[11b])	55

Figure 1S. Crystal structure fragment of Si18F showing close contacts formed by Cs atom which links 5 dicarbollide anions

- Cs...Anion_A : Cs1...H7, 3.03(2)Å; Cs1...H7', 3.08(2)Å; Cs1...H12', 3.42(2)Å
- Cs...Anion_B : Cs1...H6', 3.25(2)Å; Cs1...H10', 3.21(2)Å
- Cs...Anion_C : Cs1...I1, 4.0869(11)Å
- Cs...Anion_D : Cs1...I2, 3.7708(12)Å; Cs1...H9', 3.39(2)Å
- Cs...Anion_E : Cs1...I2, 4.1904(12)Å; Cs1...H8, 3.24(2)Å; Cs1...H9, 3.04(2)Å

Figure 2S. Centrosymmetric dimer formed by I...I shortened contacts (I1...I2A, 4.0803(7)Å)

Figure 3S. Intramolecular noncovalent bonding in Na[12].

Figure 4S. Interchain bonding in crystal structure of $\{K(Me_2CO)(CH_2Cl_2)[14]\}_n$.

						1	4 72 .		1	0.01	
	4-4'- isomer			4-7'- isomer			8-8' isomer				
rotamer	cisoid	gauche	transoid	gauche-2	cisoid-2	cisoid	gauche	transoid	cisoid	gauche	transoid
B(8')-B(10')-B(10)-B(8) dihedral ^a	36	93	161	116	45	46	107	180	42	113	180
Deviation from ideal ^b	0	15	19	8	9	10	1	0	6	5	0
B(I')-B(10')-B(10)-B(I) dihedral	96	34	63	104	173	45	103	180	42	113	180
Deviation from ideal	12	2	27	4	7	9	5	0	6	5	0
ΔE , kcal·mol ^{-re}	17.3	17.4	12.8	5.4	11.8	16.5	10.4	12.3	13.8	4.2	0.0
ΔG , kcal·mol ^{-re}	16./	17.1	11.8	5.2	11.5	16.1	10.2	12.0	13.5	4.1	0.0
CH···I BCP											
			2 646	2.002	2 775		2 816			2 8/19	2.935
r, Å ^d			2.040	2 882	2.775	2.785	3.059			2.849	2.935
			2.040	3 001	2.774		5.057			2.050	2.930
				0.010							0.009
			0.017	0.008	0.013		0.012			0.011	0.009
ρ_{BCP} , a.u.			0.017	0.010	0.013	0.012	0.007			0.011	0.009
				0.008							0.009
				-1.8							-1.6
E kaalumatik			-3.3	-1.4	-2.4	2.2	-2.1			-2.0	-1.6
E _{BCP} , Kcal ⁻ mol			-3.3	-1.8	-2.4	-2.5	-1.3			-2.0	-1.6
				-1.4							-1.6
				0.037							0.031
DI ^f			0.075	0.025	0.049	0.052	0.044			0.040	0.031
DI			0.075	0.037	0.049	0.052	0.021			0.040	0.031
				0.025	~ 7						0.031
I…I BCP											
r, Å ^d		4.225				4.013			4.002		
ρ _{вср} , a.u.		0.003				0.005			0.006		
E _{BCP} , kcal·mol ^{-1 e}		-0.6				-1.0			-1.0		
DI ^f		0.017				0.030			0.036		
BH…IBCP											
r Å d		3.069				2 070	2 100	2.941	3.061		
1, A		3.069				2.970	3.122	2.940	3.061		
ρ _{вср} , a.u.		0.008				0.009	0.007	0.010	0.008		
		0.008				0.007	0.007	0.010	0.008		
E_{BCP} , kcal·mol ⁻¹ e		-1.3				-1.7	-1.3	-1.9	-1.4		
		-1.3					1.0	-1.9	-1.4		
DI ^f		0.029				0.036	0.025	0.038	0.029		

Table 1S. Selected characteristics of all optimized (DFT/BP86/cc-pvDZ) isomers of diiodo cobalt bis(dicarbollide), and key properties for all found intercage bond critical points (BCP').

a,b ideal angles are 36° for *cisoid*, 108° for *gauche* and 180° for *transoid* rotamers ° all energies are respective to most favored 8,8'-transoid isomer. d H…I and I…I distances respectively ° energy of interaction calculated as EBCP=0.5·VBCP ^f QTAIM electron delocalization index (formal bond order)

Comparison of experiment and theory.								
Bond	X-ray	Calc	Torsion angle or	X-ray	Calc			
			noncovalent bond					
Co1-Co1'	2.5401(6)	2.557	B8-Co1-Co1"-C2	-6.6(3)	-10.6			
Co1-Co1"	2.5436(6)	2.557	C2-Co1-Co1'-B8'	-12.1(3)	-10.6			
Col'-Col"	2.5339(6)	2.557	C2'-Co1'-Co1"-B8"	-14.7(3)	-10.5			
Co1-S1	2.1637(8)	2.161	B8-B4-O1-C3	97.4(4)	92.5			
Co1'-S1	2.1614(9)	2.161	B8'-B4'-O1'-C3'	99.3(4)	92.5			
Co1"-S1	2.1636(8)	2.162	B8"-B4"-O1"-C3"	93.4(4)	92.4			
Co1-O3	1.835(2)	1.823	O1H1"	2.33	2.45			
Co1'-O3	1.8408(19)	1.823	O1'H1	2.68	2.46			
Co1"-O3	1.844(2)	1.822	O1"H1'	2.40	2.46			
Co1-C1	2.015(3)	1.984	H8H2"	2.13	2.07			
Co1-C2	2.021(3)	1.982	H8"H2'	2.22	2.06			
Co1-B4	2.096(3)	2.083	H8'H2	2.19	2.06			
Co1-B8	2.104(4)	2.075						
Co1-B7	2.112(4)	2.097						
Co1'-C1'	2.014(3)	1.984						
Co1'-C2'	2.012(3)	1.982						
Co1'-B4'	2.109(4)	2.083						
Co1'-B8'	2.107(4)	2.076						
Co1'-B7'	2.112(3)	2.097						
Co1"-C1"	2.029(3)	1.983						
Co1"-C2"	2.029(3)	1.982						
Co1"-B4"	2.101(3)	2.084						
Co1"-B8"	2.110(3)	2.076						
Co1"-B7"	2.111(4)	2.098						

Table 2. Selected geometry parameters (distances in Å, angles in deg.) for Na[12]. Comparison of experiment and theory.

-15 (ppm) -20

-25

-30

-10

20

15

10

5

0

-5

13

-50

-45

-35

-40

1.61H

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 (ppm)

H00.1

T'a

g

13C{1H}, compound 8

13C{1H}, compound Bu4N[10a]

13C{1H}, compound K[11a]

1H, compound K[11b]

13C{1H}, compound K[11b]

13C{1H}, compound K[14]

13C{1H}, compound K[15a]

--- 63.4 --- 52.0 --- 37.9

^{11}B NMR study of reaction of $[9\text{-I-7},8\text{-}C_2B_9H_{11}]^-$ with 1,2-dimethoxyethane.