Electronic Supplementary Information

Enhanced Li-Ion Transport in Divalent Metal-Doped Li₂SnO₃

Yohandys A. Zulueta,^a and Minh Tho Nguyen^{b,c*}

^a Departamento de Física, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, CP-

90500, Santiago de Cuba, Cuba

^b Department of Chemistry, KU Leuven, B-3001 Leuven, Belgium.

^cComputational Chemistry Research Group and Faculty of Applied Sciences, Ton Duc Thang

University, Ho Chi Minh City 700000, Vietnam

*Corresponding author. E-mail: nguyenminhtho@tdtu.edu.vn

- Projected mean square displacement at 1000 K for monocrystalline Zn²⁺-doped Li₂SnO₃.
- Temporal dependence of MSD in polycrystalline M²⁺-doped Li₂SnO₃ (M²⁺ = Zn²⁺, Sc²⁺, Cd²⁺ and Eu²⁺).

Figure S1. Projected mean square displacement at 1000 K for Zn²⁺ -doped Li₂SnO₃.

Figure S2. Mean square displacement at each temperature of polycrystalline: a) Zn^{2+} , b) Sc^{2+} , c) Cd^{2+} and d) Eu^{2+} -doped Li_2SnO_3 samples.