Supporting Information

POM/Ag functionalized mesoporous silica coated magnetic Fe₃O₄ core-shell composite as efficiency and recyclable photocatalyst

Pan-Feng Wu,^{*a,b} QiXue,^c Tian-Yu Wang,^b Shan-jianLi,^a Gao-Peng Li,^{*d} and Gang-Lin Xue^{*b}

^a School of Chemistry and Chemical Engineering, Xi'an Shiyou University, 18 Dianzi Road, Yanta District, Xi'an, 710065, P. R. China. E-mail: wupf801@163.com
^b Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China. E-mail: xglin707@163.com

^c Xi'an Modern Chemistry Research Institute, Xi'an, 710065, P. R. China.

^d Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry & Material Science, Shanxi Normal University, Linfen 041004, P. R. China. E-mail: nwuligp@163.com

*Corresponding author Email address: xglin707@163.com

Fig. S1 Size distribution of the as-prepared (a) Fe₃O₄; (b) Fe₃O₄@SiO₂; (c) Fe₃O₄@SiO₂@*m*SiO₂; (d) Fe₃O₄@SiO₂@*m*SiO₂-PW₁₂ and (f) Fe₃O₄@SiO₂@*m*SiO₂-PW₁₂/Ag samples.

Fig. S2 The EDX spectra of (a) $Fe_3O_4@SiO_2@mSiO_2-PW_{12}/Ag_{1.2}$; (b) $Fe_3O_4@SiO_2@mSiO_2-PW_{12}/Ag_{3.7}$; (c) $Fe_3O_4@SiO_2@mSiO_2-PW_{12}/Ag_{5.3}$ and $Fe_3O_4@SiO_2@mSiO_2-PW_{12}/Ag_{6.4}$ samples, respectively.

Fig. S3 FT-IR spectra of Fe₃O₄@SiO₂@*m*SiO₂-PW₁₂ with PW₁₂ loadings of 3.57, 8.82,14.52, 18.65, 20.01 and 20.36*wt*.%.

Table S1 The BET surface area, average mesoporous size and total pore volume of as-synthesized composites.

Samples	\mathbf{S}_{BET}	Average mesoporous	Total pore volume	
	$(m^2 \cdot g^{-1})$	size (nm)	$(cm^{3} \cdot g^{-1})$	
Fe ₃ O ₄ @SiO ₂ @mSiO ₂	273	2.7	0.21	
$Fe_3O_4@SiO_2@mSiO_2-PW_{12}$	198	2.3	0.17	
Fe ₃ O ₄ @SiO ₂ @mSiO ₂ -PW ₁₂ /Ag	172	2.1	0.15	

Fig. S4 The profiles of photo-degradation of MO underultraviolet lightFe₃O₄@SiO₂@mSiO₂-PW₁₂

Fig. S5 The profiles of photo-degradation of MO under simulated sun lightupon $Fe_3O_4@SiO_2@mSiO_2-PW_{12}/Ag$ with different Ag loadings.

Table S2. Lifetimes $(\tau_1 \text{ and } \tau_2)$ and relative intensities of different samples.

Samples	τ_1 (ns)	$\tau_2(ns)$	A ₁ .(%)	A ₂ .(%)	τ_{av} (ns)
$Fe_3O_4@SiO_2@mSiO_2-PW_{12}$	1.0697	6.2174	72.59	27.41	0.4155
Fe ₃ O ₄ @SiO ₂ @mSiO ₂ -	1.1353	5.5610	53.17	46.83	0.4802
PW ₁₂ /Ag					

Note: A two-exponential function equation is used to fit the decay time, $\tau_{av} = (A1 \cdot \tau_1^2 + A_2 \cdot \tau_2^2)/(A_1 \cdot \tau_1 + A_2 \cdot \tau_2)$, where τ and A are decay time and the relative magnitude of components, respectively. The average lifetime τ av is employed for comparison.

Fig. S6 The effects of various scavengers photodegradation of MO for $Fe_3O_4@SiO_2@mSiO_2-PW_{12}/Ag$ simulated sun light irradiation.