Supplementary Information for

Experimental evaluation of the stabilization of the COT orbitals by 4 f orbitals in $\mathrm{COT}_{2} \mathrm{Ce}$ using a Hubbard model

Wayne W. Lukens ${ }^{\text {a }}$, Corwin H. Booth, Marc Walter

Table S1: $\left|\mathrm{J}, \mathrm{m}_{\mathrm{J}}\right\rangle$ states in terms of $\left|\mathrm{m}_{\mathrm{L}}, \mathrm{m}_{\mathrm{S}}\right\rangle$ states
$|7 / 2,7 / 2\rangle=|3,1 / 2\rangle$
$|7 / 2,5 / 2\rangle=\sqrt{1 / 7}|3,-1 / 2\rangle+\sqrt{6 / 7}|2,1 / 2\rangle$
$|7 / 2,3 / 2\rangle=\sqrt{2 / 7}|2,-1 / 2\rangle+\sqrt{5 / 7}|1,1 / 2\rangle$
$|7 / 2,1 / 2\rangle=\sqrt{3 / 7}|1,-1 / 2\rangle+\sqrt{4 / 7}|0,1 / 2\rangle$
$|7 / 2,-1 / 2\rangle=\sqrt{3 / 7}|-1,1 / 2\rangle+\sqrt{4 / 7}|0,-1 / 2\rangle$
$|7 / 2,-3 / 2\rangle=\sqrt{2 / 7}|-2,1 / 2\rangle+\sqrt{5 / 7}|1,-1 / 2\rangle$
$|7 / 2,-5 / 2\rangle=\sqrt{1 / 7}|-3,1 / 2\rangle+\sqrt{6 / 7}|2,-1 / 2\rangle$
$|7 / 2,-7 / 2\rangle=|-3,-1 / 2\rangle$
$|5 / 2,5 / 2\rangle=\sqrt{6 / 7}|3,-1 / 2\rangle-\sqrt{1 / 7}|2,1 / 2\rangle$
$|5 / 2,3 / 2\rangle=\sqrt{5 / 7}|2,-1 / 2\rangle-\sqrt{2 / 7}|1,1 / 2\rangle$
$|5 / 2,1 / 2\rangle=\sqrt{4 / 7}|1,-1 / 2\rangle-\sqrt{3 / 7}|0,1 / 2\rangle$
$|5 / 2,-1 / 2\rangle=-\sqrt{4 / 7}|-1,1 / 2\rangle+\sqrt{3 / 7}|0,-1 / 2\rangle$
$|5 / 2,-3 / 2\rangle=-\sqrt{5 / 7}|-2,1 / 2\rangle+\sqrt{2 / 7}|1,-1 / 2\rangle$
$|5 / 2,-5 / 2\rangle=-\sqrt{6 / 7}|-3,1 / 2\rangle+\sqrt{1 / 7}|2,-1 / 2\rangle$

