## **Supplementary Information for**

## Enhanced lithium storage performance of porous Si/C composite anodes through using recrystallized NaCl template

Ye Hong<sup>a</sup>, Haiyong Dong<sup>b</sup>, Jianhong Li<sup>b</sup>, Qianqian Hu<sup>b,c,d</sup>, Zilong Tang<sup>e</sup>, Jian Ouyang<sup>a</sup>, Xiaojun Wang<sup>a</sup>,

Dan Xiang<sup>a</sup>\*

<sup>a</sup> Industrial Training Center, Guangdong Polytechnic Normal University, Guangzhou 510665, China
<sup>b</sup> GAC Automotive Research & Development Center, Guangzhou 511434, China
<sup>c</sup> Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences; CAS Key Laboratory of Renewable Energy; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
<sup>d</sup> University of Chinese Academy of Sciences, Beijing 100049, China
<sup>e</sup> State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

<sup>\*</sup>Corresponding author: Prof. Dan Xiang

E-mail: hongye@gpnu.edu.cn; gpnuxd@163.com;



Fig. S1 Particle size distribution curves of (a) NaCl templates and (b) Si/C composites.



Fig. S2 SEM images of (a) Si/C-N composite and (b) commercial nano-Si powders.



Fig. S3 (a) TEM, (b) HRTEM and (c) corresponding SAED patterns of Si/C-L composite.



Fig. S4 Rate performance of Si/C-N electrode from 0.2 A  $g^{-1}$  to 5 A  $g^{-1}$ .



Fig. S5 Charge/discharge profiles of Si/C-L electrode at various rates.



Fig. S6 Nyquist plots and corresponding fitting curves of Si/C-L and Si/C-S electrodes.

**Table S1**  $R_s$ ,  $R_{int}$  and  $R_{ct}$  values of Si/C-L and Si/C-S electrodes.

| Sample | R <sub>s</sub> | <i>R</i> <sub>int</sub> | R <sub>ct</sub> |
|--------|----------------|-------------------------|-----------------|
| Si/C-L | 3.09           | 9.51                    | 22.86           |
| Si/C-S | 4.06           | 6.64                    | 15.11           |