Electronic Supplementary Information

A Higher Voltage Fe(II) Bipyridine Complex for Non-Aqueous Redox Flow Batteries

Claudina X. Cammack,^a Harry D. Pratt III,^a Leo J. Small,^a Travis M. Anderson^{a*}

^a Sandia National Laboratories, Albuquerque, New Mexico, 87185-0613, USA

*Email: tmander@sandia.gov

I. Synthesis

Ferrocenium tetrafluoroborate (FcBF₄) was prepared according to literature procedure.¹

Synthesis of 1,1'-di(trifluoroborate)-2,2'-bipyridinium: bpy (1.34 g, 8.6 mmol) was dissolved in diethyl ether (10 mL) and flushed with N₂. The solution was cooled to 0 °C, and BF₃·OEt₂ was added dropwise with faststirring, turning the solution into a cloudy-white mixture. The reaction continued stirring while warming to room temperature overnight. The white precipitate was filtered and dried under vacuum (2.37 g, 94 %). ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.83 (dd, *J* = 5.1, 2.2 Hz, 2H), 8.57 (d, *J* = 8.1 Hz, 2H), 8.27 (td, *J* = 7.8, 1.8 Hz, 2H), 7.75 (dd, *J* = 7.2, 5.5 Hz, 2H). ¹³C (125 MHz, acetone-*d*₆): δ 147.70, 147.34, 144.64, 128.56, 124.47. HRMS: Calcd. for C₁₀H₈BF₃N₂ [M⁺] m/z 224.0847, found 224.0763.

II. Preparation of post-battery samples for characterization:

Post-battery cyclic voltammogram solutions were prepared by diluting the catholyte and anolyte samples (assembled as 0.2 M) in the respective 0.5 M supporting electrolyte down to 10 mM: 100 μ L catholyte/anolyte and 1.9 mL supporting electrolyte.

UV-Vis spectroscopy solutions on post-battery samples were prepared by diluting 0.2 μ L in 3 mL of 0.5 M TEABF₄ in propylene carbonate to determine post-cycling concentration.

MALDI mass spectrometry samples were prepared by diluting catholyte and anolyte samples (~ 2 mL) in dichloromethane (~ 7 mL) and washing the organic layer with water (~ 100 mL) two times. The organic layer was then concentrated under reduced pressure. Supporting electrolyte salt needed to be removed prior to MS analysis.

¹H NMR samples were prepared by diluting catholyte and anolyte samples in acetone- d_6 .

III. Figures

Figure S1: Discharge capacity change of $Fe(bpy)_3(BF_4)_2$ in 5 supporting electrolytes over 20 cycles.

Figure S2: Post-battery cyclic voltammograms and ¹H NMR spectra of anolytes and catholytes from symmetric RFBs, compared to un-cycled $Fe(bpy)_3(BF_4)_2$ (10 mM), in various supporting electrolytes. Measured in the respective supporting electrolyte (0.5 M) in propylene carbonate, at 100 mV s⁻¹, using a Ag/AgCl reference electrode in 0.5 M TBABF₄/PC, Pt wire counter electrode, and 3 mm glassy carbon working electrode.

A. Fe(bpy)₃(BF₄)₂ in TEABF₄/PC

C. Fe(bpy)₃(BF₄)₂ in TBABF₄/PC

Potential (V) vs. Ag/AgCI

9.7 9.6 9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4

D. Fe(bpy)₃(BF₄)₂ in TBAOTf/PC

E. Fe(bpy)₃(BF₄)₂ in TBATFSI/PC

Figure S3: Un-cycled $Fe(bpy)_3(BF_4)_2$ in TBATFSI/PC (0.5 M) and post-battery catholyte before and after counteranion exchange.

Figure S4: Absorbance spectra of each Fe bpy complex in propylene carbonate.

Figure S5: Scan rates and diffusion coefficients of $Fe(bpyR)_3(BF_4)_2$ (10 mM) in 0.5 M TEABF₄/PC, ranging from 25 to 500 mV s⁻¹, using a Ag/AgCl reference electrode in 0.5 M TBABF₄/PC, Pt wire counter electrode, and 3 mm glassy carbon working electrode.

A. Fe(bpyCF₃)₃(BF₄)₂

B. Fe(bpyCO₂Me)₃(BF₄)₂

C. Fe(bpyBr)₃(BF₄)₂

D. Fe(bpy)₃(BF₄)₂

E. Fe(bpy^tBu)₃(BF₄)₂

F. Fe(bpyMe)₃(BF₄)₂

G. Fe(bpyOMe)₃(BF₄)₂

Figure S6: Electrochemical analysis of $Fe(bpyNH_2)_3(BF_4)_2$ -Nafion thin film measured using a Ag/AgCl reference electrode in 0.5 M TBABF₄/PC, Pt wire counter electrode, and 3 mm glassy carbon working electrode. A mixture of $Fe(bpyNH_2)_3(BF_4)_2$ (25.4 mg) in 7 mL acetone, 2 mL isopropanol, and 1 mL 5 % Nafion solution was sonicated for 5 minutes and drop-casted onto a glassy carbon working electrode.

Figure S7: Post-battery cyclic voltammograms and ¹H NMR of symmetric Fe(bpyCF₃)₃(BF₄)₂ catholyte and anolyte.

Figure S8: MALDI-MS of symmetric $Fe(bpyCF_3)_3(BF_4)_2$ catholyte. Modeled $Fe(bpyCF_3)_3$ catholyte $[M+H]^+$ (top) and detected (bottom) in low concentrations.

Figure S9: Post-battery cyclic voltammograms and ¹H NMR of Fe(bpyOMe)₃(BF₄)₂ catholyte and anolyte.

Figure S10: Post-battery cyclic voltammograms and ¹H NMR of Optimized catholyte and anolyte.

Figure S11: MALDI-MS of Optimized catholyte and anolyte.

A. Modeled Fe(bpy)₃ [M+H]⁺ (top) and detected (bottom) at low concentrations in catholyte.

B. Modeled hydrolysis products [M+H]⁺ (top 3), sinapinic acid reference, and observed by-products in catholyte.

C. Modeled bpy [M+H]⁺ (top) and detected bpy in anolyte. Ni(bpy)₃ could not be detected.

Figure S12: Post-battery cyclic voltammograms of Fe(bpyCF₃)₃(BF₄)₂/FcBF₄.

Figure S13: Post-battery cyclic voltammograms of Next Gen catholyte and anolyte.

Figure S14: Post-battery MALDI-MS of Next Gen catholyte and anolyte.

B. Modeled bpy(BF₃)₁ [M+H]⁺ (top) and observed (bottom), plus additional hydrolysis products in catholyte.

C. Modeled bpy [M+H]⁺ (top) and observed (bottom) in anolyte.

Figure S15: Post-battery cyclic voltammograms and ¹H NMR of Fe(bpyCF₃)₃(BF₄)₂/ Fe(bpy)₃(BF₄)₂.

A. $Fe(bpyCF_3)_3(BF_4)_2$ catholyte.

Figure S16: Standard curves of $Fe(bpy)_3(BF_4)_2$, $Fe(bpyCF_3)_3(BF_4)_2$, and $Fe(bpyOMe)_3(BF_4)_2$ in 0.5 M TEABF₄/PC and post-battery catholyte and anolyte absorbance measurements of symmetric $Fe(bpy)_3(BF_4)_2$, symmetric $Fe(bpyCF_3)_3(BF_4)_2$, symmetric $Fe(bpyOMe)_3(BF_4)_2$, Optimized catholyte, Next Gen catholyte, and asymmetric $Fe(bpyCF_3)_3(BF_4)_2/Fe(bpy)_3(BF_4)_2$ catholyte and anolyte.

Table 1: Calculated concentrations of post-battery catholytes and anolytes determined from the standard curves in Figure S12.

Catholytes	Start: 0.2 M	Anolytes	Start: 0.2 M
Sym. Fe(bpy)₃(BF4)2	0.795 M	Sym. Fe(bpy) ₃ (BF ₄) ₂	0.679 M
Sym. Fe(bpyCF ₃) ₃ (BF ₄) ₂	0.538 M	Sym. Fe(bpyCF ₃) ₃ (BF ₄) ₂	0.480 M
Sym. Fe(bpyOMe) ₃ (BF ₄) ₂	0.495 M	Sym. Fe(bpyOMe) ₃ (BF ₄) ₂	0.675 M
Asym. Fe(bpyCF ₃) ₃ (BF ₄) ₂	0.435 M	Asym. Fe(bpy) ₃ (BF ₄) ₂	0.330 M
Optimized	0.651 M		
Next Gen	0.630 M		

IV. References

(1) Armstrong, C. G.; Hogue, R. W.; Toghill, K. E. Characterisation of the Ferrocene/Ferrocenium Ion Redox Couple as a Model Chemistry for Non-Aqueous Redox Flow Battery Research. *J. Electroanal. Chem.* **2020**, *872*, 114241. https://doi.org/10.1016/j.jelechem.2020.114241.