Structural diversities in centrosymmetric

La₈S₄Cl₈La₁₂S₈Cl₄[SbS₃]₈ and non-centrosymmetric

Ln₁₂S₈Cl₈[SbS₃]₄ (Ln = La and Ce): Syntheses, crystal and

electronic structures, and optical properties

Hua-Jun Zhao,^{†, || *} Peng-Fei Liu,^{‡, §} and Li-Ming Wu.^{\perp *}

*E-mail for Hua-Jun Zhao: cszzl772002@yeah.net

*E-mail for Li-Ming Wu: wlm@bnu.edu.cn

Figure S1. The EDX spectrum of $La_8S_4Cl_8La_{12}S_8Cl_4[SbS_3]_8$.

	point-1		
Element	Weight%	Atomic%	
S K	18.36	41.57	
Cl K	9.38	19.20	
Sb L	19.87	11.85	
La L	52.39	27.38	
Totals	100.00		

point-2		
Element	Weight%	Atomic%
S K	19.39	43.17
Cl K	9.31	18.74
Sb L	20.03	11.74
La L	51.28	26.35
Totals	100.00	

Element	Weight%	Atomic%
S K	19.24	43.30
Cl K	8.85	18.02
Sb L	17.99	10.67
La L	53.92	28.01
Totals	100.00	

noint /
DOIII1-4
r · ·

Element	Weight%	Atomic%
S K	20.42	44.62
Cl K	9.43	18.64
Sb L	19.08	10.98
La L	51.07	25.76
Totals	100.00	

	point-5		
Element	Weight%	Atomic%	
S K	20.39	44.65	
Cl K	9.36	18.53	
Sb L	18.12	10.45	
La L	52.14	26.36	
Totals	100.00		

The atomic percent obtained by EDX results and those based on the single crystal data.

Element	average	standard	crystal
	EDX	deviations	
S K	43.46	1.14	47.37
Cl K	18.63	0.38	15.79
Sb L	11.14	0.56	10.53
La L	26.77	0.81	26.32

S2

• .	1
point-	I

Element	Weight%	Atomic%
S K	16.12	36.22
Cl K	12.74	25.89
Sb L	13.75	8.13
La L	57.39	29.76
Totals	100.00	

Point-3

Element	Weight%	Atomic%
S K	15.97	35.33
Cl K	13.87	27.75
Sb L	15.18	8.85
La L	54.98	28.08
Totals	100.00	

Point-2

Element	Weight%	Atomic%
S K	16.44	36.00
Cl K	14.02	27.76
Sb L	15.22	8.78
La L	54.32	27.46
Totals	100.00	

Point-4

Element	Weight%	Atomic%
S K	14.61	32.29
Cl K	15.42	30.84
Sb L	16.10	9.37
La L	53.87	27.49
Totals	100.00	

Point-5

Element	Weight%	Atomic%
S K	16.85	37.79
Cl K	11.89	24.12
Sb L	16.38	9.68
La L	54.89	28.42
Totals	100.00	

The atomic percent obtained by EDX results and those based on the single crystal data.

Element	average	standard	crystal
	EDX	deviations	
S K	35.53	1.81	45.45
Cl K	27.27	2.24	18.18
Sb L	8.96	0.53	9.09
La L	28.24	0.84	27.27

Figure S3. The experimental and simulated X-ray powder diffraction patterns of La₈S₄Cl₈La₁₂S₈Cl₄[SbS₃]₈. (Some peaks on the experimental patterns don't match those on the simulated ones are due to the effect of preferred orientation.)

Figure S4. The powder XRD of $La_8S_4Cl_8La_{12}S_8Cl_4[SbS_3]_8$ with the observed (×) and calculated (black line) intensities, and the difference results (green line).

Figure S5. The experimental X-ray powder diffraction patterns of $La_{12}S_8Cl_8[SbS_3]_4$ obtained in different temperature: 800 °C (blue) and 750 °C (black) and simulated X-ray powder diffraction patterns of $La_{12}S_8Cl_8[SbS_3]_4$ (red) and $La_8S_4Cl_8La_{12}S_8Cl_4[SbS_3]_8$ (green). The peaks marked with arrows are due to the coexistence of $La_8S_4Cl_8La_{12}S_8Cl_4[SbS_3]_8$. Note that when the temperature was increased to 800°C, six peaks marked with pink arrows disappeared and the intensities of four peaks marked with black arrows signifficantly decreased, indicating the percentage of the $La_8S_4Cl_8La_{12}S_8Cl_4[SbS_3]_8$ impurity are reduce dramatically. However, the experimental densities of 4 0 0, 6 0 0, and 8 0 0 increased, especially the density of 6 0 0 is nearly four times that of 3 1 1 which is the peak with the highest intensity in simulated powder XRD pattern of $La_{12}S_8Cl_8[SbS_3]_4$ (red), which can be attributed to the effect of preferred orientation.)

Figure S6. The powder XRD of $La_{12}S_8Cl_8[SbS_3]_4$ with the observed (×) and calculated (black line) intensities, and the difference results (green line). Peaks marked with black arrows are due to the minor impurity.

Figure S7. The experimental and simulated X-ray powder diffraction patterns of $Ce_{12}S_8Cl_8[SbS_3]_4$. The peaks marked with asterisks are due to small amounts of unknown impurities. (Note that densities of 4 0 0, 6 0 0, 8 0 0, and 311 in experimental powder XRD pattern compare well with the simulated ones, which indicate the absence of preferred orientation in this compound.)

Figure S8. Full band structures of La₁₂S₈Cl₈[SbS₃]₄.

atom	symmetry	X	у	Z	U(eq)	BVS
Lal	8e	0.20491(6)	0.71875(6)	0.16116(2)	0.01092(17)	2.940
La2	4 <i>d</i>	0.21051(9)	0.30591(9)	0.2500	0.00906(19)	2.970
La3	8e	0.28479(6)	0.45859(6)	0.04198(2)	0.00987(17)	2.985
Sb1	8e	0.30501(7)	0.16931(7)	0.13208(2)	0.01102(18)	3.110
S1	8e	0.0586(3)	0.0186(2)	0.20352(5)	0.0105(4)	2.008
S2	4c	0.5516(4)	0.2500	0	0.0097(5)	2.164
S3	8e	0.4247(3)	0.3774(3)	0.17868(5)	0.0111(4)	2.149
S4	8e	0.0754(3)	0.3979(3)	0.11183(5)	0.0110(4)	2.071
S5	8e	0.5597(3)	0.2507(3)	0.09140(5)	0.0116(4)	2.019
Cl1	4 <i>d</i>	0.6211(5)	0.1695(4)	0.2500	0.0208(6)	0.784
Cl2	8e	0.1120(3)	0.0918(3)	0.03501(5)	0.0177(4)	0.866

 $\label{eq:stables} \begin{array}{l} \textbf{Table S1.} \ Atomic \ coordinates \ and \ equivalent \ isotropic \ displacement \ parameters \ of \\ La_8S_4Cl_8La_{12}S_8Cl_4[SbS_3]_8 \end{array}$

 U_{eq} is defined as one third of the trace of the orthogonalized $U_{\textit{ij}}$ tensor

Table S2. Atomic coordinates and equivalent isotropic displacement parameters of $La_{12}S_8Cl_8[SbS_3]_4$.

atom	symmetry	Х	у	Z	U(eq)	BVS
La1	4a	0.77527(3)	0.70317(8)	0.97434(7)	0.00989(14)	2.982
La2	4a	0.92858(2)	0.70979(9)	0.62823(6)	0.00815(13)	2.965
La3	4a	0.57335(3)	0.78612(9)	0.61699(6)	0.00895(14)	2.982
Sb1	4a	0.72811(3)	0.80597(10)	0.40387(9)	0.01337(16)	3.033
S1	4a	0.84795(14)	0.4447(4)	0.8070(4)	0.0093(5)	1.997
S2	4a	0.50334(14)	0.9483(3)	0.8750(4)	0.0089(4)	2.170
S3	4a	069247(12)	0.5757(4)	0.6146(4)	0.0103(6)	2.079
S4	4a	0.65856(13)	0.9387(4)	0.9513(4)	0.0107(6)	2.000
S5	4a	0.80826(13)	0.9278(4)	0.6496(4)	0.0104(6)	2.067
C11	4a	0.93751(14)	0.8876(4)	0.9999(4	0.0187(6)	0.787
C12	4a	0.55981(12)	0.3940(4)	0.7467(4)	0.0179(6)	0.864

atom	symmetry	Х	у	Z	U(eq)	BVS
Cel	4a	0.16330(3)	0.29747(8)	0.02663(10)	0.01278(18)	3.021
Ce2	4a	0.00943(3)	0.28947(8)	0.37059(8)	0.00852(17)	3.010
Ce3	4a	0.36448(3)	0.21400(8)	0.38380(8)	0.00885(17)	3.038
Sb1	4a	0.20969(4)	0.19288(10)	0.59877(12)	0.0127(2)	3.067
S1	4a	0.09005(15)	0.5558(4)	0.1924(5)	0.0096(5)	2.005
S2	4a	0.43483(15)	0.0525(3)	0.1253(5)	0.0084(5)	2.187
S 3	4a	0.24571(13)	0.4242(4)	0.3856(5)	0.0106(6)	2.133
S4	4a	0.28018(14)	0.0625(4)	0.0492(4)	0.0099(6)	2.050
S5	4a	0.12933(14)	0.0721(4)	0.3496(5)	0.0101(6)	2.097
C11	4a	-0.00003(15)	0.1118(4)	0.0000(5)	0.0175(6)	0.809
C12	4a	0.37796(14)	0.6071(4)	0.2541(5)	0.0168(6)	0.869

Table S3. Atomic coordinates and equivalent isotropic displacement parameters of $Ce_{12}S_8Cl_8[SbS_3]_4$.

 $\textbf{Table S4. Selected } \underline{bond \ lengths \ (\AA) \ of \ La_8S_4Cl_8La_{12}S_8Cl_4[SbS_3]_8}.$

2.841(2)
2.8607(19)
2.947(2)
2.9753(19)
3.0022(19)
3.0829(19)
3.101(2)
2.867(3)
2.8983(19)
2.8984(19)
2.999(2)
3.085(3)
3.1058(19)
2.8559(12)
2.8795(19)
2.912(2)
2.996(2)
2.9982(19)
3.0300(19)
3.073(2)
3.141(2)
2.4343(19)
2.435(2)

2.834(3)
2.860(3)
2.947(3)
2.984(3)
3.004(3)
3.059(3)
3.072(3)
2.875(3)
2.900(3)
2.901(3)
2.924(3)
3.017(3)
3.020(3)
3.118(3)
3.191(3)
2.841(3)
2.852(3)
2.916(3)
2.964(3)
3.012(3)
3.045(3)
3.087(3)
3.251(3)
2.440(3)
2.441(3)
2.457(3)

Table S5. Selected bond lengths (Å) of $La_{12}S_8Cl_8[SbS_3]_4$.

_

Ce1-S1	2.808(3)
Ce1-S1	2.846(4)
Ce1-S5	2.932(3)
Ce1-S3	2.950(3)
Ce1-S5	2.975(3)
Ce1-S3	3.023(4)
Ce1-S4	3.046(3)
Ce2-S2	2.851(3)
Ce2-S2	2.874(3)
Ce2-S1	2.879(4)
Ce2-Cl1	2.887(3)
Ce2-Cl1	2.984(3)
Ce2-S1	2.994(3)
Ce2-S5	3.079(3)
Ce2-Cl2	3.162(3)
Ce3-S2	2.818(3)
Ce3-S2	2.833(3)
Ce3-Cl2	2.884(3)
Ce3-Cl2	2.943(3)
Ce3-S4	2.974(3)
Ce3-S3	3.011(3)
Ce3-S4	3.049(3)
Ce3-Cl1	3.217(3)
Sb1-S3	2.436(3)
Sb1-S4	2.437(3)
Sb1-S5	2.452(3)

	<u></u>	
Table S6.	Selected bond lengths	s (A) of $Ce_{12}S_8Cl_8[SbS_3]_4$.

_