Supporting information

Copper(II) complexes with tridentate halogen-substituted Schiff base ligands: synthesis, crystal structures and investigating the effect of halogenation, leaving group and ligand flexibility on antiproliferative activities

Nazanin Kordestani^a, Hadi Amiri Rudbari^{a,*}, Alexandra R. Fernandes^{b,*}, Luís R. Raposo^b, André Luz^b, Pedro V. Baptista^b, Giuseppe Bruno^c, Rosario Scopelliti^d, Zohreh Fateminia^a, Nicola Micale^c, Nikolay Tumanov^e, Johan Wouters^e, Abolghasem Abbasi Kajani^f, Abdol-Khalegh Bordbar^g

^a Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran. Email: <u>hamiri1358@gmail.com</u>, <u>h.a.rudbari@sci.ui.ac.ir</u>

^bUCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal. Email: <u>ma.fernandes@fct.unl.pt</u>

^c Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, I-98166 Messina, Italy.

^d Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

^e Department of Chemistry, Namur Institute of Structured Matter, University of Namur, 5000 Namur, Belgium.

^f Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.

^g California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA.

Complexes	IC ₅₀ A2780 (μM)	IC ₅₀ HCT116 (µM)	IC ₅₀ MCF7 (μM)	IC ₅₀ Fibroblasts (µM)
Cu(I ₂ -L ₁)Cl	19.9±6.07	22.3±7.93	46.0±6.86	42.9±3.22
$Cu(Br_2 - L_1)NO_3$	18.3±8.7	IC ₅₀ >50	39.2±2.89	34.9±5.20
$Cu(I_2 - L_1)NO_3$	19.9±4.48	23.1±2.24	47.5±8.53	10 <ic<sub>50<50</ic<sub>
Cu(BrCl -L ₁)NO ₃	20.0±1.87	30.7±4.05	47.7±7.51	43.1±5.69
Cu(Cl ₂ -L ₂)Cl	28.1±4.52	IC ₅ >50	IC ₅₀ >50	IC ₅₀ >50
Cu(Br ₂ -L ₂)Cl	48.0±6.50	33.2±2.70	IC ₅₀ >50	IC ₅₀ >50
Cu(I ₂ -L ₂)Cl	42.7±1.89	IC ₅ >50	IC ₅ >50	IC ₅₀ >50
Cu(BrCl-L ₂)Cl	IC ₅₀ >50	IC ₅₀ >50	IC ₅₀ >50	IC ₅₀ >50
$Cu(Cl_2 - L_2)NO_3$	26.5±6.76	48.2±8.05	IC ₅₀ >50	IC ₅₀ >50
$Cu(Br_2 - L_2)NO_3$	28.3±0.53	19.7±4.29	IC ₅₀ >50	IC ₅₀ >50
$Cu(I_2 - L_2)NO_3$	46.0±7.50	44.2±12.26	IC ₅₀ >50	IC ₅₀ >50
Cu(BrCl-L ₂)NO ₃	46.4±0.92	IC ₅₀ >50	30.8±9.77	IC ₅₀ >50

Table S1 -Relative IC₅₀ values (μ M) in A2780, HCT116 and MCF7 cancer lines and in human normal primary dermal fibroblasts.

Fig. S1 Antiproliferative effect of complexes $Cu(Cl_2-L_1)Cl$ (light grey), $Cu(Br_2-L_1)Cl$ (intermediate grey), $Cu(BrCl-L_1)Cl$ (dark grey) and $Cu(Cl_2-L_1)NO_3$ (white) in MCF7 cancer cell line exposed to increasing concentrations of each complex for 48 h evaluated by the MTS method. The vehicle control condition was DMSO 0.1% (v/v) (negative control). The results shown are expressed as the mean \pm SD from three independent assays.

Fig. S2 Cytotoxicity of cisplatin in normal dermal fibroblasts after 48 h of incubation. Cell viability was determined using the MTS assay. Data normalized against the control (0.1% (v/v) DMSO) and expressed as the mean \pm SD of three independent assays. The symbol * indicates that p-value < 0.05.

Fig. S3 Evaluation by the trypan blue exclusion method of the number of live and dead cells in the population of adherent and in the culture media supernatant (non-adherent) A2480 cells. Cells were incubated for 48 h with DMSO 0.01% (v/v) (A), DMSO 0.1% (v/v) (B) and DMSO 1% (C) as solvent controls and with $0.1 \times IC_{50}$ (A), $1 \times IC_{50}$ (B) and $10 \times IC_{50}$ (C) concentrations of complexes Cu(Cl₂-L₁)Cl and Cu(Br₂-L₁)Cl. The results shown are expressed as the mean±SD from three independent experiments.