# Supplemental Information

### Rational design of flower-like Co-Zn LDH@Co(H2PO4)2 heterojunction as

## advanced electrode material for supercapacitors

Miao He<sup>a</sup>, Yi He<sup>c</sup>, Xinyi Zhou<sup>a</sup>, Qiang Hu<sup>a</sup>, Shixiang Ding<sup>a</sup>, Qiaoji Zheng<sup>a</sup>, Dunmin

Lin<sup>a,\*</sup>, Xijun Wei<sup>b,\*</sup>

<sup>a</sup>College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China

<sup>b</sup>State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China.

<sup>c</sup>Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou310018, China

<sup>\*</sup> Corresponding author: Email: ddmd222@sicnu.edu.cn (Dunmin Lin); xijunwei1992@swust.edu.cn (Xijun Wei); Fax: +86 28 84760802 Tel: +86 28 84760802

#### **1. Experimental Section**

#### 1.1. Chemicals

All chemical reagents were analytical and used directly without any further purification. The raw materials were as follows: Zinc(II) nitrate hexahydrate  $(Zn(NO)_3 \cdot 6H_2O)$ , Cobaltous(II) Nitrate Hexahydrate  $(Co(NO)_3 \cdot 6H_2O)$ , urea  $(Co(NH_2)_2)$ , Dibasic Sodium Phosphate  $(NaH_2PO_4)$ . All the materials were supplied by Sinopharm Chemical Reagent Co. Ltd.

#### 1.2. Synthesis of Co-Zn LDH@Co(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub> arrays on NF

The Co-Zn LDH@Co(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub> arrays were synthesized on Ni foam by a simple hydrothermal method. Typically, a piece of nickel foam with a size of 1.0 ×1.0 cm<sup>2</sup> was pre-treated by HCl solution (3M) for 20 minutes to remove surface impurities, and then washed with deionized water several times. In detail, 0.6 mmol Zn(NO)<sub>3</sub>·6H<sub>2</sub>O, 1.2 mmol Co(NO)<sub>3</sub>·6H<sub>2</sub>O, 3 mmol CO(NH<sub>2</sub>)<sub>2</sub> and x mmol NaH<sub>2</sub>PO<sub>4</sub> (x=0, 0.18, 0.3, 0.36, 0.42) were dissolved in 60 mL deionized water and magnetically stirred for 15 min. Then, the solution was transferred into a 100 mL Teflon-lined stainless-steel autoclave and a piece of nickel foam was immersed into the reaction solution. The autoclave was heated at 140 °C for 8 h and then cooled to room temperature. The NF with the synthesized materials was taken out and washed with ethanol and alcohol several times, respectively. The materials were denoted as Co-Zn LDH (x=0) and Co-Zn LDH@Co(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>-x (x= 3, 5, 6, 7). The mass loading of the Co-Zn LDH@Co(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>-x on the NF was about 2.1 mg.

#### 1.3. Material Characterizations

The morphology and microstructure of the samples were observed by scanning electron microscopy (SEM, FEI-Quanta 250, USA) and transmission electron microscopy (FE-TEM, GZF20, USA). The elemental analysis of the samples was carried out by scanning electron microscopy (FE-SEM, JSM-7500, Japan) equipped with corresponding energy dispersive x-ray (EDX) element mapping. The elemental composition of the sample was determined by the inductively coupled plasma mass spectrometry(ICP-MS Agilent 725, USA). Surface element analysis of the samples was performed on a PHI 5000 VersaProbe XPS instrument (XPS, Thermo ESCALAB 250XI, USA). The crystal structure of the sample was examined by X-ray diffraction (XRD, Smart Lab, Rigaku, Japan) with Cu-K $\alpha$  radiation ( $\lambda = 1.540598$ Å, Smart Laboratory).

#### 1.4. Electrochemical Measurements

The electrochemical measurements of the electrodes were performed in 3 M KOH solution on an electrochemical workstation (CHI660E) in a three-electrode testing system. The Co-Zn LDH@Co(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub> nanoflowers (1×1 cm<sup>2</sup>) were used as the working electrode, while platinum plate and Hg/HgO were used as a counter electrode and a reference electrode, respectively. The cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge (GCD) measurements were carried out to evaluate the electrochemical performance of the electrodes. The specific capacity (C g<sup>-1</sup>) of the electrodes was computed from the GCD curves according to the equation below [1]:

$$Q_{\rm s} = \frac{I \int_0^{\Delta t} V dt}{m \times \Delta V_{mean}} = \frac{I \int_0^{\Delta t} V dt}{m \Delta V} \tag{1}$$

where I,  $\Delta t$ , V,  $\Delta V_{\text{mean}}$ , m, and  $\Delta V$  are the discharge current (A), discharge time (s), operating potential (V), mean value of operating potential (V), mass (g), and potential window (V) of electroactive materials, respectively.

#### 1.5. Assembly of hybrid supercapacitors

In order to evaluate the practical application of Co-Zn LDH@Co(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub> electrode, an hybrid double-electrode supercapacitor was assembled using actuated carbon (AC, 11.1mg in 1×1 cm<sup>2</sup>) as the negative electrode, the Co-Zn LDH@Co(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub> (2.1mg in 1×1 cm<sup>2</sup>) as the positive electrode and the diaphragm as the diaphragm. The AC was mixed with polyvinylidene fluoride binder (PTFE) and acetylene black in ethanol at a mass ratio of 7:2:1. The NF with synthesized sample (1×1cm<sup>2</sup>) was coated with the prepared paste, dried in a vacuum oven at 60°C for 12 h, and then pressed into a thin film under a pressure of 10 MPa. In order to realize the conservation of charge, the masses of the negative and positive electrodes were balanced by the following equation:

$$\frac{m_{+}}{m_{-}} = \frac{C_{-}V_{-}}{Q_{+}}$$
(2)

where  $Q_+$ ,  $C_-$ , and  $V_-$  are the specific capacity of the positive electrode, the specific capacitance and potential window of AC electrode, respectively.

The following equations can be used to calculate the specific capacity (C g<sup>-1</sup>), energy density (Wh kg<sup>-1</sup>) and power density (W kg<sup>-1</sup>) of the device from the current charge-discharge curves:

$$Q = 2 \frac{I \int_{0}^{\Delta t} V dt}{M \Delta V}$$
(3)

$$E = \frac{I \int_{0}^{\Delta t} V dt}{3.6M}$$

$$P = \frac{3600E}{\Delta t}$$
(5)

where 
$$I$$
,  $M$ ,  $\Delta t$ ,  $V$  and  $\Delta V$  are the discharge current (A), the total mass of the positive and negative electrode materials (g), discharge time (s), operating voltage (V), and voltage window (V), respectively.

# 2. Results



Figure S1. (a) SEM images of Co-Zn LDH; (b) SEM image of Co-Zn LDH@Co(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>-5.



Figure S2. XRD pattern of Co-Zn LDH.



Figure S3. Element mapping of the flower-like structured Co-Zn-LDH@Co(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>-5.



Figure S4. CV curves of the materials at various current densities: (a) Co-Zn LDH; (b) Co-Zn-LDH@Co(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>-3; (c) Co-Zn-LDH@Co(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>-6; (d) Co-Zn-LDH@Co(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>-7.



**Figure S5.** GCD curves of the materials at different current densities: (a) Co-Zn LDH; (b) Co-Zn-LDH@Co(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>-3; (c) Co-Zn-LDH@Co(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>-6; (d) Co-Zn-LDH@Co(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>-7.



Figure S6. Cycling stability of Co-Zn LDH electrode (2 A g<sup>-1</sup>).



Figure S7. SEM image of the Co-Zn LDH@ $Co(H_2PO_4)_2$ -5 electrode after cycling test.



**Figure S8**. (a) Cyclic curves of AC at different scan rates; (b) Comparison of galvanostatic charge–discharge curves of the AC at different current densities; (c) Specific capacitance of AC at different current densities; (d) Cyclic curves of AC and Co-Zn LDH@Co( $H_2PO_4$ )<sub>2</sub>-5 at 5 mV s<sup>-1</sup>.

Table S1. Ion concentration (Wt%) of Zn, Co and P in Co-Zn LDH@Co( $H_2PO_4$ )<sub>2</sub>-5 as determined

|                                                               | Со   | Zn   | Р    |
|---------------------------------------------------------------|------|------|------|
| Co-Zn LDH@Co(H <sub>2</sub> PO <sub>4</sub> ) <sub>2</sub> -5 | 2.12 | 4.35 | 2.02 |

through ICP-MS measurements.

| Name                   | Peak BE | FWHM eV | Area(P)   | Atomic % |
|------------------------|---------|---------|-----------|----------|
|                        |         |         | CPD.eV    |          |
| O1s<br>C=O/Phosphate   | 532.4   | 1.92    | 58193     | 26.64    |
| O1s C-O                | 531.9   | 1.92    | 6621.5    | 3.01     |
| O1sMetal O             | 531.6   | 1.92    | 1497.15   | 0.685    |
| P2p <sub>3/2</sub> P-O | 132.87  | 1.4     | 22704.26  | 10.39    |
| P2p <sub>1/2</sub> P-O | 133.08  | 1.4     | 11596.72  | 0        |
| $Co2p_{3/2}\ Co^{2+}$  | 781.2   | 3.24    | 196943.4  | 27.03    |
| $Co2p_{1/2} \ Co^{2+}$ | 797.21  | 3.24    | 83858.4   | 0        |
| $Co2p_{3/2} \ Co^{3+}$ | 786.1   | 6.25    | 95832.6   | 13.23    |
| $Co2p_{1/2} \ Co^{3+}$ | 802.85  | 5.67    | 53374.5   | 0        |
| $Zn2p_{3/2}\ Zn^{2+}$  | 1043.8  | 2.23    | 182416.28 | 18.98    |
| $Zn2p_{1/2} \ Zn^{2+}$ | 1020.5  | 2.23    | 94486.24  | 0        |

Table S2. Results of Co-Zn LDH@Co(H2PO4)2-5 XPS peak area and element weight ratio.

|                              | $Co(H_2PO_4)_2$ | Co-Zn LDH |
|------------------------------|-----------------|-----------|
| O1s C=O/Phosphate<br>O1s C-O | 26.64           | 3.01      |
| O1sMetal O                   | 0.685           |           |
| Р2р <sub>3/2</sub> Р-О       | 10.39           |           |
| $Co2p_{3/2} \ Co^{2+}$       | 27.03           |           |
| $Co2p_{3/2} Co^{3+}$         |                 | 13.23     |
| $Zn2p_{3/2} Zn^{2+}$         |                 | 18.98     |
| Total                        | 64.745          | 35.22     |

Table S3. Results of the weight ratio of Co-Zn LDH and  $Co(H_2PO_4)_2$ .

| Materials                                                  | Specific capacitance                               | Current<br>density/scan rate | Ref.      |
|------------------------------------------------------------|----------------------------------------------------|------------------------------|-----------|
| Mxene-NiCo LDH                                             | 983.6 F g <sup>-1</sup>                            | 2 A g <sup>-1</sup>          | 2         |
| NiCo-SDBS-LDH                                              | 1094 F g <sup>-1</sup>                             | 5 A g <sup>-1</sup>          | 3         |
| ZIF-8-C@NiAl-LDH                                           | 1370 F g <sup>-1</sup>                             | 1 A g <sup>-1</sup>          | 4         |
| Ag NW@NiAl LDH                                             | 1148 F g <sup>-1</sup>                             | 1 A g <sup>-1</sup>          | 5         |
| CoAl-LDH/FG-12                                             | 1222 F g <sup>-1</sup>                             | 1 A g <sup>-1</sup>          | 6         |
| Cactus-like NiCoP/NiCo-OH                                  | 1100 F g <sup>-1</sup>                             | 1 A g <sup>-1</sup>          | 7         |
| Ni-Al LDH hollow sphere                                    | 1578 F g <sup>-1</sup>                             | 1 A g <sup>-1</sup>          | 8         |
| NiAl-LDH nanoplates                                        | 1713 F g <sup>-1</sup>                             | 1 A g <sup>-1</sup>          | 9         |
| KCu <sub>7</sub> S <sub>4</sub> @NiMn LDH                  | 734 F g <sup>-1</sup>                              | 1 A g <sup>-1</sup>          | 10        |
| NiCo <sub>2</sub> Al-LDH                                   | 1137 F g <sup>-1</sup>                             | 0.5 A g <sup>-1</sup>        | 11        |
| MOF-derived Co-Co LDH                                      | 1205 F g <sup>-1</sup>                             | 1 A g <sup>-1</sup>          | 12        |
| Co-Zn LDH@Co(H <sub>2</sub> PO <sub>4</sub> ) <sub>2</sub> | 919 C g <sup>-1</sup><br>(1838 F g <sup>-1</sup> ) | 1 A g <sup>-1</sup>          | This work |

**Table S4.** Comparative specific capacitance values of the previously reported transition-metalmaterials with our Co-Zn LDH@Co( $H_2PO_4$ )<sub>2</sub>-5 electrode in a three-electrode system.

| Table S5 | . Results   | of electrical    | conductivity | measurement | performed on | Co-Zn L | .DH an | d Co-Zn |
|----------|-------------|------------------|--------------|-------------|--------------|---------|--------|---------|
| LDH@Co   | $(H_2PO_4)$ | <sub>2</sub> -5. |              |             |              |         |        |         |

| Electrode Materials                                        | Resistivity ( $\Omega \cdot cm$ ) | Electrical conductivity (S/cm) |
|------------------------------------------------------------|-----------------------------------|--------------------------------|
| Co-Zn LDH                                                  | 1.29                              | 775.2                          |
| Co-Zn LDH@Co(H <sub>2</sub> PO <sub>4</sub> ) <sub>2</sub> | 0.9                               | 1111                           |

**Table S6.** Comparative cycle ability of the previously reported electrodes with Co-ZnLDH@Co( $H_2PO_4$ )<sub>2</sub>-5 electrode.

| Electrode material                                            | Capacitance retention     | Ref.      |
|---------------------------------------------------------------|---------------------------|-----------|
| NiAl-LDHs/MWCNT/NF                                            | 83% (after 1000 cycles)   | 13        |
| Co-Al LDH/graphene                                            | 81% (after 2000 cycles)   | 14        |
| CoNi-LDHs                                                     | 77% (after 1000 cycles)   | 15        |
| NiCoAl-LDH                                                    | 73.5% (after 3000 cycles) | 16        |
| Co-Zn LDH@Co(H <sub>2</sub> PO <sub>4</sub> ) <sub>2</sub> -5 | 84.3% (after 3000 cycles) | This work |

#### References

- [1] S. Liu, Y. Yin, D. Ni, K. San Hui, K. N. Hui, S. Lee, Energy Storage Materials, 19 (2019) 186-196.
- [2] H. Li, F. Musharavati, E. Zalenezhad, X. Chen, K. N. Hui and K. S. Hui, Electrochim. Acta 261 (2018) 178-187.
- [3] Y. Lin, X. Xie, X. Wang, B. Zhang, C. Li, H. Wang and L. Wang, Electrochim. Acta 246 (2017) 406-414.
- [4] B. Han, G. Cheng, E. Zhang, L. Zhang and X. Wang, Electrochim. Acta 263 (2018) 391-399.
- [5] L. Li, K. S. Hui, K. N. Hui, T. Zhang, J. Fu and Y. R. Cho, Chem. Eng. J 348 (2018) 338-349.
- [6] W. Peng, H. Li and S. Song, ACS Appl. Mater. Interfaces 9 (2017) 5204-5212.
- [7] X. Li, H. Wu, A. M. Elshahawy, L. Wang, S. J. Pennycook, C. Guan and J. Wang, Adv. Funct. Mater, 28 (2018) 1800036.

- [8] W. Wang, N. Zhang, Z. Shi, Z. Ye, Q. Gao, M. Zhi and Z. Hong, Chem. Eng. J, 338 (2018) 55-61.
- [9] L. Li, K. S. Hui, K. N. Hui, Q. Xia, J. Fu and Y. Cho, J. Alloys Compd 721 (2017) 803-812.
- [10] X. L. Guo, J. M. Zhang, W. N. Xu, C. G. Hu, L. Sun and Y. X. Zhang, J. Mater. Chem. A 5 (2017) 20579-20587.
- [11] X. Gao, X. Liu, D. Wu, B. Qian, Z. Kou, Z. Pan, Y. Pang, L. Miao, J. Wang, Adv. Funct. Mater 2019, 1903879.
- [12] X. Bai, J. Liu, Q. Liu, R. Chen, X. Jing, B. Li and J. Wang, Chem. Eur. J 23 (2017) 14839-14847.
- [13] B. Wang, G. R. Williams, Z. Chang, M. Jiang, J. Liu, X. Lei and X. Sun, ACS Appl. Mater. Interfaces, 2014, 6, 16304-16311.
- [14] L. Zhang, X. Zhang, L. Shen, B. Gao, L. Hao, X. Lu, F. Zhang, B. Ding, C. Yuan, J. Power Sources., 2012, 199, 395-40.
- [15] S. B. Kulkarni, A. D. Jagadale, V. S. Kumbhar, R. N. Bulakhe, S. S. Joshi and C. D. Lokhande, Int. J. Hydrogen Energy, 2013, 38, 4046-4053.
- [16] P. Li, Y. Jiao, S.Yao, Li.Wang, G.Chen, New J. Chem., 2019, 43, 3139-3145.