Supplementary materials

Co₃O₄@NiCo₂O₄ Double-Shelled Nanocages with Hierarchical Hollow Structure and Oxygen Vacancies as Efficient Bifunctional Electrocatalysts for Rechargeable Zn-Air Batteries

Neng-Fei Yu^{*}, Wen Huang, Kai-Lin Bao, Hui Chen, Kai Hu, Yi Zhang, Qing-Hong Huang, Yusong Zhu^{*} and Yu-Ping Wu^{*}

School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211800, China.

*Corresponding author: yunf@njtech.edu.cn (Neng-Fei Yu); zhuys@njtech.edu.cn (Yusong Zhu); wuyp@fudan.edu.cn (Yu-Ping Wu)

Fig. S1 (a) XRD patterns of as-obtained ZIF-67 nanocrystals. (b) Particle size distribution of as-obtained ZIF-67 nanocrystals. (c) Low-magnification and (d) high-magnification SEM images of as-obtained ZIF-67 nanocrystals.

Fig. S2 (a) XRD patterns of as-obtained ZIF-67@Ni-Co LDH nanocrystals. (b) Particle size distribution of as-obtained ZIF-67@Ni-Co LDH nanocrystals. (c) Low-magnification and (d) high-magnification SEM images of as-obtained ZIF-67@Ni-Co LDH nanocrystals.

Fig. S3 (a) XRD patterns of as-obtained Co_3O_4 NCs. (b) Particle size distribution of asobtained Co_3O_4 NCs. (c) Low-magnification and (d) high-magnification SEM images of as-obtained Co_3O_4 NCs.

Fig. S4 (a) TEM image of as-obtained Co_3O_4 NCs. (b) Intensity profiles of TEM image of one Co_3O_4 NC nanoparticle. (c) HRTEM image of a fragment of Co_3O_4 shell. (d) EDS elemental mapping images of as-obtained Co_3O_4 NC, showing as-obtained Co_3O_4 NCs feature hollow nanocage structure.

Fig. S5 (a) XPS survey spectrum for Co_3O_4 @NiCo₂O₄ DSNCs and Co_3O_4 NCs. (b) The experimental and fitted high-resolution XPS spectra for Ni 2p of Co_3O_4 @NiCo₂O₄ DSNCs.

Fig. S6 CV curves of Co_3O_4 @NiCo₂O₄ DSNCs, Co_3O_4 NCs and Pt/C catalysts were recorded in O₂-and N₂ saturated 0.1 M KOH with at a scan rate of 50 mV s⁻¹.

Fig. S7 ORR polarization curves (left) at various rotation rates and the corresponding Koutecky-Levich plots (right) obtained at different potentials from (a), (b) $Co_3O_4@NiCo_2O_4$ DSNCs and (c), (d) Co_3O_4 NCs.

Fig. S8 (a) ORR Tafel plots of Co_3O_4 @NiCo_2O_4 DSNCs compared with Co_3O_4 NCs, and Pt/C. (b) OER Tafel plots of Co_3O_4 @NiCo_2O_4 DSNCs compared with Co_3O_4 NCs, and Pt/C.

Fig. S9 Nyquist plots for Co_3O_4 @Ni Co_2O_4 DSNCs, Co_3O_4 NCs, and Pt/C at anodic potential value of 1.6 V, in O_2 free 0.1 M KOH solution.

Fig. S10 Nyquist spectra for RZRBs with Co_3O_4 @Ni Co_2O_4 DSNCs and Pt/C as air electrode.

Fig. S11 The open-circuit voltage curve for RZAB based on Co₃O₄@NiCo₂O₄.

Fig. S12 Specific capacities of the RZABs using Co_3O_4 @Ni Co_2O_4 DSNCs and Pt/C as air electrode, which is normalized to the mass of the consumed Zn.

Fig. S13 Photograph of a red LED (1.8 V) powered by two RZABs connected in series with Co_3O_4 @NiCo_2O_4 DSNCs as the air cathode.

Fig. S14 (a) XRD patterns and (d) TEM image of Co₃O₄@NiCo₂O₄ DSNCs catalysts as air electrode in RZAB after a 140 h long-term battery test, respectively.

1 2
1 2
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

 Table S1. Thorough comparison of performances of recently reported bifunctional oxygen electrocatalysts.

NiCo ₂ O ₄ Nanosheet	0.74	1.68	0.94	29h (10mA cm ⁻²)	17
Co ₃ O ₄ @NiCo ₂ O ₄	0.81	1 (5	0.94	140h (10mA cm ⁻²)	This
DSNCs		1.05	0.04		work

References

1. Y. Xie, C. Feng, Y. Guo, S. Li, C. Guo, Y. Zhang and J. Wang, *Appl. Surf. Sci.*, 2021, **536**.

2. Y. Guo, P. Yuan, J. Zhang, H. Xia, F. Cheng, M. Zhou, J. Li, Y. Qiao, S. Mu and Q. Xu, *Adv. Funct. Mater.*, 2018, **28**.

3. X. Yi, X. He, F. Yin, B. Chen, G. Li and H. Yin, *Electrochim. Acta*, 2019, **295**, 966-977.

4. T. Li, Y. Lu, S. Zhao, Z.-D. Gao and Y.-Y. Song, *J. Mater. Chem. A*, 2018, **6**, 3730-3737.

5. H. Jiang, Y. Liu, W. Li and J. Li, Small, 2018, 14, e1703739.

6. F. Meng, H. Zhong, D. Bao, J. Yan and X. Zhang, J. Am. Chem. Soc., 2016, **138**, 10226-10231.

7. K. Wan, J. Luo, X. Zhang, C. Zhou, J. W. Seo, P. Subramanian, J.-w. Yan and J. Fransaer, *J. Mater. Chem. A*, 2019, **7**, 19889-19897.

8. X. F. Lu, Y. Chen, S. Wang, S. Gao and X. W. Lou, Adv. Mater., 2019, 31.

9. Y. Wang, M. Qiao and X. Mamat, Chem. Eng. J., 2020, 402.

10. Z. Wang, J. Ang, B. Zhang, Y. Zhang, X. Y. D. Ma, T. Yan, J. Liu, B. Che, Y. Huang and X. Lu, *Appl. Catal. B: Environmental*, 2019, **254**, 26-36.

11. Y.-N. Chen, Y. Guo, H. Cui, Z. Xie, X. Zhang, J. Wei and Z. Zhou, J. Mater. Chem. A, 2018, 6, 9716-9722.

12. S. Kosasang, H. Gatemala, N. Ma, P. Chomkhuntod and M. Sawangphruk, *Batteries & Supercaps*, 2020, **3**, 631-637.

13. C. Shenghai, S. Liping, K. Fanhao, H. Lihua and Z. Hui, J. Power Sources, 2019,

430, 25-31.

14. S. Peng, X. Han, L. Li, S. Chou, D. Ji, H. Huang, Y. Du, J. Liu and S. Ramakrishna, *Adv. Energy Mater.*, 2018, **8**.

15. L. Wei, L. Qiu, Y. Liu, J. Zhang, D. Yuan and L. Wang, *ACS Sustainable Chem.* & *Eng.*, 2019, 7, 14180-14188.

16. Q. Wang, Y. Xue, S. Sun, S. Yan, H. Miao and Z. Liu, J. Power Sources, 2019, 435.

17. W. Liu, J. Bao, L. Xu, M. Guan, Z. Wang, J. Qiu, Y. Huang, J. Xia, Y. Lei and H. Li, *Appl. Surf. Sci.*, 2019, **478**, 552-559.