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SI1 Instruments and Materials

SI1.1 Instruments

'H and '*C NMR spectra were recorded on a Bruker 400 or 600 MHz spectrometer.
Mass spectrometry was performing using a Water XEVO G2Q-TOF (Waters
Corporation). Elemental analysis of carbon, nitrogen and hydrogen was performed
using an Elementary Vario EL analyser. Magnetic susceptibility data were collected
using a Quantum Design MPMS XL-5 or PPMS-9T (EC-II) SQUID magnetometer.
Measurements for all the samples were performed on microcrystalline powder
restrained by a parafilm and loaded in a capsule. The magnetic susceptibility data were
corrected for the diamagnetism of the samples using Pascal constants and the sample
holder and parafilm by corrected measurement. Crystals suitable for single crystal X-
ray diffraction were covered in a thin layer of hydrocarbon oil, mounted on a glass fiber
attached to a copper pin, and placed under an N, cold stream. All data were carried out
on a Rigaku Saturn724+ CCD diffractometer with Confocal-monochromator Mo-Ka
radiation (A = 0.71073 A). Intensities were collected using CrystalClear (Rigaku Inc.,
2008) technique and absorption corrections were applied using the 'multi-scan' method.
Unit cell dimensions were obtained with least-squares refinements and all structures
were solved by direct methods using SHELXS-97. The other nonhydrogen atoms were
in successive difference Fourier syntheses. The final refinement was performed using
full-matrix least-squares methods with anisotropic thermal parameters for non-
hydrogen atoms on F5. The hydrogen atoms were added theoretically and riding on the
concerned atoms. Powder X-ray diffraction (PXRD) data were performed on a Rigaku
Dmax 2000 diffractometer with Cu Ko radiation (A = 1.54178 A) in a flat plate
geometry.

SI1.2 Materials

All reagents and solvents were purchased commercially and used as supplied, unless
otherwise stated. The crystals of complexes (§)-2(Cl0Oy), (R)-2(Cl10Oy), and 3(ClOy)
were synthesized according to literature procedure and the crystals were grown in the
mixture solution of methanol and dicholoromethane.!

Caution! Although not encountered in our experiments, perchlorate salts in the
presence of organic ligands are potentially explosive. Only a small amount of the
materials should be prepared and handled with care.



SI2 Structural Characterization

SI2.1 NMR spectra
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Fig. S1 '"H NMR spectrum of 2 (600 MHz) in CDCl; at 298 K.
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Fig. S2 '"H NMR spectrum of 3 (400 MHz) in DMSO-d; at 298 K.



¢g6e—

9999
05v9—

A
oo_ﬁ_w
pLizLy
€8Tl

¥SBEL—
grovl’
0z8rL—

le'egl—

100

200 180 160

220

20

120 80 60
ppm

140

Fig. S3 3C NMR spectrum of 3 (151 MHz) in DMSO-d; at 298 K.
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Fig. S4 '"H NMR spectrum of L™¢? (600 MHz) in CDCl; at 298 K.
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Fig. S5 3C NMR spectrum of L™ (151 MHz) in CDCl; at 298 K.
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Fig. S6 Paramagnetic '"H NMR spectrum of 1(C104) (600 MHz) in CD3;CN at 298 K.
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Fig. S7 Paramagnetic 'H NMR spectrum of 1(BF,4) (600 MHz) in CD;CN at 298 K.
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Fig. S8 Paramagnetic '"H NMR spectrum of 1(PFs) (600 MHz) in CD;CN at 298 K.
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Fig. S9 Paramagnetic 'H NMR spectrum of 1(BPh,) (600 MHz) in CD;CN at 298 K.
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Fig. S10 '"H NMR spectrum of 1(C104)-Zn (600 MHz) in CD;CN at 298 K.
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Fig. S11 '"H NMR spectrum of 2(C104)-Zn (600 MHz) in CD;CN at 298 K.
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Fig. S12 'H NMR spectrum of 3(C104)-Zn (600 MHz) in CD;CN at 298 K.
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Fig. S13 The stacking '"H NMR spectra of L™¢ and LS (600 MHz) in CDCl; at 298 K.
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Fig. S14 The merged paramagnetic 'H NMR spectra of 1(C10,), 2(ClOy), and 3(C10y)
in CD3;CN at 298 K.
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Fig. S15 (a) Stacked spectra, obtained by the Evans’ "H NMR method, from 333 to 243
K for 1(C10y) (5.0 x 103 mol L") in CD3CN (400 MHz); (b) The enlarged region of
solvent residual peaks (* and * represent the solvent residual signals in solution and in
the inner tube, respectively).
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Fig. S16 (a) Stacked spectra, obtained by the Evans’ 'H NMR method, from 333 to 243
K for 2(Cl10y) (5.0 x 103 mol L") in CD3CN (400 MHz); (b) The enlarged region of
solvent residual peaks (* and * represent the solvent residual signals in solution and in
the inner tube, respectively).
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Fig. S17 (a) Stacked spectra, obtained by the Evans’ '"H NMR method, from 333 to 243
K for 3(Cl1Oy) (5.0 x 103 mol L!) in CD3CN (400 MHz); (b) The enlarged region of
solvent residual peaks (* and * represent the solvent residual signals in solution and in
the inner tube, respectively).
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Fig. S18 The paramagnetic 'H NMR spectra of crystalline sample (S)-2(ClO,), (R)-
2(Cl10y), and the crystal sample 3(Cl04) obtained from the re-assembly of equivalent
(8)-2(ClOy) and (R)-2(ClOy) in solution. All samples are measured in CD;CN at 298

K.



SI12.2 Structural characterization of Fe(Il) complexes

Fig. S19 Molecular structure of 1(Cl104) at 296 K.

Fig. S20 The packing of 1(C1Qy) in one unit cell.
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Fig. S21 Molecular structure of 1(BF4)-MeCN at 163 K, the F---H hydrogen bondings

between lattice acetonitrile and tetrafluoroborate anion are illustrated.

Fig. S22 The packing of 1(BF4)-MeCN in one unit cell.
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Fig. S24 The packing of 1(PF¢)-MeCN in one unit cell.



Fig. S25 Molecular structure of 1(BPh,)-MeCN-Et,0 at 163 K.

Fig. S27 Molecular structure of 2(C104)-MeOH at 153 K.
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Fig. S29 Molecular structure of 3(ClO4)-MeOH at 153 K, the O---H hydrogen
bondings between lattice methanol and perchlorate anion are illustrated.



Fig. S30 The packing of 3(C104)-MeOH in one unit cell.
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Fig. S31 The TGA trace of 1(ClQy,), revealing no solvent loss and decomposition take

place below 200 °C. Due to the probably explosion at ~215 °C,> measurement towards
higher temperature was not performed.
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Fig. S32 The TGA trace of 2(Cl0O4)-MeOH, indicating the complete solvent loss of
acetonitrile below 200 °C.
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Fig. S33 The TGA trace of 3(ClO4)-MeOH, indicating the complete solvent loss of
acetonitrile below 200 °C.
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Fig. S34 The TGA trace of 1(BF4)-MeCN, indicating the loss of acetonitrile completes
below 160 °C.
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Fig. S35 The TGA trace of 1(PFg)-5MeCN, indicating the loss of acetonitrile completes
below 160 °C. Two disordered acetonitrile are included in the weight calculation.
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Fig. S36 The TGA trace of 1(BPhy)-MeCN-Et,0, indicating the loss of solvent
completes below 160 °C.
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Fig. S37 The powder XRD pattern of 1(ClOy) and the simulated pattern from the single-
crystal X-ray structure.



2(Cl0,)-MeOH Experiment
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Fig. S38 The powder XRD pattern of 2(Cl04)-MeOH and the simulated pattern from
the single-crystal X-ray structure, indicating the lattice methanol solvent is tend to
remove after grinding.
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Fig. S39 The powder XRD pattern of 3(ClO4)-MeOH and the simulated pattern from
the single-crystal X-ray structure.



1(BF,)-MeCN Experiment

=]
3 MMA/M\-A\,N\A
S | o
Z
g Calculation
Q
i
=
10 20 30 40 50

20 (deg)

Fig. S40 The powder XRD pattern of 1(BF4)-MeCN and the simulated pattern from
the single-crystal X-ray structure.
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Fig. S41 The powder XRD pattern of 1(PFg)-MeCN and the simulated pattern from the
single-crystal X-ray structure.
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Fig. S42 The powder XRD pattern of 1(BPh4)-MeCN-Et,0 and the simulated pattern
from the single-crystal X-ray structure.



Table S1. Crystal data, data collection, solution, and refinement information of iron(Il)

compounds.

1(C10,)

1(BF,)-MeCN

1(PFg)-5MeCN

1(BPh,)-MeCN-Et,0

2(C10,)-MeOH

3(C10,)-MeOH

Formula
formula weight
crystal system
space group
a, A
b, A
o, A
a, deg
. deg
7, deg
v, A3
zZ
T,K
F(000)
D¢, g em?
4, mm!

A A
crystal size, mm?
Tinin and Tinax
Omins Onax, deg
no. total reflns.
no. uniq. reflns, R;,
no. obs. [[220(1)]
no. params
R1[I220(D)]
wR?2 (all data)
N
Ap, el A3
max. and mean A/c”
Flack parameter

CCDC

C46H3NgO12CloFe
993.57
C2le
monoclinic
42.453(5)
11.2220(12)
21.261(2)
90
118.425(2)
90
8907.7(17)
8
296.2(2)
4096
1.482
0.530
0.71073
0.25x0.20 x 0.16
0.6729, 0.7456
2.179, 24.027
67060
8752, 0.0452
6749
696
0.0601
0.1364
1.194
0.474,-0.278
0.000, 0.000
/
2045167

C4gH41BoN;O4FsFe
1009.35
Pbca
orthorhombic
17.173(3)
16.506(3)
31.917(6)
90
90
90
9047(3)

8
163.2(2)
4144
1.482
0.421
0.71073
0.30 x 0.25 x 0.17
0.6624, 1.0000
0.6380, 27.4430
36594
8565, 0.0650
8037
632
0.0839
0.1407
1.292
0.454,-0.387
0.001, 0.000
/
2045168

Cs4HsoN19O4F ,PoFe
1248.83
C2le
monoclinic
37.525(8)
12.034(2)
23.788(5)
90
109.13(3)
90
10149(4)

8
163.2(2)
5296
1.688
0.469
0.71073
0.22x0.20 x 0.12
0.8086, 1.0000
1.1487,27.4816
34044
11585, 0.0484
10170
704
0.0805
0.2190
1.177
0.386, —0.455
0.002, 0.000
/
2045169

CogHgsBaN704 sFe
1511.20
P2i/n
monoclinic
14.263(3)
38.290(8)
15.471(3)
90
104.04(3)
90
8196(3)

4
163.2(2)
3264
1.255
0.244
0.71073
0.30 x 0.24 x 0.15
0.8684, 1.0000
1.0636, 28.7134
55792
18208, 0.0504
15906
964
0.0773
0.1666
1.168
0.283,-0.413
0.001, 0.000
/
2045170

C47H4oNO3CLFe
1025.61
P2,2,2,

orthorhombic

11.389(2)
12.886(3)
30.629(6)

90

90

90
4495.3(16)

4
153.2(2)
2120
1.515
0.530
0.71073
0.18 x0.16 x 0.12
0.7736, 1.0000
1.3297,27.4816
26929
10196, 0.0366
9655
710
0.0538
0.1377
1.076
0.403, -0.430
0.001, 0.000
0.051(8)
2045171

C47H4oNgO3CLFe
1025.62
P2i/n
monoclinic
13.856(3)
18.314(4)
17.523(4)
90.00
90.47(3)
90.00
4446.5(16)

4
153.2(2)
2120
1.532
0.536
0.71073
0.22 x 0.14 x 0.08
0.8184, 1.0000
1.4698, 27.4855
29967
10124, 0.0452
9309
624
0.0568
0.1263
1.125
0.447,-0.508
0.001, 0.000
/
2045172

[a] Max and min residual density. [b] Max and mean shift/s. [c¢] The refinement showed there are 42 electrons per one complex, belonging to the seriously disordered solvent
molecules, could not be modeled. These undetermined Q peaks were treated by SQUEEZE, PLATON. These electrons might come from two acetonitrile molecules and were

excluded in the formula.

Table S2. Selected bond lengths (A) for the single crystal structures of 1(ClOy),
1(BF4)-MeCN, 1(PFg)-MeCN, 1(BPhy)-MeCN-Et,0.

1(C10y) 1(BF,)'MeCN | 1(PF)MeCN | 1(BPh))'MeCN-Et,0 | 2(ClO,))MeOH | 3(ClO,)-MeOH
T/K | 296K | T/K | 163K | T/K | 163K | T/K 163K | T/K | 153K | T/K | 153K
Fe-N1 | 2210 | Fe-NI | 1.978 | Fe-NI | 1975 | Fe-NI 2171 | Fe-N1 | 2.046 | Fe-N1 | 2.208
Fe-N2 | 2.105 | Fe-N2 | 1.901 | Fe-N2 | 1.899 | Fe-N2 2117 | FeN2 | 1933 | Fe-N2 | 2.141
Fe-N3 | 2.155 | Fe-N3 | 1980 | Fe-N3 | 1.995 | Fe-N3 2170 | Fe-N3 | 2034 | Fe-N3 | 2.208
Fe-N4 | 2279 | Fe-N4 | 1.980 | Fe-N4 | 1976 | Fe-N4 2201 | Fe-N4 | 2013 | Fe-N4 | 2227
Fe-N5 | 2.109 | Fe-N5 | 1.904 | Fe-N5 | 1.906 | Fe-N5 2120 | Fe-N5 | 1.929 | Fe-N5 | 2.148
Fe-N6 | 2.186 | Fe-N6 | 1.984 | Fe-N6 | 1976 | Fe-N6 2229 | Fe-N6 | 1.966 | Fe-N6 | 2224




Table S3. Summary of the structural parameters and spin state in the family of
compounds reported in this work.

Entry TE) | ZC) | 0C) | ¢() | FeN,(A) | SOy | S(T,) | Spin State ref.
1(Cl10,) 296 913 | 89.8 | 179.8 1.96 2.26 9.33 LS this work
1(BF,)-MeCN 163 88.6 | 89.4 | 1793 1.96 2.16 9.38 LS this work
1(PF)-MeCN 163 90.7 | 89.6 | 178.7 1.95 221 9.48 LS this work
1(BPh,)-MeCN-Et,0 163 | 1441 | 88.0 | 169.9 2.17 5.38 6.21 HS this work
2(C10,)-MeOH 153 | 1048 | 86.0 | 179.4 1.99 2.68 8.71 LS this work
3(C104)-MeOH 153 | 1512 | 89.7 | 1712 2.19 5.82 6.05 HS this work
(5)-1-3MeCN, Fel 153 | 1544 | 824 | 1794 2.17 5.55 6.24 HS 1
(5)-1:3MeCN, Fe2 153 | 1129 | 86.6 | 177.0 2.01 2.30 8.68 LS 1
(5)-1:3MeCN, Fe3 153 | 1013 | 853 | 178.0 1.97 5.43 9.41 LS 1
(5)-1:3MeCN, Fel 173 | 1553 | 829 | 1765 2.18 3.35 6.26 HS 1
(5)-1:3MeCN, Fe2 173 972 | 862 | 179.3 1.96 2.38 9.41 LS 1
(rac)-1-3MeCN 153 920 | 89.5 | 178.1 1.96 2.32 9.21 LS 1
(5)-2:-MeNO, 153 | 1629 | 80.7 | 167.7 2.16 6.23 6.37 HS 1
(rac)-2-4MeNO, 153 954 | 90.0 | 180 1.957 2463 | 8.95 LS 1
(S)-2:-MeCN, Fel 153 | 166.0 | 80.6 | 169.7 2.189 6.493 | 6.27 HS 1
(8)-2-MeCN, Fe2 153 | 169.5 | 789 | 1673 2.195 6.553 | 6.28 HS 1
(8)-2-MeCN, Fe3 153 | 1593 | 81.6 | 1782 2.174 5566 | 6.38 HS 1
(5)-2-MeCN, Fed 153 | 165.7 | 80.9 | 166.1 2.191 6.593 | 6.12 HS 1
(rac)-2:3MeCN 153 | 1437 | 869 | 177.6 2.165 5119 | 637 HS 1
(R)-1-MeNO,, Fel 155 96.7 | 862 | 1783 1.961 2287 | 933 LS 3
(R)-1-MeNO,, Fe2 155 924 | 87.0 | 178.4 1.962 2.199 | 9.48 LS 3
(R)-1-MeNO,, Fe3 155 91.8 | 87.6 | 179.6 1.967 2244 | 926 LS 3
(R)-1-MeNO, 265 | 105.6 | 86.4 | 180 2.001 2779 | 8.47 LS 3
(R)-1-MeNO, 275 | 1075 | 862 | 180 2.006 2.867 | 8.35 LS 3
(rac)-1-MeCN 120 919 | 892 | 1782 1.959 2308 | 9.22 LS 3
(rac)-1-MeCN 250 925 | 89.5 | 178.4 1.964 2337 | 9.16 LS 3

Fe—N,,: the average value of the six Fe—N bond lengths in one FeNg coordination sphere; 2 the sum of the deviations from 90° of

the cis angles;* S(Oy): the result of CShMs calculation denotes the deviation value of ideal O, symmetry.>



Table S4. The calculated u,,s values in the family of single crystal structures.

Entry T (K) Homs (R) ref.
1(C10y) 296 0.175 this work
1(BF4)-MeCN 163 0.103 this work
1(PF¢)-MeCN 163 0.190 this work
1(BPh,)-MeCN-Et,0 163 0.119 this work
2(C104)-MeOH 153 0.1558 this work
3(C104)-MeOH 153 0.1665 this work
(S)-1-:3MeCN, Fel 153 0.142 1
(S)-1-3MeCN, Fe2 153 0.125 1
(S)-1-3MeCN, Fe3 153 0.135 1
(S)-1-3MeCN, Fel 173 0.146 1
(S)-1:3MeCN, Fe2 173 0.131 1
(rac)-1:3MeCN 153 0.093 1
(8)-2-MeNO, 153 0.220 1
(S)-2-MeCN, Fel 153 0.170 1
(S)-2-MeCN, Fe2 153 0.193 1
(S)-2-MeCN, Fe3 153 0.212 1
(S)-2-MeCN, Fed 153 0.168 1
(rac)-2:3MeCN 153 0.079 1
(R)-1-MeNO,, Fel 155 0.1604 3
(R)-1-MeNO,, Fe2 155 0.1428 3
(R)-1-MeNO,, Fe3 155 0.1409 3
(R)-1-MeNO, 265 0.1389 3
(R)-1-MeNO, 275 0.1583 3
(rac)-1-MeCN 120 0.0922 3
(rac)-1-MeCN 250 0.0825 3




Table SS. Summary of dihedral angle between neighboring phenyl and pyridine in
these Fe(Il) complexes and their spin states.

Entry T/K h 32 03 4 Spin State ref.
1(Cl10y) 296 25.76 5.81 5.87 5.32 LS this work
1(BF4):-MeCN 163 9.21 3.88 433 1.84 LS this work
1(PFg)'MeCN 163 12.82 11.67 5.99 1.86 LS this work
1(BPh,s)'MeCN-Et,0 163 12.55 7.74 3.23 0.44 HS this work
2(Cl104):'MeOH 153 32.95 25.13 435 7.89 LS this work
3(C104)'MeOH 153 37.14 3.99 7.18 6.01 HS this work
(5)-1:3MeCN, Fel 153 30.49 27.62 1.20 5.05 HS !
(S)-1:3MeCN, Fe2 153 26.17 20.42 3.08 5.70 LS !
(S)-1-3MeCN, Fe3 153 18.55 17.67 5.28 5.54 LS !
(S)-1-3MeCN, Fel 173 30.56 30.12 1.41 4.52 HS !
(5)-1:3MeCN, Fe2 173 18.08 17.98 6.01 6.86 LS !
(rac)-1:3MeCN 153 9.15 6.81 4.14 3.59 LS !
(5)-2:-MeNO, 153 53.38 9.01 6.08 4.69 HS !
(rac)-2:4MeNO, 153 6.78 / 3.04 / LS !
(S)-2:MeCN, Fel 153 53.49 12.62 14.87 10.68 HS !
(5)-2:-MeCN, Fe2 153 48.76 20.06 17.28 1.35 HS !
(5)-2:-MeCN, Fe3 153 41.51 25.46 7.17 2.70 HS !
(5)-2:-MeCN, Fe4 153 68.26 13.84 14.65 10.66 HS !
(rac)-2:3MeCN 153 4.36 3.38 4.07 2.63 HS !
(R)-1-MeNO,, Fel 155 34.63 27.34 4.72 2.68 LS 3
(R)-1-MeNO,, Fe2 155 32.14 17.67 0.81 6.73 LS 3
(R)-1-MeNO,, Fe3 155 29.54 11.65 2.06 532 LS 3
(R)-1-MeNO, 265 22.42/30.18 / 3.73 / LS 3
(R)-1-MeNO, 275 22.62/30.22 / 3.68 / LS 3
(rac)-1-MeCN 120 10.27 438 6.42 2.87 LS 3
(rac)-1-MeCN 250 10.45 4.84 6.79 391 LS 3




SI12.3 Magnetic characterization of Fe(II) complexes
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Fig. S43 Temperature dependence of y T for 1(ClOy), 1(BF,;)-MeCN, 1(PF¢)-MeCN
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SI3 Calculational results

Fig. S47 The optimized singlet-state structures of (a—c) 1-3.

quintet states

Fig. S48 The spin density plots for three complex cations at quintet states. Hydrogen
atoms are not shown for clarity.
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Fig. S49 (a) Definition of the angular Jahn-Teller distortion parameters € and ¢ in this
series complexes (€< 90°, ¢ < 180°). (b) The #values of three calculated structures in
specific spin multiplicities.
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Fig. S50 The correlation of relative single point energy and 7/, for complexes 1-3 in

specific spin multiplicities.

Table S6. Summary of the Fe—N bond lengths (A) in the calculated structures of 1-3
in specific spin multiplicities.

2 3
spin state singlet quintet singlet quintet singlet quintet
Fel-N6 1.992 2.172 1.989 2.201 1.992 2.167
Fel-N7 1.911 2.127 1.912 2.146 1.916 2.124
Fel-N8 1.984 2.185 1.985 2.198 1.992 2.167
Fel-N9 1.992 2.172 1.989 2.151 1.991 2.173
Fel-N10 1.911 2.127 1.912 2.139 1.916 2.124
Fel-N11 1.984 2.185 1.985 2.148 1.993 2.173

Table S7. The calculated u,,s values for calculated 1-3 in specific spin multiplicities.

2 3
spin state singlet quintet singlet quintet singlet quintet
ligand 1 0.1017 0.1033 0.1158 0.1915 0.0680 0.0856
ligand 2 0.1016 0.1030 0.1158 0.0813 0.0500 0.0652
complex 0.1016 0.1032 0.1158 0.1471 0.0597 0.0761

Table S8. Summary of dihedral angle between neighboring phenyl and pyridine in

calculated structures of 1-3 in different spin multiplicities.

spin state

m

72

UK

N4

singlet

11.411

5.241

11.403

5.245

8.325




quintet 5.171 3.887 3.901 5.186 4.536
singlet 4.094 9.324 4.087 9.306 6.701
quintet 14.192 14.910 1.658 1.818 8.145
singlet 7.564 7.469 7.350 7.469 7.463
quintet 6.243 6.238 7.516 7.544 6.885

Table S9. Cartesian coordinates for the optimized geometries of 1 in singlet state.

Atom X y z Atom X y z
Fe 0.000052 0.000028 -0.519332 C 2.185795 0.370306 1.132446
(0] 0.799524 -3.035225 | -3.064272 2.776504 -1.190028 2.573401
0) -3.120260 | -0.114782 2.026798 C 1.738976 -1.761502 1.588254
o -0.798893 3.035718 -3.063893 C 0.610448 -2.542229 2.205815
(0] 3.119965 0.114188 2.027295 C 0.364329 -3.848664 1.785689
N 0.884915 -1.098566 | -1.925579 C -0.665207 | -4.594351 2.354045
N -1.112902 | -1.553066 | -0.494931 C -1.468119 | -4.034223 3.342087
N -1.317456 0.546240 0.859527 C -1.237389 | -2.725852 3.762154
N -0.884650 1.098971 -1.925387 C -0.202539 | -1.989712 3.198422
N 1.113040 1.553083 -0.494451 H 2.003135 -0.123493 | -3.410738
N 1.317221 -0.546424 | 0.859697 H 3.212271 -3.056195 | -1.354640
C 2.071649 -1.037915 | -2.803331 H 5.283010 -2.966672 | -0.008264
C 3.340105 -0.993098 | -1.989085 H 6.600413 -0.864837 0.116468
C 3.775875 -2.121859 | -1.289974 H 5.837003 1.148264 -1.118455
C 4.939728 -2.075298 | -0.530515 H 3.759290 1.064313 -2.468776
C 5.680510 -0.896894 | -0.463172 H 1.584888 -2.069090 | -4.709873
C 5.250160 0.232123 -1.152281 H 2.767274 -2.950760 | -3.704372
C 4.084230 0.182671 -1.912232 H -1.452555 | -4.513354 | -2.055609
C 1.891322 -2.296723 | -3.684548 H -3.357667 | -4.658004 | -0.432169
C 0.304829 -2.232700 | -2.141662 H -3.776281 | -2.762243 1.158041
C -0.867477 | -2.568741 | -1.337003 H -2.366495 1.028060 3.578701
C -1.660742 | -3.708323 | -1.354902 H -3.697743 1.772313 2.643119
C -2.718734 | -3.778345 | -0.447696 H -2.243149 2.404800 0.845914
C -2.960413 | -2.729197 0.439597 H -1.002052 | 4.296496 1.021900
C -2.126954 | -1.621028 0.378688 H 0.830218 5.620467 2.034287
C -2.185902 | -0.370662 1.132074 H 2.262476 4.619252 3.799849
C -2.777135 1.189453 2.573099 H 1.853367 2.284382 4.544285
C -1.739380 1.761130 1.588316 H 0.011632 0.973263 3.546369
C -0.610921 2.541642 2.206267 H -2.002791 0.124140 -3.410765
C -0.364615 3.848165 1.786500 H -3.211905 3.056856 -1.354730
C 0.664844 4.593633 2.355256 H -5.282895 2.967524 -0.008702
C 1.467470 4.033235 3.343400 H -6.600513 0.865803 0.115792
C 1.236587 2.724775 3.763055 H -5.836977 | -1.147413 | -1.118882




C 0.201807 1.988828 3.198909 H -3.759031 | -1.063646 | -2.468846
C -2.071257 1.038523 -2.803293 H -1.584162 2.069833 -4.709682
C -3.339824 0.993766 -1.989189 H -2.766581 2.951523 -3.704222
C -3.775614 2.122575 -1.290158 H 1.453139 4.513583 -2.054637
C -4.939594 2.076119 -0.530890 H 3.358080 4.657806 -0.430970
C -5.680500 0.897777 -0.463679 H 3.776407 2.761751 1.158931
C -5.250101 | -0.231292 | -1.152667 H 2.365560 -1.028649 3.578880
C -4.084031 | -0.181946 | -1.912419 H 3.696995 -1.773027 2.643728
C -1.890701 2.297390 -3.684373 H 2.242860 -2.405013 0.845780
C -0.304399 2.233059 -2.141290 H 1.001968 -4.296772 1.021128
C 0.867816 2.568898 -1.336416 H -0.830429 | -5.621128 2.032815
C 1.661194 3.708410 -1.354057 H -2.263239 | -4.620371 3.798175
C 2.719082 3.778200 -0.446717 H -1.854412 | -2.285691 4.543316
C 2.960597 2.728876 0.440412 H -0.012414 | -0.974292 3.546341
C 2.127041 1.620801 0.379259

Table S10. Cartesian coordinates for the optimized geometries of 1 in quintet state.

Atom X y z Atom X y z
Fe 0.000067 -0.000092 | -0.580793 C 2.283432 -0.467181 1.231506
o -0.823240 | -3.463330 | -2.843249 2.337358 -2.160243 2.652758
(0] -3.062847 1.004108 2.151729 C 1.160876 -2.331318 1.669473
(0] 0.823959 3.463369 -2.842878 C -0.173319 | -2.640059 2.293365
0] 3.062680 -1.004421 2.152180 C -0.890526 | -3.760402 1.877783
N 0.069427 -1.537215 | -2.113283 C -2.122760 | -4.065907 2.450678
N -1.784512 | -1.135730 | -0.359249 C -2.653361 | -3.244823 3.440093
N -1.182895 1.058442 0.919940 C -1.948293 | -2.117463 3.856977
N -0.069203 1.537494 -2.112896 C -0.716030 | -1.821848 3.287077
N 1.784859 1.135268 -0.359176 H 1.208140 -1.299214 | -3.854173
N 1.182847 -1.058797 0.920190 H 1.799149 -4.056760 | -1.339231
C 1.076416 -2.050201 | -3.061689 H 3.896535 -4.240888 | -0.043406
C 2.382614 -2.226923 | -2.331583 H 5.658319 -2.504174 | -0.265528
C 2.572635 -3.292294 | -1.449825 H 5.332923 -0.605734 | -1.834364
C 3.745435 -3.392449 | -0.709318 H 3.244234 -0.439065 | -3.164130
C 4.735529 -2.419417 | -0.835591 H 0.111294 -3.240082 | -4.669921
C 4.551497 -1.353783 | -1.711697 H 0.987404 -4.238685 | -3.481390
C 3.379911 -1.261128 | -2.458321 H -3.357011 | -3.767304 | -1.742472
C 0.402369 -3.324769 | -3.619468 H -5.074938 | -3.082277 | -0.048301
C -0.885743 | -2.398699 | -2.065565 H -4.626754 | -1.101369 1.428548
C -2.013678 | -2.187817 | -1.149881 H -2.020109 1.929244 3.676475
C -3.190516 | -2.922379 | -1.078831 H -3.030530 3.004726 2.667095
C -4.140975 | -2.532122 | -0.135066 H -1.395108 3.120901 0.935606




C -3.901011 | -1.435112 0.690575 H 0.469723 4.414563 1.110234
C -2.698149 | -0.756658 0.534192 H 2.660727 4.957584 2.132703
C -2.283448 0.466757 1.231257 H 3.607075 3.492421 3.900657
C -2.337697 2.160107 2.652154 H 2.351955 1.478453 4.639270
C -1.161184 2331154 1.668878 H 0.152634 0.956115 3.634278
C 0.172925 2.640258 2.292786 H -1.207454 1.299744 -3.854086
C 0.889939 3.760685 1.877115 H -1.799643 4.057021 -1.339013
C 2.122064 4.066503 2.450084 H -3.897373 4.240527 -0.043715
C 2.652736 3.245667 3.439662 H -5.658618 2.503348 -0.266273
C 1.947862 2.118216 3.856635 H -5.332393 0.605094 -1.835176
C 0.715718 1.822280 3.286659 H -3.243363 0.439097 -3.164523
C -1.075983 2.050620 -3.061451 H -0.111042 3.241024 -4.669428
C -2.382398 2.227105 -2.331669 H -0.986692 4.239272 -3.480285
C -2.572894 3.292360 -1.449875 H 3.357263 3.767427 -1.741391
C -3.745893 3.392160 -0.709631 H 5.074951 3.082204 -0.047041
C -4.735692 2.418866 -0.836158 H 4.626638 1.100984 1.429347
C -4.551186 1.353336 -1.712288 H 2.019760 -1.929174 3.677034
C -3.379422 1.261061 -2.458678 H 3.030080 -3.004955 2.667833
C -0.401845 3.325306 -3.618871 H 1.394686 -3.121309 0.936451
C 0.886185 2.398720 -2.065199 H -0.470378 | -4.414442 1.111006
C 2.014064 2.187569 -1.149506 H -2.661565 | -4.956926 2.133367
C 3.190771 2.922289 -1.078022 H -3.607793 | -3.491324 3.901030
C 4.141078 2.531949 -0.134141 H -2.352327 | -1.477514 4.639489
C 3.901043 1.434768 0.691248 H -0.152782 | -0.955768 3.634646
C 2.698304 0.756184 0.534448




Table S11. Cartesian coordinates for the optimized geometries of 2 in singlet state.

Atom X y z Atom X y z
Fe -0.000032 0.000041 -0.007972 C 1.348977 -1.822306 1.580184
(0] -2.305024 | -2.156729 | -2.521564 0.233250 -3.127405 2.960718
0] -1.561641 2.729431 2.516059 C -0.686606 | -2.000241 2.460376
(0] 2.305181 2.156924 -2.521273 C -2.058568 | -2.431284 | 2.020112
(0] 1.561420 -2.729378 2.516158 C -2.230792 | -3.362606 | 0.992911
N -0.549706 | -1.295056 | -1.413789 C -3.503360 | -3.758661 0.601002
N -1.891347 0.278007 -0.001472 C -4.623588 | -3.233115 1.241696
N -0.142098 1.396936 1.394668 C -4.462789 | -2.309606 | 2.269070
N 0.549759 1.295146 -1.413748 C -3.185439 | -1.910004 | 2.654393
N 1.891267 -0.277954 | -0.001361 H 0.112892 -4.204611 | -0.686255
N 0.141945 -1.396874 1.394703 H 2.074072 -5.509095 0.048833
C 1.238347 -2.940152 | -2.026025 H 4.318686 -5.026991 | -0.900997
C 1.098527 -3.964434 | -1.085513 H 4.586370 -3.213458 | -2.576390
C 2.200190 -4.705038 | -0.673831 H 2.623028 -1.888428 | -3.296369
C 3.459172 -4.433150 | -1.205077 H 0.414324 -1.414474 | -3.253129
C 3.609099 -3.416115 | -2.142046 H -1.222253 | -2.973407 | -4.085697
C 2.503537 -2.673152 | -2.547095 H -1.221318 | -3.917154 | -2.569228
C 0.061364 -2.119213 | -2.479367 H -4.670433 | -0.928207 | -1.457797
C -1.153518 | -2.909197 | -2.998317 H -5.681181 0.840839 0.005846
C -1.829259 | -1.353222 | -1.587771 H -4.194435 2.239999 1.462766
C -2.675228 | -0.466302 | -0.793857 H -0.263293 3.247138 4.044896
C -4.054035 | -0.305406 | -0.813682 H -0.006951 4.092907 2.488251
C -4.605870 0.680398 0.004230 H 0.803484 1.228020 3.241679
C -3.788106 1.461889 0.821014 H 1.356658 3.791986 0.503951
C -2.422001 1.215377 0.796982 H 3.624192 4.493744 -0.192314
C -1.349156 1.822337 1.580116 H 5.620493 3.555947 0.949708
C -0.233471 3.127512 2.960603 H 5.332853 1.907052 2.784429
C 0.686375 2.000301 2.460404 H 3.063070 1.190239 3.465880
C 2.058420 2431183 2.020267 H -0.112789 | 4.204337 -0.685632
C 2.230912 3.362701 0.993290 H -2.073925 5.508853 0.049491
C 3.503602 3.758452 0.601456 H -4.318466 5.027195 -0.900746
C 4.623682 3.232382 1.241977 H -4.586107 3.214133 -2.576649
C 4.462617 2.308663 2269114 H -2.622786 1.889113 -3.296734
C 3.185149 1.909375 2.654358 H -0.414117 1.414814 -3.253190
C -1.238179 2.940365 -2.025925 H 1.222552 2.973802 -4.085403
C -1.098383 3.964399 -1.085137 H 1.221490 3.917360 -2.568815
C -2.200029 | 4.705002 -0.673406 H 4.670467 0.928216 -1.457499
C -3.458970 | 4.433348 -1.204860 H 5.681088 -0.840965 0.006102
C -3.608872 3.416577 -2.142119 H 4.194192 -2.240179 1.462844
C -2.503330 2.673608 -2.547214 H 0.263031 -3.246916 4.045024




C -0.061204 2.119420 -2.479286 H 0.006765 -4.092843 2.488448
C 1.153723 2.909455 -2.998037 H -0.803864 | -1.227951 3.241623
C 1.829320 1.353342 -1.587586 H -1.356396 | -3.791478 0.503465
C 2.675218 0.466374 -0.793653 H -3.623744 | -4.493785 | -0.192956
C 4.054016 0.305395 -0.813450 H -5.620303 | -3.556921 0.949370
C 4.605784 -0.680480 0.004440 H -5.333143 | -1.908409 2.784509
C 3.787944 -1.461996 0.821128 H -3.063570 | -1.191027 3.466087
C 2.421856 -1.215415 0.797051

Table S12. Cartesian coordinates

for the optimized geometries of 2 in quintet state.

Atom X y z Atom X y z
Fe 0.013071 0.048609 0.016057 C 1.672184 1.752851 1.764378
o 2.298389 -2.488738 | -2.504785 3.020564 0.806829 3.239472
o -2.734687 | -2.092872 2.439451 C 1.980311 -0.216958 2.747098
o -2.080212 2.569653 -2.632408 C 2.492161 -1.547892 2.269485
o 2.553076 2.076073 2.692830 C 3.500833 -1.606295 1.307965
N 1.452438 -0.675695 | -1.482745 C 3.924633 -2.829092 0.802065
N -0.199416 | -2.086265 | -0.029370 C 3.343762 -4.009807 1.262169
N -1.518442 | -0.447213 1.512992 C 2.337790 -3.959521 2.222133
N -1.199848 0.784325 -1.601209 C 1.907684 -2.730883 2.717340
N 0.232691 2.176467 0.020102 H 4.676946 -0.246937 | -1.039612
N 1.321016 0.518580 1.653672 H 5.935841 1.640864 -0.085940
C 3.195089 1.001112 -2.001109 H 5.206876 3.976092 -0.513060
C 4.329923 0.771199 -1.221041 H 3.211791 4.405805 -1.932717
C 5.043988 1.834673 -0.679118 H 1.938464 2.508995 -2.887553
C 4.636479 3.144434 -0.921160 H 1.680765 0.282734 -3.308760
C 3.517679 3.384170 -1.713115 H 3.083985 -1.478391 | -4.129295
C 2.801744 2.316961 -2.246703 H 4.094508 -1.481223 | -2.660840
C 2.343531 -0.124350 | -2.526060 H 1.157048 -4.766961 | -1.531014
C 3.072045 -1.379348 | -3.042147 H -0.570409 | -5.900536 | -0.106171
C 1.484034 -1.954790 | -1.610955 H -2.050188 | -4.513582 1.371285
C 0.587166 -2.812643 | -0.821653 H -3.183832 | -1.038929 4.158794
C 0.496774 -4.198063 | -0.880634 H -4.279730 | -0.765697 2.783610
C -0.464829 | -4.818423 | -0.084243 H -1.586880 0.531921 3.348459
C -1.291228 | -4.056536 0.740874 H -4.640661 0.480484 1.127339
C -1.112290 | -2.678510 0.738657 H -5.575125 2.530197 0.119842
C -1.821050 | -1.695150 1.572605 H -4.446800 4.715545 0.464371
C -3.231775 | -0.883652 3.078757 H -2.399576 4.839465 1.865386
C -2.302886 0.237004 2.563157 H -1.449930 2.776212 2.862424
C -2.956068 1.484382 2.027342 H -4.026639 0.087201 -0.913548
C -4.125540 1.431148 1.268526 H -5.221643 | -1.936366 | -0.102430




C -4.654378 2.584027 0.698163 H -4.617523 | -4.171225 | -1.001442
C -4.022778 3.809909 0.892965 H -2.824182 | -4.375903 | -2.707035
C -2.872216 3.877728 1.673192 H -1.633016 | -2.354704 | -3.506203
C -2.341159 2.719462 2.233301 H -1.279810 | -0.088131 | -3.486473
C -2.758879 | -1.004777 | -2.260806 H -2.887355 1.551587 -4.246154
C -3.766030 | -0.897428 | -1.301719 H -3.822373 1.461140 -2.722780
C -4.425545 | -2.030397 | -0.840547 H -0.952026 4.889765 -1.575973
C -4.085581 | -3.285380 | -1.343160 H 0.611733 5.996532 0.041781
C -3.082030 | -3.399847 | -2.299988 H 1.921259 4.584495 1.651087
C -2.415066 | -2.263286 | -2.750140 H 3.079363 0.913204 4.324031
C -1.996650 0.212540 -2.702802 H 4.024056 0.631333 2.831871
C -2.817355 1.429075 -3.164007 H 1.215156 -0.390338 3.523361
C -1.281550 2.065525 -1.709401 H 3.946088 -0.677327 0.951812
C -0.464576 2.921094 -0.841822 H 4.726247 -2.868291 0.065277
C -0.365830 4.306878 -0.869406 H 3.691126 -4.969733 0.884761
C 0.503922 4.914543 0.036073 H 1.894817 -4.880045 2.598085
C 1.235353 4.137784 0.935079 H 1.123888 -2.691869 3.475846
C 1.057025 2.760445 0.893492

Table S13. Cartesian coordinates

for the optimized geometries of 3 in singlet state.

Atom X y z Atom X y z
Fe 0.000625 0.000675 -0.001245 C -0.892718 | -2.067312 1.626647
0] 3.241965 -1.387052 | -1.976358 -1.576621 | -3.978660 | 0.750579
(0] -3.249927 1.368268 -1.975177 C -1.314826 | -2.951613 | -0.375956
(0] 1.379194 3.254610 1.958363 C -2.525325 | -2.552639 | -1.181186
(0] -1.376623 | -3.238186 1.987704 C -2.458616 | -2.488936 | -2.571118
N 1.794870 -0.784370 | -0.364256 C -3.564935 | -2.083601 | -3.314135
N -0.003461 | -0.008242 | -1.917447 C -4.748174 | -1.741122 | -2.669002
N -1.795271 0.781872 -0.363845 C -4.826453 | -1.813848 | -1.278786
N 0.783189 1.796643 0.353466 C -3.718398 | -2.210563 | -0.539092
N 0.002793 0.007508 1.914926 H 3.311478 -0.518551 1.059573
N -0.782140 | -1.794509 0.369487 H 2.765645 -1.512385 3.091935
C 2.950713 -1.311843 0.386514 H 2.046689 -3.476912 4.425185
C 2.550488 -2.516502 1.199913 H 1.435527 -5.595843 3.286153
C 2.485724 -2.440818 2.589283 H 1.578803 -5.756041 0.811532
C 2.079208 -3.542231 3.339014 H 2.268991 -3.792677 | -0.522724
C 1.737072 -4.729563 2.701346 H 4.806304 -0.865773 | -0.743917
C 1.810834 -4.816799 1.311708 H 4.373063 -2.602860 | -0.739689
C 2.208545 -3.713689 0.565319 H 1.969382 -0.907080 | -4.488108
C 3.979375 -1.582568 | -0.736635 H -0.011667 | -0.025756 | -5.754973
C 2.070176 -0.901881 | -1.620186 H -1.987227 0.867318 -4.487746




C 1.056743 -0.486552 | -2.585504 H -4.807796 0.854410 -0.731605
C 1.094567 -0.516519 | -3.973153 H -4.378565 2.592596 -0.744548
C -0.009333 | -0.020768 | -4.667741 H -3.305195 0.526961 1.068978
C -1.110220 0.481424 -3.973011 H -2.274400 3.788205 -0.547241
C -1.066473 0.464087 -2.585332 H -1.582526 5.764699 0.766771
C -2.075995 0.887823 -1.619597 H -1.429993 5.627096 3.242167
C -3.982554 1.573257 -0.734119 H -2.034062 3.517756 4.402553
C -2.948612 1.314539 0.387044 H -2.754312 1.540013 3.089607
C -2.547087 2.527154 1.187877 H 0.525319 3.302054 -1.083908
C -2.209601 3.719140 0.541229 H 1.531744 2.738054 -3.104518
C -1.811151 4.829614 1.276226 H 3.505509 2.010032 -4.419226
C -1.732105 4.755039 2.666315 H 5.618905 1.414550 -3.261847
C -2.070267 3.573090 3.315952 H 5.764212 1.582343 -0.787739
C -2.477530 2.464273 2.577637 H 3.791725 2.281277 0.528129
C 1.314234 2.947648 -0.402577 H 2.593815 4.384101 0.718927
C 2.524898 2.542586 -1.204589 H 0.854338 4.808015 0.713867
C 2.457527 2.464082 -2.593727 H 0.890054 1.997003 4.476818
C 3.564227 2.053049 -3.333053 H 0.005996 0.023027 5.752309
C 4.748596 1.719945 -2.685060 H -0.881132 | -1.960715 4.494354
C 4.827491 1.807447 -1.295726 H -2.595450 | -4.375924 0.759914
C 3.719015 2.209606 -0.559641 H -0.856849 | -4.803168 0.755687
C 1.575717 3.984885 0.714632 H -0.526480 | -3.312865 | -1.054390
C 0.896197 2.080095 1.608069 H -1.533558 | -2.769813 | -3.079451
C 0.477907 1.072352 2.578170 H -3.506747 | -2.052107 | -4.400727
C 0.502617 1.118564 3.965679 H -5.618243 | -1.440165 | -3.248470
C 0.005086 0.018638 4.665060 H -5.762437 | -1.581506 | -0.772690
C -0.493924 | -1.086763 3.975424 H -3.790548 | -2.270409 0.549439
C -0.471587 | -1.051872 2.587521

Table S14. Cartesian coordinates

for the optimized geometries of 3 in quintet state.

Atom X y z Atom X y z
Fe -0.000062 | -0.000124 | -0.000397 C -1.766158 1.464362 -1.858207
(0] 2.279898 2.702526 2.300260 -3.334493 2.849406 -1.133459
(0] -2.280741 | -2.701416 2.301033 C -2.658232 2.143287 0.062244
0] 2.748427 -2.224623 | -2.306420 C -3.530517 1.218455 0.873214
(0] -2.747411 2223257 -2.308795 C -3.390160 1.162108 2.259020
N 1.395250 1.550479 0.587678 C -4.142257 0.261858 3.009279
N -0.000380 0.000501 2.123849 C -5.046444 | -0.586165 2.376750
N -1.395581 | -1.550296 0.588099 C -5.191025 | -0.536492 0.991282
N 1.589212 -1.361199 | -0.586787 C -4.429903 0.355694 0.243661
N 0.000473 -0.000634 | -2.123922 H 2.900953 2.143823 -0.743427




-1.588985 1.360669 -0.588227
2.170390 2.618695 -0.070680
1.233610 3.483803 -0.875930
1.164850 3.337817 -2.260551
0.248946 4.077114 -3.004432
-0.602067 4.974909 -2.366626
-0.539034 5.126261 -0.982417
0.368614 4.377417 -0.241109
2.886197 3.297343 1.118057
1.509999 1.726701 1.856873
0.763034 0.871584 2.788284
0.794193 0.912922 4.176838
-0.001029 0.001460 4.871911
-0.795931 | -0.910473 4.177100
-0.764130 | -0.870098 2.788524
-1.510745 | -1.725807 1.857361
-2.886563 | -3.296999 1.118977
-2.170570 | -2.618836 | -0.069919
-1.233605 | -3.484222 | -0.874662
-0.368917 | -4.377831 | -0.239423
0.538912 -5.126862 | -0.980324
0.602503 -4.975636 | -2.364519
-0.248183 | -4.077819 | -3.002734
-1.164314 | -3.338386 | -2.259276
2.658305 -2.143356 0.064508
3.530471 -1.217893 0.874905
3.389689 -1.160278 2.260612
4.141716 -0.259492 3.010306
5.046284 0.587764 2.377307
5.191256 0.536873 0.991921
4.430203 -0.355841 0.244859
3.334764 -2.850394 | -1.130515
1.766928 -1.465552 | -1.856637
0.899637 -0.730689 | -2.787240
0.944225 -0.758580 | -4.175839
0.000886 -0.001616 | -4.871060
-0.942683 0.755826 -4.176658
-0.898527 0.728920 -2.788026

1.845987 2.647638 -2.764076
0.218148 3.972695 -4.087746
-1.301518 5.571183 -2.949480
-1.186148 5.844941 -0.481592
0.408588 4.501783 0.843215
3.955308 3.065395 1.160038
2.739565 4.379599 1.175369
1.424440 1.633410 4.693086
-0.001284 0.001846 5.959310
-1.426495 | -1.630532 4.693558
-3.955750 | -3.065335 1.160549
-2.739703 | -4.379195 1.176895
-2.901031 | -2.144288 | -0.743003
-0.409266 | -4.502051 0.844902
1.185759 -5.845563 | -0.479182
1.302134 -5.572017 | -2.947048
-0.216956 | -3.973512 | -4.086047
-1.845216 | -2.648210 | -2.763124
2.183555 -2.878526 0.731953
2.693591 -1.838373 2.760178
4.041239 -0.237568 4.094204
5.652005 1.275385 2.964351
5.914528 1.181497 0.494561
4.550048 -0.386790 | -0.840287
4.418409 -2.713489 | -1.183548
3.093091 -3.916635 | -1.185659
1.688955 -1.359991 | -4.692022
0.001060 -0.001990 | -5.958481
-1.687299 1.356813 -4.693501
-4.418058 2.711990 -1.186872
-3.093304 3.915727 -1.189060
-2.183576 2.878998 0.729172
-2.694340 1.840763 2.758199
-4.042163 0.240957 4.093230
-5.652215 | -1.273380 2.964213
-5.914072 | -1.181640 0.494266
-4.549429 0.385687 -0.841550
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