Solar water oxidation by TaON-BiVO₄ photoanodes functionalized

with WO₃

Tingting Wei, Zhanbin Jin, Fengyan Li* Zhixia Sun and Lin Xu*

^a Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.

Fig. S1 SEM images (a) and the overlay image (b) of 7W/0.2T-BVO; the corresponding SEM mapping images of (c) Bi (d) V (e) O (f) N (g)Ta (h) W.

Fig. S2 EDS spectrums of (a) 0.1T-BVO, (b) 0.5T-BVO and 0.2T-BVO/7W. EDS analysis of 0.1T-BVO film shows that the sample contains 24.81 at% of Bi and 2.58 at% of Ta, thus indicating the presence of nearly 10.4% TaON in 0.1T-BVO film. EDS analysis of 0.5T-BVO film and 0.2T-BVO/7W indicate the presence of nearly 51.0% and 19.4% TaON in their composite films, respectively. Among them, 0.2T-BVO/7W film shows that the sample contains 23.46 at% of Bi and 1.30 at% of W, thus indicating the presence of nearly 5.5% WO₃ in 0.2T-BVO/7W film.

Fig. S3 UV-vis absorption spectra of TaON, BVO and TaON-BVO samples.

Fig. S4 Linear sweep voltammetry plots of (a) the TaON, $BiVO_4$ and 0.2T-BVO photoanode, (b) the 0.2T-BVO photoanode with different WO₃ layers measured in 0.1 M sodium borate buffer (pH = 9.2) solution under visible light illumination.

Fig. S5 CV of 0.2T-BVO/WO₃ electrode was carried out at scan rates of 10, 50 and

Fig. S6 Transient photocurrent responses of the TaON electrode, the $BiVO_4$ electrode and different molar ratios of TaON-BVO electrode performed with visible light at 1.0 V (vs. RHE) in 0.1 M sodium borate buffer (pH = 9.2) solution.

100 mV/s.

Fig. S7 Transient photocurrent responses of the 0.2T-BVO, 0.2T-BVO*, 0.2T-BVO/WO₃ and 0.2T-BVO*/WO₃ photoanode were performed with visible light at 1.0 V (vs. RHE) in 0.1 M sodium borate buffer (pH = 9.2) solution. (* represents the physical mixing of TaON and BiVO₄)

Fig. S8 Transient photocurrent responses of the 0.2T-BVO photoanode with different WO_3 layers performed with visible light at 1.0 V (vs. RHE) in 0.1 M sodium borate buffer (pH = 9.2) solution.

Fig. S10 Transient photocurrent responses of the 0.2T-BVO/WO_{3(comparison)} layers performed with visible light at 1.0 V (vs. RHE) in 0.1 M sodium borate buffer (pH = 9.2) solution. The WO₃ was synthesized via a simple hydrothermal method.(https://doi.org/10.1016/j.ijhydene.2018.12.093)

Table S1 Specific surface area, adsorption average pore diameter and desorption average pore diameter of different samples.

Sample	$BET(m^2/g)$	BJH Adsorption average	BJH Desorption average pore
		pore diameter (nm)	diameter (nm)
BiVO ₄	2.94	2.09	3.84
TaON	4.93	2.56	3.97
0.2T-BVO	0.63	0.52	1.44

Table S	2 R _{ct} of	different	sampl	les.
---------	-----------------------------	-----------	-------	------

		01		1	
Sample	TaON	BiVO ₄	0.1T-BVO	0.2T-BVO	0.5T-BVO
$R_{ct}(\Omega)$	22.38	16.59	15.51	13.11	19.57