Electronic Supplementary Information

Acid-promoted hydride transfer from an NADH analogue to a Cr(III)superoxo complex *via* proton-coupled hydrogen atom transfer

Tarali Devi,^{a‡} Yong-Min Lee,^{a‡} Shunichi Fukuzumi*^{a,b} and Wonwoo Nam*^{a,c}

^a Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
^b Faculty of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
^c Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China

[‡] These authors are contributed equally to this work.

* To whom correspondence should be addressed. E-mail: wwnam@ewha.ac.kr, fukuzumi@chem.eng.osaka-u.ac.jp

Fig. S1 (a) First-order plot of $\ln\{(A_t - A_{\infty})/(A_0 - A_{\infty})\}$ against time for the time courses of absorbance at 640 nm due to the decay of AcrH₂^{•+} (red circles) and 358 nm due to the formation of AcrH⁺ (blue circles) observed in the reaction of AcrH₂ (1.0 mM) with **1** (0.050 mM) in the presence of HOTf (10 mM) in MeCN at 233 K (see inset of Fig. 1b in text).

Fig. S2 (a) CSI-MS spectrum of the complete reaction solution obtained in the hydride-transfer reaction from AcrH₂ (0.75 mM) by **1** (0.50 mM) in the presence of HOTf (1.3 mM) in MeCN at 233 K. The peaks at m/z = 378.2 and 492.2 correspond to $[Cr^{III}(TMC)(Cl_2)]^+$ (*calc.* m/z = 378.1) and $[Cr^{III}(TMC)(Cl)(OTf)]^+$ (*calc.* m/z = 492.1), respectively. (b) X-band EPR spectrum of the complete reaction solution obtained in the oxidation of AcrH₂ (0.75 mM) by **1** (0.50 mM) in the presence of HOTf (1.3 mM) in MeCN at 233 K. The spectrum was recorded at 5 K.