# Experimental and theoretical investigation of the reactivity of $[(BDI^*)Ti(CI){\eta^2-P(SiMe_3)-PiPr_2}]$ towards selected ketones

A. Ziółkowska, N. Szynkiewicz, Ł. Ponikiewski\*

Department of Inorganic Chemistry, Chemical Faculty, Gdansk University of Technology, 11/12 G. Narutowicza Str., 80-233 Gdansk, Poland.

| PART A. Crystallographic Data                                      | 2  |
|--------------------------------------------------------------------|----|
| PART B. NMR Data                                                   | 7  |
| PART C. DFT Calculations                                           | 19 |
| Theoretical <sup>31</sup> P NMR shifts of phospha-Wittig products  | 21 |
| NBO analysis of intramolecular interactions in compounds 2a and 2b | 22 |
| NBO analysis of 5                                                  | 24 |
| Optimized structures and Cartesian coordinates                     |    |
| PART D. References                                                 |    |

## PART A. Crystallographic Data

The ORTEP molecular structure of **3e** and crystallographic data for **2a**, **2b**, **3a**, **3e**, **4a**, and **5** (Table S1) are provided in the Electronic Supporting Information.

The X-ray intensity data for **2a**, **2b**, **3a**, **3e**, **4a**, and **5** were measured with an IPDS2T diffractometer equipped with an IPDS2T STOE image plate detector system and microfocus X-ray sources providing  $K\alpha$  radiation by high-grade multilayer X-ray mirror optics for Mo ( $\lambda = 0.71073$  Å, **2a**, **2b**, **3a**, **4a**, **5**) and Cu ( $\lambda = 0.71073$  Å, **3e**) wavelengths. Data for **4d** were collected with a STOE STADIVARI equipped with an EIGER4M detector microfocus source providing K $\alpha$  radiation by high-grade multilayer X-ray mirror optics for Ga ( $\lambda = 1.34143$  Å) wavelength. The measurements for **2a**, **2b**, **3a**, **3e**, **4a** and **5** were carried out at 120 K, and only **4d** was measured at 180 K. The structures of the compounds were solved by direct methods and refined against  $F^2$ with the Shelxs-2008 and Shelxl-2008 programs<sup>1</sup> run under WinGX.<sup>2</sup> Non-hydrogen atoms were refined with anisotropic displacement parameters. The isotropic displacement parameters of all hydrogens were fixed to 1.2  $U_{eq}$  for CH and CH<sub>2</sub> (1.5 times for methyl groups).

The crystallographic data for the structures of **2a**, **2b**, **3a**, **3e**, **4a**, **4d**, and **5** reported in this paper have been deposited in the Cambridge Crystallographic Data Centre as supplementary publication No. CCDC 2024962-2024968. Copies of the data can be obtained free of charge upon application to the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: (+44) 1223-336-033; E mail: deposit@ccdc.cam.ac.uk).



**Figure S1**. Molecular structure of [(BDI\*)Ti(Cl){OC(CH<sub>2</sub>)<sub>3</sub>}CH(C=O)(CH<sub>2</sub>)<sub>5</sub>] (**3e**) (thermal ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity). Important bond lengths (Å) and bond angles (°): Ti1-Cl1 2.326(4). Ti-N1 2.102(10), Ti1-N2 2.093(9), Ti1-O1 2.047(16), Ti1-O2 1.812(12)(12), O1-C30 1.210(2), O2-C35 1.450(3); O1-Ti1-N1 173.3(5), O1-Ti1-O2 86.9(6), N1-Ti1-O2 89.7(5), O1-Ti1-N2 89.5(5), N1-Ti1-N2 88.0(3), O2-Ti1-N2 128.0(5), O1-Ti1-Cl1 84.4(5), N1-Ti1-Cl1 102.2(3), O2-Ti1-Cl1 128.4(4), N2-Ti1-Cl1 102.7(3).



**Figure S2**. Molecular structure of  $[(BDI^*)Ti(CI){OC(CH_2)_3}CH(C=O)(CH_2)_5]$  (**3e**) with presentation of disorder model of aldol condensation product as ligand (thermal ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity).

## Table S1. Crystallographic data for 2a, 2b, 3a.

|                                          | 2a                                                                      | 2b                                                                    | За                                                                    |
|------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|
| Empirical formula                        | C <sub>44.5</sub> H <sub>74</sub> ClN <sub>2</sub> OP <sub>2</sub> SiTi | C <sub>48</sub> H <sub>78</sub> CIN <sub>2</sub> OP <sub>2</sub> SiTi | C <sub>43</sub> H <sub>72</sub> ClN <sub>2</sub> OP <sub>2</sub> SiTi |
| Formula weight                           | 826.43                                                                  | 872.5                                                                 | 806.4                                                                 |
| Radiation source                         | Μο-Κα                                                                   | Μο-Κα                                                                 | Μο-Κα                                                                 |
| Crystallographic System                  | triclinic                                                               | triclinic                                                             | monoclinic                                                            |
| Space group                              | P-1                                                                     | <i>P</i> -1                                                           | P21/n                                                                 |
| a [Å]                                    | 9.5032(4)                                                               | 10.3204(5)                                                            | 21.3211(7)                                                            |
| <i>b</i> [Å]                             | 11.8444(5)                                                              | 11.6903(7)                                                            | 16.2782(4)                                                            |
| c [Å]                                    | 22.1430(10)                                                             | 21.9979(11)                                                           | 25.8200(8)                                                            |
| α [°]                                    | 100.092(3)                                                              | 101.880(4)                                                            | 90                                                                    |
| <i>в</i> [°]                             | 90.957(3)                                                               | 90.201(4)                                                             | 94.309(3)                                                             |
| <b>۲</b> [°]                             | 106.801(3)                                                              | 108.956(4)                                                            | 90                                                                    |
| <b>∨</b> [ų]                             | 2343.10(18)                                                             | 2449.2(2)                                                             | 8936.0(5)                                                             |
| Z                                        | 2                                                                       | 2                                                                     | 8                                                                     |
| Calculated Density [g·cm <sup>-1</sup> ] | 1.171                                                                   | 1.183                                                                 | 1.199                                                                 |
| <i>т</i> [К]                             | 120(2)                                                                  | 120(2)                                                                | 120(2)                                                                |
| μ [mm <sup>-1</sup> ]                    | 0.367                                                                   | 0.354                                                                 | 0.383                                                                 |
| Final R indices                          | R <sub>1</sub> =0.0716                                                  | R <sub>1</sub> = 0.0824                                               | R <sub>1</sub> = 0.0586                                               |
| [/>2σ(I)]                                | <i>w</i> R <sub>2</sub> =0.1818                                         | <i>w</i> R <sub>2</sub> =0.2127                                       | wR <sub>2</sub> = 0.1383                                              |
| R indices (all data)                     | R <sub>1</sub> =0.0716                                                  | R <sub>1</sub> = 0.1236                                               | R <sub>1</sub> =0.1197                                                |
| [/>2σ(I)] (all data)                     | wR <sub>2</sub> = 0.2082                                                | wR <sub>2</sub> = 0.2477                                              | wR <sub>2</sub> = 0.1711                                              |
| CCDC                                     | 2024963                                                                 | 2024964                                                               | 2024966                                                               |

|                                          | Зе                                                                 |
|------------------------------------------|--------------------------------------------------------------------|
| Empirical formula                        | C <sub>39</sub> H <sub>56</sub> ClN <sub>2</sub> O <sub>2</sub> Ti |
| Formula weight                           | 668.2                                                              |
| Radiation source                         | Cu-Kα                                                              |
| Crystallographic System                  | triclinic                                                          |
| Space group                              | <i>P</i> -1                                                        |
| a [Å]                                    | 9.0471(8)                                                          |
| <i>b</i> [Å]                             | 12.2788(10)                                                        |
| <i>c</i> [Å]                             | 17.1830(15)                                                        |
| α [°]                                    | 74.518(7)                                                          |
| в [°]                                    | 78.729(7)                                                          |
| ץ [°]                                    | 85.262(7)                                                          |
| <i>V</i> [ų]                             | 1803.1(3)                                                          |
| Ζ                                        | 2                                                                  |
| Calculated Density [g·cm <sup>-1</sup> ] | 1.231                                                              |
| <i>т</i> [К]                             | 120(2)                                                             |
| μ [mm <sup>-1</sup> ]                    | 2.954                                                              |
| Final R indices                          | R <sub>1</sub> =0.1472                                             |
| [/>2σ(I)]                                | wR <sub>2</sub> = 0.3678                                           |
| R indices (all data)                     | R <sub>1</sub> = 0.2559                                            |
| [/>2σ(I)] (all data)                     | wR <sub>2</sub> = 0.4349                                           |
| CCDC                                     | 2024968                                                            |

Table S3. Crystallographic data for 4a, 4d, 5.

|                                                         | 4a                               | 4d                                                                                  | 5                                                                   |
|---------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Empirical formula                                       | C44H74CIN2OP2SiTi                | C <sub>57</sub> H <sub>92</sub> CIN <sub>2</sub> O <sub>2</sub> P <sub>2</sub> SiTi | C <sub>40</sub> H <sub>63</sub> CIN <sub>2</sub> OP <sub>2</sub> Ti |
| Formula weight                                          | 820.43                           | 1010.7                                                                              | 733.21                                                              |
| Radiation source                                        | Μο-Κα                            | Ga-Kα                                                                               | Μο-Κα                                                               |
| Crystallographic System                                 | triclinic                        | triclinic                                                                           | triclinic                                                           |
| Space group                                             | P-1                              | <i>P</i> -1                                                                         | P-1                                                                 |
| a [Å]                                                   | 11.9781(4)                       | 9.9965(8)                                                                           | 8.9870(7)                                                           |
| b [Å]                                                   | 16.4161(7)                       | 10.3489(8)                                                                          | 12.3952(10)                                                         |
| <i>c</i> [Å]                                            | 23.1523(7)                       | 28.541(3)                                                                           | 18.1785(14)                                                         |
| α [°]                                                   | 90.431(3)                        | 100.401(7)                                                                          | 90.890(6)                                                           |
| <i>в</i> [°]                                            | 91.187(3)                        | 93.628(10)                                                                          | 99.601(6)                                                           |
| ۲ [°]                                                   | 92.522(3)                        | 96.455(4)                                                                           | 93.077(6)                                                           |
| <b>∨</b> [ų]                                            | 4547.0(3)                        | 2874.1(14)                                                                          | 1993.1(3)                                                           |
| Z                                                       | 4                                | 2                                                                                   | 2                                                                   |
| Calculated Density [g·cm <sup>-</sup><br><sup>1</sup> ] | 1.198                            | 1.168                                                                               | 1.222                                                               |
| <i>т</i> [К]                                            | 120(2)                           | 180(2)                                                                              | 120(2)                                                              |
| μ [mm <sup>-1</sup> ]                                   | 0.378                            | 1.754                                                                               | 0.394                                                               |
| Final R indices                                         | R <sub>1</sub> = 0.0985          | R <sub>1</sub> = 0.0702                                                             | 0.1022                                                              |
| [/>2σ(I)]                                               | <i>w</i> R <sub>2</sub> = 0.2791 | <i>w</i> R <sub>2</sub> = 0.1526                                                    | 0.2384                                                              |
| R indices (all data)                                    | R <sub>1</sub> =0.1788           | R <sub>1</sub> = 0.1573                                                             | 0.2487                                                              |
| [/>2σ(I)] (all data)                                    | wR <sub>2</sub> = 0.3278         | wR <sub>2</sub> = 0.1735                                                            | 0.3134                                                              |
| CCDC                                                    | 2024965                          | 2024962                                                                             | 2024967                                                             |

### PART B. NMR Data



Figure S3. <sup>31</sup>P{<sup>1</sup>H}-NMR spectrum of reaction mixture after isolation of crystals 2a and 2b.

- -8.59 ppm, d, *J*<sub>PP</sub> = 188.9 Hz, *i*Pr<sub>2</sub>**P**P(SiMe<sub>3</sub>)H;
- -201.41 ppm, d, J<sub>PP</sub> = 188.9 Hz, *i*Pr<sub>2</sub>P**P**(SiMe<sub>3</sub>)H;



**Figure S4**. <sup>31</sup>P{<sup>1</sup>H}-NMR spectrum of reaction mixture after isolation of crystal **3a**.

- -8.58 ppm, d, J<sub>PP</sub> = 188.9 Hz, *i*Pr<sub>2</sub>**P**P(SiMe<sub>3</sub>)H;
- -201.41 ppm, d, J<sub>PP</sub> = 188.9 Hz, *i*Pr<sub>2</sub>P**P**(SiMe<sub>3</sub>)H;



Figure S5. <sup>31</sup>P{<sup>1</sup>H}-NMR spectrum of reaction mixture after isolation of 4d crystals.

- 220.98 ppm, d, J<sub>PP</sub> = 217.9 Hz, *i*Pr<sub>2</sub>P**P**=C(CH<sub>2</sub>)<sub>5</sub>;
- -6.70 ppm, d, J<sub>PP</sub> = 217.9 Hz, *i*Pr<sub>2</sub>**P**P=C(CH<sub>2</sub>)<sub>5</sub>;
- -8.59 ppm, d, JPP = 188.8 Hz, *i*Pr<sub>2</sub>PP(SiMe<sub>3</sub>)H;
- -201.41 ppm, d, J<sub>PP</sub> = 188.9 Hz, *i*Pr<sub>2</sub>PP(SiMe<sub>3</sub>)H;



Figure S6. <sup>31</sup>P{<sup>1</sup>H}-NMR spectrum of crystals of 2a dissolved in THF-d<sub>8</sub>.

- -8.92 ppm, d, *J*<sub>PP</sub> = 188.2 Hz, *i*Pr<sub>2</sub>**P**P(SiMe<sub>3</sub>)H;
- -202.75 ppm, d, J<sub>PP</sub> = 188.2 Hz, *i*Pr<sub>2</sub>PP(SiMe<sub>3</sub>)H;



Figure S7. <sup>31</sup>P{<sup>1</sup>H}-NMR spectrum of crystals of **2b** dissolved in THF-d<sub>8</sub>.

- -8.92 ppm, d, *J*<sub>PP</sub> = 187.8 Hz, *i*Pr<sub>2</sub>**P**P(SiMe<sub>3</sub>)H;
- -202.75 ppm, d, J<sub>PP</sub> = 187.8 Hz, *i*Pr<sub>2</sub>P**P**(SiMe<sub>3</sub>)H;
- -16.19 ppm, *i*Pr<sub>2</sub>PH;



Figure S8. <sup>31</sup>P{<sup>1</sup>H}-NMR spectrum of crystals of **3a** dissolved in THF-d<sub>8</sub>.

- 211.14 ppm, d, *J*<sub>PP</sub> = 214.3 Hz, *i*Pr<sub>2</sub>P**P**=C(CH<sub>2</sub>)<sub>4</sub>;
- 1.04 ppm, d, J<sub>PP</sub> = 214.3 Hz, *i*Pr<sub>2</sub>**P**P=C(CH<sub>2</sub>)<sub>4</sub>;
- -8.66 ppm, d, J<sub>PP</sub> = 188.5 Hz, *i*Pr<sub>2</sub>**P**P(SiMe<sub>3</sub>)H;
- -201.55 ppm, d, J<sub>PP</sub> = 188.5 Hz, *i*Pr<sub>2</sub>P**P**(SiMe<sub>3</sub>)H;



Figure S9. <sup>31</sup>P{<sup>1</sup>H}-NMR spectrum of 4d crystals dissolved in THF-d<sub>8</sub>.

- 220.88 ppm, d, J<sub>PP</sub> = 217.9 Hz, *i*Pr<sub>2</sub>P**P**=C(CH<sub>2</sub>)<sub>5</sub>;
- -6.79 ppm, d, *J*<sub>PP</sub> = 217.9 Hz, *i*Pr<sub>2</sub>**P**P=C(CH<sub>2</sub>)<sub>5</sub>;



**Figure S10**. <sup>31</sup>P{<sup>1</sup>H}-NMR spectrum of **4d** crystals dissolved in THF-d<sub>8</sub> in narrow range.



Figure S11. <sup>1</sup>H-NMR spectrum of 4d crystals dissolved in THF-d<sub>8</sub>.



**Figure S12**. <sup>31</sup>P{<sup>1</sup>H}-NMR spectrum of isolated yellow oil of *i*Pr<sub>2</sub>PP=C(CH<sub>2</sub>)<sub>5</sub> (**4w**).

- 220.99 ppm, d, *J*<sub>PP</sub> = 217.9 Hz, *i*Pr<sub>2</sub>P**P**=C(CH<sub>2</sub>)<sub>5</sub>;
- -6.69 ppm, d, *J*<sub>PP</sub> = 217.9 Hz, *i*Pr<sub>2</sub>**P**P=C(CH<sub>2</sub>)<sub>5</sub>;



Figure S13. <sup>1</sup>H-NMR spectrum of isolated yellow oil of *i*Pr<sub>2</sub>PP=C(CH<sub>2</sub>)<sub>5</sub> (4w).

- 3.14 ppm, broad m, 2H, *i*Pr<sub>2</sub>PP=C(CH<sub>2</sub>)<sub>5</sub>;
- 2.68 ppm, doublet of broad multiplets, 2H, *i*Pr<sub>2</sub>PP=C(CH<sub>2</sub>)<sub>5</sub>;
- 2.04 ppm, sept, 1H, {(Me)<sub>2</sub>C**H**}PP=C(CH<sub>2</sub>)<sub>5</sub>;
- 2.03 ppm, sept, 1H, {(Me)<sub>2</sub>CH}PP=C(CH<sub>2</sub>)<sub>5</sub>;
- 1.47 ppm, broad m, 4H, *i*Pr<sub>2</sub>PP=C(CH<sub>2</sub>)<sub>5</sub>;
- 1.34 ppm, broad m, 2H, *i*Pr<sub>2</sub>PP=C(CH<sub>2</sub>)<sub>5</sub>;
- 1.18 ppm, dd, J<sub>PH</sub> = 10.8 Hz, J<sub>HH</sub> = 6.9 ppm, {(Me)<sub>2</sub>CH}PP=C(CH<sub>2</sub>)<sub>5</sub>;
- 1.13 ppm, dd, J<sub>PH</sub> = 14.3 Hz, J<sub>HH</sub> = 6.8 ppm, {(**Me**)<sub>2</sub>CH}PP=C(CH<sub>2</sub>)<sub>5</sub>;



Figure S14. <sup>1</sup>H-NMR spectrum of isolated yellow oil of *i*Pr<sub>2</sub>PP=C(CH<sub>2</sub>)<sub>5</sub> (4w) with integration.



Figure S15. <sup>13</sup>C{<sup>1</sup>H}-NMR spectrum of isolated yellow oil of *i*Pr<sub>2</sub>PP=C(CH<sub>2</sub>)<sub>5</sub> (4w).

- 217.62 ppm, dd, J<sub>PC</sub> = 55.4 Hz, J<sub>PC</sub> = 11.8 Hz, *i*Pr<sub>2</sub>PP=**C**(CH<sub>2</sub>)<sub>5</sub>;
- 43.20 ppm, dd, J<sub>PC</sub> = 39.1 Hz, J<sub>PC</sub> = 4.5 Hz, *i*Pr<sub>2</sub>PP=C(**C**H<sub>2</sub>)<sub>5</sub>;
- 40.01 ppm, dd, J<sub>PC</sub> = 28.1 Hz, J<sub>PC</sub> = 16.3 Hz, *i*Pr<sub>2</sub>PP=C(CH<sub>2</sub>)<sub>5</sub>;
- 30.43 ppm, d, J<sub>PC</sub> = 9.9 Hz, {(Me)<sub>2</sub>CH}PP=C(CH<sub>2</sub>)<sub>5</sub>;
- 29.24 ppm, d, J<sub>PC</sub> = 5.4 Hz, {(Me)<sub>2</sub>CH}PP=C(CH<sub>2</sub>)<sub>5</sub>;
- 26.63 ppm, s, {(Me)<sub>2</sub>CH}PP=C(CH<sub>2</sub>)<sub>5</sub>;
- 23.46 ppm, broad dd, J<sub>PC</sub> = 17.2 Hz, J<sub>PC</sub> = 7.3 Hz, {(Me)<sub>2</sub>CH}PP=C(CH<sub>2</sub>)<sub>5</sub>;
- 20.90 ppm, dd, J<sub>PC</sub> = 17.3 Hz, J<sub>PC</sub> = 3.6 Hz, {(Me)<sub>2</sub>CH}PP=C(CH<sub>2</sub>)<sub>5</sub>;
- 19.97 ppm, dd, J<sub>PC</sub> = 9.06 Hz, J<sub>PC</sub> = 7.3 Hz, {(Me)<sub>2</sub>CH}PP=C(CH<sub>2</sub>)<sub>5</sub>;



**Figure S16**. <sup>13</sup>C{<sup>1</sup>H}-NMR spectrum of isolated yellow oil of  $iPr_2PP=C(CH_2)_5$  (**4w**) in the range from 230 ppm to 210 ppm.



**Figure S17**. <sup>13</sup>C{<sup>1</sup>H}-NMR spectrum of isolated yellow oil of  $iPr_2PP=C(CH_2)_5$  (**4w**) in the range from 45 ppm to 35 ppm.



**Figure S18**. <sup>13</sup>C{<sup>1</sup>H}-NMR spectrum of isolated yellow oil of  $iPr_2PP=C(CH_2)_5$  (**4w**) in the range from 35 ppm to 0 ppm.



Figure S19. <sup>31</sup>P{<sup>1</sup>H}-NMR spectrum of isolated crystals of 5.

- 526.32 ppm, d,  $J_{PP}$  = 518.8 Hz, [(BDI\*)Ti(Cl){ $\eta^2$ -P-P(*i*Pr)<sub>2</sub>-{C(CH<sub>3</sub>)<sub>2</sub>}O}];
- 116.65 ppm, d, J<sub>PP</sub> = 518.8 Hz, [(BDI\*)Ti(Cl){η<sup>2</sup>-P-P(*i*Pr)<sub>2</sub>-{C(CH<sub>3</sub>)<sub>2</sub>}O}];



**Figure S20**. <sup>31</sup>P{<sup>1</sup>H}-NMR spectrum of isolated crystals of **5** in the range of 600 ppm to 50 ppm.



Figure S21. <sup>1</sup>H-NMR spectrum of isolated crystals of 5.

- 7.23 6.96 ppm, Ar-**H**;
- 5.23 ppm, s, 1H, (C(Me)CHC(Me));
- 3.73 ppm, sept, 2H,  $J_{HH}$  = 6.7 Hz, CH(Me)<sub>2</sub> from  $\beta$ -diketiminate ligand;
- 3.59 ppm, broad m, 2H from cyclopentane ring;
- 3.29 ppm, sept, 2H,  $J_{HH}$  = 6.7 Hz, CH(Me)<sub>2</sub> from  $\beta$ -diketiminate ligand;
- 2.05 ppm, broad m, 2H from cyclopentane ring;
- 1.91 ppm, broad m, 2H from cyclopentane ring;
- 1.84 ppm, broad m, 1H, P{CH(Me<sub>2</sub>)}<sub>2</sub>;
- 1.80 ppm, broad m, 2H from cyclopentane ring;
- 1.67 ppm, s, 6H, (C(Me)CHC(Me));
- 1.53 ppm, d, 6H,  $J_{HH}$  = 6.7 Hz, 6H, CH(**Me**)<sub>2</sub> from  $\beta$ -diketiminate ligand;
- 1.45 ppm, broad m, 1H, P{CH(Me<sub>2</sub>)}<sub>2</sub>;
- 1.25 ppm, d, 6H,  $J_{HH}$  = 6.8 Hz, 6H, CH(**Me**)<sub>2</sub> from  $\beta$ -diketiminate ligand;
- 1.23 ppm, J<sub>HH</sub> = 6.9 Hz, 6H, CH(**Me**)<sub>2</sub> from β-diketiminate ligand;
- 1.19 ppm,  $J_{HH}$  = 6.9 Hz, 6H, CH(Me)<sub>2</sub> from  $\beta$ -diketiminate ligand;
- 1.14 ppm, dd, 6H, J<sub>PH</sub> = 14.1 Hz, J<sub>HH</sub> = 7.1 Hz, P{CH(Me<sub>2</sub>)}<sub>2</sub>;
- 0.70 ppm, dd, 6H, J<sub>PH</sub> = 12.5 Hz, J<sub>HH</sub> = 5.6 Hz, P{CH(Me<sub>2</sub>)}<sub>2</sub>;



**Figure S22**. <sup>13</sup>C{<sup>1</sup>H}-NMR spectrum of isolated crystals of **5** in the range from 170 ppm to 90 ppm.

- 166.07 ppm, s, (**C**(Me)CH**C**(Me));
- 142.94 ppm, s, *i*-C<sub>6</sub>H<sub>3</sub>;
- 141.42 ppm, s, *o*-C<sub>6</sub>H<sub>3</sub>;
- 128.96 ppm, s, p-C<sub>6</sub>H<sub>3</sub>;
- 125.50 ppm, s, *m*-C<sub>6</sub>H<sub>3</sub>;
- 124.69 ppm, s, *m*-C<sub>6</sub>H<sub>3</sub>;
- 100.30 ppm, s, (C(Me)CHC(Me));



**Figure S23**. <sup>13</sup>C{<sup>1</sup>H}-NMR spectrum of isolated crystals of **5** in the range from 90 ppm to 0 ppm.



Figure S24. <sup>13</sup>C{<sup>1</sup>H}-NMR spectrum of isolated crystals of **5** in the range from 45 ppm to 0 ppm.

- 40.61 ppm, d, J<sub>PC</sub> = 7.3 Hz, C(CH<sub>2</sub>)<sub>4</sub>
- 29.00 ppm, s, CH(Me<sub>2</sub>) from the β-diketiminate ligand;
- 27.60 ppm, s, CH(Me<sub>2</sub>) from the β-diketiminate ligand;
- 26.62 ppm, d, J<sub>PC</sub> = 24.8 Hz, P{CH(Me<sub>2</sub>)}<sub>2</sub>;
- 25.67 ppm, s, CH(Me<sub>2</sub>) from the β-diketiminate ligand;
- 24.65 ppm, d, J<sub>PC</sub> = 6.8 Hz, P{CH(Me<sub>2</sub>)}<sub>2</sub>;
- 24.44 ppm, s, (C(Me)CHC(Me));
- 23.86 ppm, s, CH(Me<sub>2</sub>) from the β-diketiminate ligand;
- 22.36 ppm, s, C(CH<sub>2</sub>)<sub>4</sub>
- 21.07 ppm, s, P{CH(Me<sub>2</sub>)}<sub>2</sub>;
- 18.44 ppm, s, P{CH(Me<sub>2</sub>)}<sub>2</sub>;



Figure S25. <sup>31</sup>P{<sup>1</sup>H}-NMR of reaction mixture after reaction of 2a with AgCl in toluene.

- 506.82 ppm, d, J<sub>PP</sub> = 530.4 Hz, [(BDI\*)Ti(Cl){η<sup>2</sup>-P-P(*i*Pr)<sub>2</sub>-{C(CH<sub>3</sub>)<sub>2</sub>}O}];
- 119.36 ppm, d, J<sub>PP</sub> = 530.4 Hz, [(BDI\*)Ti(Cl){η<sup>2</sup>-P-P(iPr)<sub>2</sub>-{C(CH<sub>3</sub>)<sub>2</sub>}O}];
- -8.68 ppm, d, J<sub>PP</sub> = 188.9 Hz, *i*Pr<sub>2</sub>PP(SiMe<sub>3</sub>)H;
- -201.55 ppm, d, J<sub>PP</sub> = 188.9 Hz, *i*Pr<sub>2</sub>PP(SiMe<sub>3</sub>)H;

#### **PART C. DFT Calculations**

All calculations presented in this work were performed using the Gaussian  $09^3$  program package. The molecular geometries of all compounds were optimized using density functional theory with the  $\omega$ B97XD functional of Head-Gordon<sup>4, 5</sup> and the cc-pVDZ basis set. The  $\omega$ B97XD exchange-correlation functional was chosen because it has good overall performance for the description of main-group element compounds, and it accounts well for long-range and dispersion interactions. The molecular geometries were energy-optimized, and the nature of the final gas-phase geometries as local minima (no imaginary frequencies) on the potential energy surface was then validated by harmonic frequency calculations at the same level of theory. The calculated energies, enthalpies and Gibbs free energies obtained from thermochemical calculations were corrected for the zero-point energy (ZPE).

The molecular geometries of compounds **3w** and **4w** were optimized using density functional theory with the  $\omega$ B97XD functional<sup>4, 5</sup> and the 6-31+G(d,p) basis set. The molecular geometries were energy-optimized, and the most stable (the lowest energy) conformer was identified during the potential energy surface scanning of the C-P-P-C dihedral. The nature of the final gas-phase geometries as local minima (no imaginary frequencies) on the potential energy surface was then validated by harmonic frequency calculations at the same level of theory. Theoretical <sup>31</sup>P NMR shifts were determined by calculating NMR shielding tensors using the Gauge-Independent Atomic Orbital (GIAO)<sup>6</sup> method at the MN12SX/cc-pvdz level of theory, including the presence of a solvent (benzene), using the CPCM polarizable conductor calculation model.<sup>7</sup>

The NBO (Natural Bond Orbitals) analysis including Wiberg bond orders and second-order perturbative estimates of donor-acceptor (bonding-antibonding) interactions in the NBO basis calculations discussed in this paper were performed on non-optimized X-ray structures of **2a**, **2b** and **5** using density functional theory at the MN12SX<sup>8</sup> level of theory with the Def2TZVP<sup>9, 10</sup> basis set as implemented in the Gaussian09<sup>3</sup> package version of the NBO 3.1 program.<sup>11</sup>

Condensed Fukui functions and dual descriptors<sup>12-14</sup> were determined using optimized structures for singlepoint calculations on acetone, cyclohexane and cyclopentanone for the *N*, *N*-1 and *N*+1 electronic states at the  $\omega$ B97XD//6-31+G(d,p) level of theory. Condensed atom parameters were calculated using the partial charges derived via Hirshfeld population analysis. The more positive value of condensed nucleophilic ( $f_N$ ) or electrophilic ( $f_E$ ) Fukui function is, the more nucleophilic or electrophilic considered atom is.

**Table S4**. Selected computational parameters obtained for considered systems (in atomic units [A.U.]):  $\varepsilon_0$  - electronic energy;  $\varepsilon_{0+...}$  sum of electronic and:  $E_{zpe}$  - zero-point energies,  $E_{therm}$  - thermal energies, H – thermal enthalpies, G - thermal free energies calculated at  $\omega$ B97XD//cc-pVDZ level of theory \*( $\omega$ B97XD//6-31+G(d,p) for **3w** and **4w**).

| Compound                                                | E <sub>electr</sub><br>[A.U.] | ε <sub>0</sub> + Ε <sub>ΖΡΕ</sub><br>[A.U.] | ε <sub>0</sub> + E <sub>therm</sub><br>[A.U.] | ε <sub>0</sub> + Η<br>[A.U.] | ε₀ + G<br>[A.U.] |
|---------------------------------------------------------|-------------------------------|---------------------------------------------|-----------------------------------------------|------------------------------|------------------|
| 1                                                       | -3086.468901                  | -3085.517821                                | -3085.461570                                  | -3085.460625                 | -3085.603180     |
| 2a                                                      | -3279.611516                  | -3278.571001                                | -3278.510243                                  | -3278.509299                 | -3278.660478     |
| 2b                                                      | -3279.618428                  | -3278.578099                                | -3278.517568                                  | -3278.516624                 | -3278.666401     |
| 2c                                                      | -3472.727093                  | -3471.599542                                | -3471.532697                                  | -3471.531752                 | -3471.699065     |
| 2d                                                      | -3472.740357                  | -3471.614415                                | -3471.547197                                  | -3471.546253                 | -3471.715637     |
| 3a                                                      | -3357.019549                  | -3355.941116                                | -3355.879858                                  | -3355.878913                 | -3356.030000     |
| 3b                                                      | -3357.019728                  | -3355.942663                                | -3355.880917                                  | -3355.879973                 | -3356.033022     |
| 3c                                                      | -3627.539888                  | -3626.336640                                | -3626.268489                                  | -3626.267544                 | -3626.437526     |
| 3d                                                      | -3627.557222                  | -3626.353870                                | -3626.285717                                  | -3626.284773                 | -3626.455655     |
| 4a                                                      | -3396.333388                  | -3395.225018                                | -3395.163096                                  | -3395.162152                 | -3395.314187     |
| 4b                                                      | -3396.331989                  | -3395.223059                                | -3395.161327                                  | -3395.160382                 | -3395.311987     |
| 4c                                                      | -3706.169361                  | -3704.906644                                | -3704.836681                                  | -3704.835737                 | -3705.009051     |
| 4d                                                      | -3706.190363                  | -3704.928504                                | -3704.858485                                  | -3704.857540                 | -3705.031501     |
| 3w*                                                     | -1114.995529                  | -1114.681999                                | -1114.665441                                  | -1114.664496                 | -1114.725849     |
| 4w*                                                     | -1154.309489                  | -1153.966087                                | -1153.948696                                  | -1153.947752                 | -1154.010574     |
| [Ti(III)SiMe <sub>3</sub> PP <i>t</i> Bu <sub>2</sub> ] | -3165.064402                  | -3164.056397                                | -3163.998040                                  | -3163.997096                 | -3164.142370     |
| а                                                       | -3358.206114                  | -3357.198109                                | -3357.139752                                  | -3357.044356                 | -3357.197123     |
| b                                                       | -3358.216146                  | -3357.119264                                | -3357.056474                                  | -3357.055530                 | -3357.208497     |
| С                                                       | -3551.329112                  | -3550.145157                                | -3550.076241                                  | -3550.075297                 | -3550.245348     |
| d                                                       | -3551.348310                  | -3550.166797                                | -3550.096985                                  | -3550.096041                 | -3550.269153     |
| Cy(=O)                                                  | -309.816329                   | -309.664595                                 | -309.658189                                   | -309.657244                  | -309.694878      |
| (CH <sub>3</sub> ) <sub>2</sub> CO                      | -193.102943                   | -193.018979                                 | -193.013724                                   | -193.012779                  | -193.046678      |
| Cp(=O)                                                  | -270.505940                   | -270.384328                                 | -270.378767                                   | -270.377823                  | -270.413460      |

# Theoretical <sup>31</sup>P NMR shifts of phospha-Wittig products

|          | $\delta P_{exp}$ | (C <sub>6</sub> D <sub>6</sub> ) | $\delta P_{calc} (C_6 D_6)$ |       |
|----------|------------------|----------------------------------|-----------------------------|-------|
| Compound | P1               | P2                               | P1                          | P2    |
|          | [ppm]            | [ppm]                            | [ppm]                       | [ppm] |
| 3w       | 211.14           | 1.04                             | 211.8                       | 2.6   |
| 4w       | 220.88           | -6.79                            | 218.3                       | -5.4  |

Table S5. Calculated and experimental values of  ${}^{31}P$  (C<sub>6</sub>D<sub>6</sub>) chemical shifts for compounds **3w** and **4w**.

## NBO analysis of intramolecular interactions in compounds 2a and 2b

**Table S6**. Second order perturbation analysis of the Fock matrix in NBO basis for selected donors, and acceptors in complexes **2a** and **2b**. E(2) is the stabilization energy associated with electron delocalization between the donor and acceptor [**P1**: P(SiMe<sub>3</sub>); **P2**: P*i*Pr<sub>2</sub>]

| No.        | P-Ti Wiberg<br>bond index | Donor    | Occupancy | Acceptor  | Occupancy | E(2)<br>(kcal mol <sup>-1</sup> ) |
|------------|---------------------------|----------|-----------|-----------|-----------|-----------------------------------|
|            | <b>2a</b> 0.642           | LP1 (P1) | 1.756     | LD1* (Ti) | 0 242     | 123.8                             |
| <b>2</b> a |                           | 0.642    | 1 627     | LFI (11)  | 0.342     | 124.4                             |
|            |                           | LF2 (F1) | 1.057     | LP2* (Ti) | 0.208     | 23.5                              |
| 2b         | 0.430                     | LP1 (P2) | 1.715     | LP1* (Ti) | 0.316     | 129.8                             |



**Figure S26**. Interacting NBO orbitals of **2a**: antibonding d\* orbitals: LP1\*(Ti) and LP2\*(Ti) lone pairs orbital LP1(P1) and LP2(P1).



**Figure S27**. Interacting NBO orbitals of **2b**: antibonding d\* orbital LP1\*(Ti) and lone pair orbital LP1(P2).

**Tabel S7.** Results of NBO analysis and second order perturbation analysis of the Fock matrix in NBO basis for selected donors and acceptors in complexe **5** along with Meyer bond order. E(2) is the stabilization energy associated with electron delocalization between the donor and acceptor.

| P1-Ti Meyer | Bonds        |           |          |            |                           |  |  |
|-------------|--------------|-----------|----------|------------|---------------------------|--|--|
| bond order  |              |           |          | bond order |                           |  |  |
|             |              | Orbital   |          | Occu       | pancy                     |  |  |
| -           | BD1 (P1-Ti)  |           |          | 1.8        | 384                       |  |  |
|             | BD2 (P1-Ti)  |           |          | 1.8        | 334                       |  |  |
| 1.462       | Interactions |           |          |            |                           |  |  |
|             |              |           |          | 0          | E(2)                      |  |  |
|             | Donor        | Occupancy | Acceptor | Occupancy  | (kcal mol <sup>-1</sup> ) |  |  |
|             | LP (P1)      | 1.853     | LP* (Ti) | 0.214      | 13.55                     |  |  |



Figure S28. Bonding P1-Ti NBO orbitals of 5: BD1 and BD2.



Figure S29. Interacting NBO orbitals of 5: antibonding d\* orbital LP \*(Ti) and lone pair orbital LP(P2).



Figure S30. Optimized structure of 3w.

Below are presented xyz coordinates for optimized geometry for **3w**:

| Р | 1.05459600  | -0.07661700 | -0.58880900 |
|---|-------------|-------------|-------------|
| Р | -0.35852800 | -0.41563100 | 1.10893000  |
| С | 1.68894000  | 1.65389000  | -0.18943800 |
| С | 0.60521900  | 2.67131300  | -0.53159300 |
| С | 2.22404400  | 1.87191900  | 1.21957600  |
| Н | 2.52104800  | 1.79387100  | -0.91123400 |
| Н | 0.97843300  | 3.70205400  | -0.39467400 |
| Н | 0.26611500  | 2.57253700  | -1.57750000 |
| Н | -0.27558100 | 2.54966800  | 0.12702200  |
| Н | 1.42791100  | 1.74578400  | 1.97535500  |
| Н | 3.04402400  | 1.18039700  | 1.47614100  |
| Н | 2.61783200  | 2.89974200  | 1.32599700  |
| С | 2.44100300  | -1.16605900 | 0.06219700  |
| С | 3.75488100  | -0.83884700 | -0.63878200 |
| С | 2.05924300  | -2.62690500 | -0.15713900 |
| Н | 2.55928000  | -0.99527800 | 1.15216700  |
| Н | 4.11532800  | 0.17888400  | -0.41234200 |
| Н | 4.54612300  | -1.54452900 | -0.32700200 |
| Н | 3.65076500  | -0.92199900 | -1.73660600 |
| Н | 1.11246200  | -2.88872100 | 0.34725100  |
| Н | 1.93528600  | -2.84540300 | -1.23356100 |
| Н | 2.84344000  | -3.29906600 | 0.23491500  |
| С | -1.85740700 | -0.16892200 | 0.36522600  |
| С | -2.21256200 | 0.14948200  | -1.07345000 |
| С | -3.15572100 | -0.32193700 | 1.12643900  |
| С | -3.74440000 | 0.19872100  | -1.11684000 |
| Н | -1.81348900 | -0.65261800 | -1.72506400 |
| Н | -1.73507300 | 1.07924900  | -1.42834900 |
| С | -4.16957000 | -0.69333400 | 0.04571000  |
| Н | -3.43361200 | 0.66507300  | 1.55309300  |
| Н | -3.08732900 | -1.02562700 | 1.97258100  |
| Н | -4.09389600 | 1.23219900  | -0.93312500 |
| Н | -4.15572700 | -0.11492000 | -2.09018900 |
| Н | -5.21574600 | -0.54437900 | 0.35997400  |
| Н | -4.05063700 | -1.75912700 | -0.22810000 |



Figure S31. Optimized structure of 4w.

Below are presented xyz coordinates for optimized geometry for **4w**.

| Р | 1.36845900  | -0.00093400 | -0.59705400 |
|---|-------------|-------------|-------------|
| Р | -0.05598600 | -0.84937400 | 0.88668500  |
| С | 1.56736000  | 1.76227700  | 0.04039700  |
| С | 1.96927200  | 1.92280700  | 1.50851500  |
| С | 0.29620400  | 2.56025100  | -0.26887300 |
| Н | 2.37204100  | 2.16713700  | -0.58782000 |
| Н | 2.10038600  | 2.98455300  | 1.74871700  |
| Н | 1.19762200  | 1.52413600  | 2.17581000  |
| Н | 2.90942300  | 1.41420700  | 1.74057500  |
| Н | 0.00593500  | 2.47220300  | -1.32089000 |
| Н | -0.54145800 | 2.20952800  | 0.34469000  |
| Н | 0.44892500  | 3.62193500  | -0.04566100 |
| С | 2.92099100  | -0.84742700 | 0.03677500  |
| С | 4.17066000  | -0.16400900 | -0.52833500 |
| С | 2.88814300  | -2.32714600 | -0.36169600 |
| Н | 2.95119200  | -0.78653600 | 1.13211900  |
| Н | 4.27308200  | 0.86878600  | -0.18177300 |
| Н | 5.07000000  | -0.70691400 | -0.21621900 |
| Н | 4.15072800  | -0.15318400 | -1.62431900 |
| Н | 2.01942000  | -2.84516500 | 0.05737500  |
| Н | 2.85441600  | -2.43799000 | -1.45137200 |
| Н | 3.78694300  | -2.83708600 | 0.00303500  |
| С | -1.54560900 | -0.82894400 | 0.09728500  |
| С | -1.90453800 | -0.32838200 | -1.27765400 |
| С | -2.74835900 | -1.33464600 | 0.86370300  |
| С | -2.99588000 | 0.75508500  | -1.20308400 |
| Н | -2.30176600 | -1.18119100 | -1.84921300 |
| Н | -1.02788600 | 0.03995600  | -1.81425000 |
| С | -3.83513500 | -0.24916400 | 0.95544400  |
| Н | -3.16083100 | -2.20059200 | 0.32409600  |
| Н | -2.46411700 | -1.67918500 | 1.86282500  |
| С | -4.22347600 | 0.26618800  | -0.43156400 |
| Н | -3.27503800 | 1.05644500  | -2.21852200 |
| Н | -2.58302600 | 1.64331000  | -0.70900800 |
| Н | -4.71133700 | -0.65135700 | 1.47545700  |
| Н | -3.45318100 | 0.58136400  | 1.56329700  |
| Н | -4.95963600 | 1.07267400  | -0.34335500 |
| Н | -4.70673100 | -0.54376200 | -0.99552800 |



# Figure S32. Optimized structure of 1.

Below are presented xyz coordinates for optimized geometry for 1.

| Ti | 0.15602  | -0.24607 | -0.87345 |
|----|----------|----------|----------|
| Cl | 0.43906  | -0.21753 | -3.14259 |
| Ρ  | -0.72840 | 1.36791  | 0.78478  |
| Ρ  | 1.03015  | 2.07522  | -0.24206 |
| Ν  | 1.54972  | -1.56339 | -0.15458 |
| Ν  | -1.33006 | -1.65865 | -0.50918 |
| С  | 2.78657  | -1.10368 | 0.41934  |
| С  | 2.83780  | -0.88266 | 1.81375  |
| С  | 4.05102  | -0.47761 | 2.37671  |
| Н  | 4.11578  | -0.30798 | 3.45178  |
| С  | 5.17968  | -0.27485 | 1.59012  |
| Н  | 6.11728  | 0.04369  | 2.04926  |
| С  | 5.10327  | -0.46723 | 0.21764  |
| Н  | 5.98694  | -0.28733 | -0.39797 |
| С  | 3.91687  | -0.88369 | -0.39371 |
| С  | 1.60648  | -1.07450 | 2.68988  |
| Н  | 0.73554  | -0.77436 | 2.08854  |
| С  | 1.41766  | -2.54398 | 3.08998  |
| Н  | 0.57166  | -2.64377 | 3.78780  |
| н  | 2.31780  | -2.93410 | 3.59257  |
| Н  | 1.20111  | -3.18315 | 2.22219  |
| С  | 1.60709  | -0.18183 | 3.93350  |
| н  | 0.62496  | -0.23249 | 4.42454  |
| Н  | 1.79657  | 0.87197  | 3.67903  |
| н  | 2.35931  | -0.49868 | 4.67398  |
| С  | 3.88413  | -1.04848 | -1.90662 |
| н  | 2.92923  | -1.51773 | -2.18119 |
| С  | 5.01722  | -1.93815 | -2.43289 |
| Н  | 4.88049  | -2.12362 | -3.50917 |
| Н  | 5.05501  | -2.91202 | -1.92161 |
| Н  | 6.00226  | -1.46157 | -2.30507 |
| С  | 3.92217  | 0.32350  | -2.58761 |
| н  | 3.81563  | 0.21947  | -3.67823 |

| Н | 4.87329  | 0.84237  | -2.38014 |
|---|----------|----------|----------|
| Н | 3.09744  | 0.95340  | -2.23083 |
| С | -2.68450 | -1.32330 | -0.17105 |
| С | -3.60446 | -0.93756 | -1.16246 |
| С | -4.91432 | -0.64271 | -0.77238 |
| Н | -5.64193 | -0.33976 | -1.52798 |
| С | -5.30589 | -0.72274 | 0.55875  |
| Н | -6.33396 | -0.49080 | 0.84273  |
| С | -4.38188 | -1.10394 | 1.52612  |
| Н | -4.69840 | -1.17830 | 2.56867  |
| С | -3.06232 | -1.41136 | 1.18583  |
| С | -3.19883 | -0.80613 | -2.62142 |
| н | -2.21583 | -1.28110 | -2.74504 |
| С | -3.03127 | 0.67217  | -2.98926 |
| н | -2.61610 | 0.77884  | -4.00306 |
| н | -2.34748 | 1.17261  | -2.28798 |
| н | -3.99814 | 1.20036  | -2.94624 |
| С | -4.17050 | -1.50401 | -3.57800 |
| н | -3.77691 | -1.46841 | -4.60535 |
| н | -5.15891 | -1.01770 | -3.58862 |
| н | -4.32211 | -2.56030 | -3.30672 |
| С | -2.08942 | -1.89972 | 2.25194  |
| н | -1.08306 | -1.86529 | 1.81408  |
| С | -2.38078 | -3.35846 | 2.62998  |
| н | -2.31292 | -4.02812 | 1.76042  |
| н | -3.39075 | -3.46309 | 3.05968  |
| н | -1.65570 | -3.71321 | 3.37933  |
| С | -2.07547 | -1.01241 | 3.49838  |
| н | -1.36961 | -1.41818 | 4.23985  |
| н | -3.06137 | -0.95996 | 3.98710  |
| н | -1.75548 | 0.00916  | 3.24913  |
| С | 2.60138  | -3.79904 | -0.15249 |
| н | 3.07877  | -3.60776 | 0.81835  |
| н | 3.36533  | -3.62219 | -0.92260 |
| н | 2.29449  | -4.85035 | -0.20091 |
| С | 1.42101  | -2.88239 | -0.36754 |
| С | 0.22764  | -3.48739 | -0.78156 |
| С | -1.06942 | -2.93952 | -0.77763 |
| С | -2.20388 | -3.89093 | -1.08029 |
| н | -3.00637 | -3.81851 | -0.33506 |
| н | -1.84952 | -4.92713 | -1.13111 |
| н | -2.64921 | -3.62566 | -2.05173 |
| С | 0.83510  | 3.51436  | -1.43424 |
| н | 0.86983  | 4.43202  | -0.82207 |
| С | -0.48838 | 3.45493  | -2.19259 |
| н | -1.35893 | 3.48276  | -1.52825 |
| н | -0.54614 | 2.53446  | -2.79384 |
| н | -0.55781 | 4.31118  | -2.88261 |
| С | 1.98682  | 3.53258  | -2.44784 |
| Н | 2.97885  | 3.53439  | -1.98056 |
| Н | 1.91031  | 4.43528  | -3.07572 |
| Н | 1.92165  | 2.65527  | -3.10977 |
| С | 2.29109  | 2.56420  | 1.05223  |

| Н  | 2.38751  | 1.62040  | 1.60933  |
|----|----------|----------|----------|
| С  | 3.66831  | 2.90417  | 0.48002  |
| Н  | 4.00363  | 2.16153  | -0.25725 |
| Н  | 4.40937  | 2.91778  | 1.29503  |
| Н  | 3.67697  | 3.90121  | 0.01156  |
| С  | 1.79606  | 3.64370  | 2.01165  |
| Н  | 0.86471  | 3.33340  | 2.50745  |
| Н  | 1.61321  | 4.59959  | 1.49359  |
| Н  | 2.55353  | 3.83022  | 2.79090  |
| Si | -2.40912 | 2.86605  | 1.07458  |
| С  | -3.22002 | 2.42905  | 2.72252  |
| Н  | -3.69651 | 1.43811  | 2.67109  |
| Н  | -4.00096 | 3.17262  | 2.95443  |
| Н  | -2.48963 | 2.42334  | 3.54594  |
| С  | -3.76750 | 2.82562  | -0.23107 |
| Н  | -4.18735 | 1.81247  | -0.31199 |
| Н  | -3.42644 | 3.13772  | -1.22810 |
| Н  | -4.57343 | 3.50957  | 0.08558  |
| Н  | 0.29009  | -4.54986 | -1.00825 |
| С  | -1.69957 | 4.61357  | 1.20003  |
| Н  | -1.21044 | 4.93569  | 0.26886  |
| Н  | -0.96952 | 4.69213  | 2.01871  |
| Н  | -2.52421 | 5.31595  | 1.40849  |
|    |          |          |          |



# Figure S33. Optimized structure of 2a.

Below are presented xyz coordinates for optimized geometry for **2a**.

| С | 2.57642  | -1.97098 | -0.33131 |
|---|----------|----------|----------|
| С | 2.14177  | -3.15979 | -0.94281 |
| С | 2.41102  | -4.37655 | -0.30505 |
| Н | 2.06844  | -5.30641 | -0.76418 |
| С | 3.11463  | -4.42462 | 0.88978  |
| Н | 3.32105  | -5.38377 | 1.36846  |
| С | 3.55948  | -3.24122 | 1.47374  |
| Н | 4.11476  | -3.28706 | 2.41185  |
| С | 3.29381  | -2.00265 | 0.88800  |
| С | 1.40112  | -3.16280 | -2.26953 |
| Н | 1.41920  | -2.14285 | -2.67578 |
| С | 2.07308  | -4.08211 | -3.29636 |
| Н | 1.59601  | -3.96023 | -4.28106 |
| Н | 3.14418  | -3.85162 | -3.40393 |
| Н | 1.98738  | -5.14494 | -3.01756 |
| С | -0.07153 | -3.53823 | -2.08091 |
| Н | -0.58208 | -3.58495 | -3.05418 |
| Н | -0.17701 | -4.52085 | -1.59031 |
| Н | -0.60159 | -2.78705 | -1.47400 |
| С | 3.77321  | -0.71635 | 1.54435  |
| Н | 3.06413  | 0.06721  | 1.24521  |
| С | 5.16595  | -0.30505 | 1.04564  |
| Н | 5.51113  | 0.59544  | 1.57749  |
| Н | 5.89853  | -1.10895 | 1.22696  |
| Н | 5.17079  | -0.07222 | -0.02704 |
| С | 3.78509  | -0.79058 | 3.07282  |
| Н | 2.83782  | -1.18120 | 3.47046  |
| Н | 4.59819  | -1.43238 | 3.44887  |
| Н | 3.94642  | 0.21168  | 3.49814  |
| С | 0.54283  | 3.04879  | -0.04729 |
| С | 0.81342  | 3.30923  | 1.31714  |
| С | 0.15508  | 4.37408  | 1.93576  |
| Н | 0.35553  | 4.59774  | 2.98387  |

| С   | -0.76962 | 5.15038   | 1.24538  |
|-----|----------|-----------|----------|
| Н   | -1.27865 | 5.97463   | 1.74897  |
| С   | -1.04128 | 4.86948   | -0.08513 |
| Н   | -1.77031 | 5.47863   | -0.62361 |
| С   | -0.39038 | 3.83035   | -0.75950 |
| С   | 1.79891  | 2.45323   | 2.10338  |
| Н   | 1.63670  | 1.41328   | 1.78345  |
| С   | 3.25565  | 2.83169   | 1.79961  |
| Н   | 3.93989  | 2.26944   | 2.45429  |
| Н   | 3.53712  | 2.60351   | 0.76288  |
| Н   | 3.42489  | 3.90582   | 1.97957  |
| С   | 1.56946  | 2.49674   | 3.61728  |
| Н   | 0.51186  | 2.34396   | 3.88010  |
| Н   | 2.15550  | 1.70291   | 4.10444  |
| Н   | 1.88966  | 3.45504   | 4.05789  |
| С   | -0.71756 | 3.59959   | -2.22774 |
| Н   | -0.05869 | 2.80781   | -2.60902 |
| С   | -0.49817 | 4.86204   | -3.07287 |
| Н   | 0.50275  | 5.29533   | -2.92790 |
| Н   | -0.61862 | 4.62743   | -4.14173 |
| Н   | -1.23220 | 5.64550   | -2.82429 |
| С   | -2.15648 | 3.10219   | -2.39247 |
| н   | -2.32652 | 2.19288   | -1.80119 |
| н   | -2.88203 | 3.86581   | -2.06433 |
| Н   | -2.36208 | 2.86896   | -3.44847 |
| С   | 4.23911  | -0.94456  | -2.34547 |
| Н   | 5.04399  | -0.31448  | -2.74353 |
| н   | 4.66327  | -1.68431  | -1.65457 |
| н   | 3.78985  | -1.50165  | -3.18377 |
| С   | 3.15635  | -0.11378  | -1.69793 |
| С   | 3.13634  | 1.25802   | -1.99791 |
| н   | 3.92391  | 1.61837   | -2.65755 |
| С   | 2.31743  | 2.23783   | -1.41836 |
| С   | 2.71943  | 3.67224   | -1.67004 |
| Н   | 3.77609  | 3.73508   | -1.95728 |
| Н   | 2.11572  | 4.08210   | -2.49302 |
| Н   | 2.54566  | 4.30502   | -0.79046 |
| C   | -3.43938 | -2.59298  | -2.67253 |
| Н   | -3.18530 | -3.45430  | -2.03697 |
| н   | -4.26835 | -2.88824  | -3.33773 |
| Н   | -2.56272 | -2.35529  | -3.29418 |
| C   | -4.25862 | 0.30569   | -2.96883 |
| н   | -3.33229 | 0.53949   | -3.51594 |
| н   | -5.01392 | -0.03908  | -3.69476 |
| н   | -4.62185 | 1.22903   | -2,49296 |
| c   | -5 52474 | -1 39359  | -0 74177 |
| н   | -5 47406 | -2 32659  | -0 16072 |
| н   | -5 78900 | -0 56647  | -0.06505 |
| н   | -6 34481 | -1 50683  | -1 47071 |
| C C | -3 48981 | -2 26210  | 2 NAOOF  |
| ч   | -4 47249 | -1 83//19 | 1 79502  |
| C C | -3 29512 | -3 51212  | 1 12000  |
| н   | -3,08818 | -3.26434  | 0.14008  |
| ••  | 2.00010  | 0.20101   | 0.1 .000 |

| Н  | -2.46773 | -4.13461 | 1.55562  |
|----|----------|----------|----------|
| Н  | -4.21009 | -4.12505 | 1.22267  |
| С  | -3.48651 | -2.59679 | 3.54446  |
| Н  | -3.71435 | -1.72577 | 4.17564  |
| Н  | -4.25203 | -3.36171 | 3.74794  |
| Н  | -2.51804 | -3.01044 | 3.86490  |
| С  | -2.93631 | 0.56874  | 2.69172  |
| Н  | -2.71087 | 0.27527  | 3.73039  |
| С  | -4.44115 | 0.80078  | 2.54101  |
| Н  | -5.04935 | -0.03116 | 2.92590  |
| Н  | -4.72928 | 1.70690  | 3.09570  |
| Н  | -4.69592 | 0.96425  | 1.48113  |
| С  | -2.16066 | 1.84372  | 2.34858  |
| Н  | -1.07491 | 1.68997  | 2.34024  |
| Н  | -2.43513 | 2.21277  | 1.34894  |
| Н  | -2.39288 | 2.62881  | 3.08450  |
| С  | -0.51287 | -1.17843 | 2.03221  |
| С  | -0.19425 | -0.81876 | 3.48375  |
| Н  | -0.80912 | -1.39817 | 4.18935  |
| Н  | 0.86166  | -1.05696 | 3.67285  |
| Н  | -0.33339 | 0.24997  | 3.68205  |
| С  | -0.18537 | -2.65002 | 1.77679  |
| Н  | -0.66795 | -3.31365 | 2.50928  |
| Н  | -0.47460 | -2.95333 | 0.76162  |
| Н  | 0.90379  | -2.77273 | 1.86393  |
| Cl | -0.19117 | 0.01262  | -2.96314 |
| Ν  | 2.26990  | -0.68912 | -0.88902 |
| Ν  | 1.23113  | 1.96050  | -0.68836 |
| 0  | 0.20602  | -0.37533 | 1.15899  |
| Ρ  | -2.27489 | -0.21630 | -0.41306 |
| Ρ  | -2.35969 | -0.84438 | 1.61577  |
| Si | -3.92774 | -1.04994 | -1.70244 |
| Ti | 0.33388  | 0.09287  | -0.66257 |



# Figure S34. Optimized structure of 2b.

Below are presented xyz coordinates for optimized geometry for **2b**.

| С | -3.06826 | -1.47272 | -0.17782 |
|---|----------|----------|----------|
| С | -3.13592 | -2.44854 | -1.18613 |
| С | -3.57458 | -3.73211 | -0.84358 |
| Н | -3.62774 | -4.50260 | -1.61527 |
| С | -3.95110 | -4.04116 | 0.45624  |
| Н | -4.30470 | -5.04426 | 0.70187  |
| С | -3.86403 | -3.06818 | 1.44738  |
| Н | -4.14376 | -3.32366 | 2.47083  |
| С | -3.40546 | -1.78182 | 1.15845  |
| С | -2.70906 | -2.15121 | -2.61321 |
| Н | -2.61267 | -1.06280 | -2.72019 |
| С | -1.32611 | -2.75562 | -2.88295 |
| Н | -0.97555 | -2.49793 | -3.89405 |
| Н | -0.57665 | -2.38247 | -2.16691 |
| Н | -1.35002 | -3.85444 | -2.79098 |
| С | -3.72890 | -2.62547 | -3.65282 |
| Н | -3.42752 | -2.28925 | -4.65678 |
| Н | -3.81059 | -3.72383 | -3.68516 |
| Н | -4.73226 | -2.22197 | -3.44571 |
| С | -3.26191 | -0.74682 | 2.26600  |
| Н | -2.47284 | -0.05247 | 1.94438  |
| С | -2.83283 | -1.36663 | 3.59997  |
| Н | -2.50166 | -0.57945 | 4.29510  |
| Н | -3.66329 | -1.89939 | 4.09120  |
| Н | -2.00686 | -2.08128 | 3.47371  |
| С | -4.54889 | 0.06490  | 2.46979  |
| Н | -4.79530 | 0.67727  | 1.59194  |
| Н | -5.40118 | -0.60345 | 2.67617  |
| Н | -4.44017 | 0.74940  | 3.32574  |
| С | 0.02130  | 3.00271  | 0.57974  |
| С | 0.31613  | 2.88084  | 1.95683  |
| С | 1.30402  | 3.70504  | 2.50076  |
| н | 1.53681  | 3.63843  | 3.56373  |

| C      | 2 02065  | 4 59186   | 1 70440             |
|--------|----------|-----------|---------------------|
| н      | 2.02005  | 5 21806   | 2 14506             |
| C      | 1 7/900  | 1 66901   | 0 3/1521            |
| с<br>ц | 2 22286  | 5 25 21 2 | -0.27706            |
| с<br>С | 0.74261  | 2 20502   | 0.27700             |
| C<br>C | 0.74201  | 1 97507   | -0.24510<br>2 02052 |
|        | -0.42569 | 1.87507   | 2.05055             |
|        | -0.58008 | 0.97062   | 2.22148             |
|        | 0.37237  | 1.44862   | 4.00091             |
| н      | -0.11422 | 0.58269   | 4.54102             |
| н      | 1.40334  | 1.15925   | 3.81309             |
| Н      | 0.42058  | 2.24872   | 4.82320             |
| C      | -1.80290 | 2.39688   | 3.25743             |
| Н      | -2.27114 | 1.69751   | 3.96744             |
| Н      | -1.71074 | 3.37447   | 3.75806             |
| Н      | -2.48754 | 2.50351   | 2.40497             |
| С      | 0.45411  | 4.06449   | -1.73121            |
| Н      | -0.46705 | 3.51409   | -1.96552            |
| С      | 1.56154  | 3.45627   | -2.59776            |
| Н      | 1.29961  | 3.54235   | -3.66330            |
| Н      | 2.52244  | 3.97270   | -2.43744            |
| Н      | 1.69279  | 2.38915   | -2.37663            |
| С      | 0.24850  | 5.53619   | -2.11783            |
| Н      | -0.11704 | 5.60669   | -3.15365            |
| Н      | -0.47590 | 6.04534   | -1.46472            |
| Н      | 1.19160  | 6.10334   | -2.06418            |
| С      | -4.97840 | 0.30865   | -1.09742            |
| н      | -5.66855 | 1.15708   | -1.17740            |
| Н      | -4.93423 | -0.20356  | -2.07135            |
| Н      | -5.37879 | -0.41592  | -0.37571            |
| С      | -3.58792 | 0.76428   | -0.72066            |
| С      | -3.36700 | 2.15217   | -0.63466            |
| н      | -4.22892 | 2.78593   | -0.83474            |
| С      | -2.22707 | 2.80118   | -0.14991            |
| C      | -2.39118 | 4.26743   | 0.17893             |
| н      | -3.45304 | 4.53791   | 0.21432             |
| н      | -1 92666 | 4 51264   | 1 14347             |
| н      | -1 90055 | 4 89027   | -0 58119            |
| c      | 0 58235  | -2 05342  | 1 02321             |
| c      | 0.91884  | -1 75047  | 2 48030             |
| н      | 1 / 98/9 | -2 56143  | 2.40000             |
| н      | 1 47425  | -0.81025  | 2.54510             |
| ц      | -0.02151 | -0.81023  | 2.0/027             |
| C II   | 0.02131  | 2 25024   | 0.02206             |
|        | -0.21023 | -3.33924  | 1 25510             |
|        | 0.59990  | -4.21555  | 1.25510             |
| п<br>  | -1.109/1 | -3.29909  | 1.55577             |
| H<br>C | -0.53266 | -3.54211  | -0.11066            |
| C      | 4.55672  | -2.03209  | 2.53542             |
| Н      | 3.78486  | -1./6842  | 3.2/235             |
| Н      | 5.30580  | -2.66434  | 3.041/2             |
| H      | 5.06001  | -1.10867  | 2.21334             |
| C      | 5.32126  | -3.30953  | -0.11190            |
| Н      | 5.01573  | -3.89565  | -0.99216            |
| Н      | 5.76673  | -2.36539  | -0.46021            |

| Н  | 6.10524  | -3.87391 | 0.42008  |
|----|----------|----------|----------|
| С  | 3.28811  | -4.69594 | 1.71182  |
| Н  | 2.50177  | -4.59765 | 2.47601  |
| Н  | 2.89568  | -5.31897 | 0.89340  |
| Н  | 4.13706  | -5.22779 | 2.17275  |
| С  | 2.98043  | -0.45652 | -2.65896 |
| Н  | 2.92437  | 0.55986  | -3.08772 |
| С  | 4.42594  | -0.94843 | -2.73156 |
| Н  | 5.13250  | -0.31974 | -2.17095 |
| Н  | 4.50295  | -1.97736 | -2.34986 |
| Н  | 4.75968  | -0.96265 | -3.78187 |
| С  | 2.07594  | -1.36357 | -3.49495 |
| Н  | 1.03868  | -1.00884 | -3.50060 |
| Н  | 2.43648  | -1.37647 | -4.53623 |
| Н  | 2.09368  | -2.39626 | -3.11423 |
| С  | 3.72508  | 0.66289  | -0.03236 |
| Н  | 4.56699  | -0.04993 | -0.02842 |
| С  | 3.33402  | 0.98714  | 1.40469  |
| Н  | 3.07500  | 0.08680  | 1.97275  |
| Н  | 4.17028  | 1.48222  | 1.92507  |
| Н  | 2.47556  | 1.67152  | 1.42446  |
| С  | 4.16074  | 1.94363  | -0.74722 |
| Н  | 4.39563  | 1.79322  | -1.81034 |
| Н  | 3.37606  | 2.70883  | -0.67195 |
| Н  | 5.06299  | 2.34629  | -0.25896 |
| Cl | -0.67780 | 0.80343  | -2.94432 |
| Ν  | -2.64364 | -0.13250 | -0.46294 |
| Ν  | -1.03861 | 2.20252  | 0.03616  |
| 0  | -0.17907 | -0.99863 | 0.52634  |
| Ρ  | 2.10939  | -2.25832 | -0.15847 |
| Р  | 2.30091  | -0.19696 | -0.91898 |
| Si | 3.87949  | -3.01655 | 1.07094  |
| Ti | -0.60203 | 0.31099  | -0.67632 |


Figure S35. Optimized structure of 2c.

Below are presented xyz coordinates for optimized geometry for **2c**.

| С | 0.32445  | 2.80802 | -0.01421 |
|---|----------|---------|----------|
| С | 0.47449  | 3.63569 | -1.14115 |
| С | 1.06103  | 4.88956 | -0.95784 |
| Н | 1.17985  | 5.55692 | -1.81284 |
| С | 1.50164  | 5.30180 | 0.29671  |
| Н | 1.95471  | 6.28712 | 0.42131  |
| С | 1.37720  | 4.44858 | 1.38668  |
| Н | 1.74506  | 4.76763 | 2.36456  |
| С | 0.80069  | 3.18274 | 1.25156  |
| С | -0.00460 | 3.17147 | -2.50742 |
| Н | 0.03739  | 2.07232 | -2.51426 |
| С | -1.46277 | 3.58459 | -2.74694 |
| Н | -1.82543 | 3.18827 | -3.70848 |
| Н | -2.12797 | 3.21022 | -1.95528 |
| Н | -1.56365 | 4.68250 | -2.76793 |
| С | 0.88013  | 3.65849 | -3.65683 |
| Н | 0.59128  | 3.15062 | -4.58899 |
| Н | 0.78257  | 4.74303 | -3.82847 |
| Н | 1.94129  | 3.43795 | -3.46879 |
| С | 0.73328  | 2.24308 | 2.44496  |
| Н | 0.37566  | 1.26945 | 2.08368  |
| С | -0.24635 | 2.74219 | 3.51304  |
| Н | -0.32013 | 2.01738 | 4.33911  |
| Н | 0.08554  | 3.70402 | 3.93650  |
| Н | -1.25519 | 2.89078 | 3.10115  |
| С | 2.12328  | 2.00179 | 3.03962  |
| Н | 2.08073  | 1.22472 | 3.81907  |
| Н | 2.80204  | 1.66919 | 2.24340  |
| Н | 2.54116  | 2.91370 | 3.49578  |
| С | -2.44145 | 2.28652 | 0.57564  |
| н | -2.82511 | 1.91657 | 1.53947  |

| Н | -1.97874 | 3.26989  | 0.71291  |
|---|----------|----------|----------|
| Н | -3.31581 | 2.38541  | -0.08245 |
| С | -1.48111 | 1.27432  | 0.02585  |
| С | -1.97694 | -0.14261 | -0.22040 |
| н | -1.52326 | -0.43758 | -1.18179 |
| С | -3.47633 | -0.19964 | -0.46126 |
| С | -3.88660 | 0.21710  | -1.85263 |
| н | -3.33310 | 1.11563  | -2.16652 |
| н | -3.60373 | -0.57826 | -2.56189 |
| н | -4.96643 | 0.39390  | -1.93325 |
| С | -5.65336 | -0.76768 | 0.21786  |
| С | -6.14201 | -1.86915 | -0.51620 |
| С | -7.52652 | -2.02387 | -0.63053 |
| н | -7.92257 | -2.87552 | -1.18768 |
| С | -8.41031 | -1.12036 | -0.05232 |
| н | -9.48704 | -1.25860 | -0.16294 |
| С | -7.91121 | -0.04295 | 0.67188  |
| н | -8.60553 | 0.66796  | 1.12446  |
| С | -6.53746 | 0.14494  | 0.82807  |
| С | -5.21586 | -2.91194 | -1.12637 |
| н | -4.18852 | -2.52935 | -1.08069 |
| С | -5.24537 | -4.20381 | -0.30001 |
| н | -4.51843 | -4.93406 | -0.68971 |
| н | -5.00023 | -4.00299 | 0.75403  |
| н | -6.24458 | -4.66801 | -0.32847 |
| С | -5.52526 | -3.18443 | -2.60208 |
| н | -4.77379 | -3.86605 | -3.02978 |
| н | -6.51111 | -3.65757 | -2.73555 |
| н | -5.51817 | -2.25371 | -3.18967 |
| С | -5.99420 | 1.34044  | 1.59203  |
| н | -4.93820 | 1.12251  | 1.80977  |
| С | -6.69802 | 1.57023  | 2.93197  |
| н | -6.67134 | 0.66340  | 3.55429  |
| н | -6.20481 | 2.38363  | 3.48696  |
| н | -7.75270 | 1.85935  | 2.79935  |
| С | -6.04619 | 2.59929  | 0.71629  |
| Н | -5.55854 | 3.45312  | 1.21384  |
| н | -5.54929 | 2.43294  | -0.25242 |
| н | -7.09036 | 2.88023  | 0.50225  |
| С | -1.35034 | -1.14244 | 0.81822  |
| C | -1.69541 | -0.80322 | 2.26825  |
| н | -2.78029 | -0.85892 | 2.42785  |
| н | -1.18891 | -1.51649 | 2.93550  |
| н | -1.34650 | 0.20516  | 2.53413  |
| С | -1.77366 | -2.57441 | 0.48307  |
| н | -2.83167 | -2.74765 | 0.71635  |
| н | -1.59575 | -2.78533 | -0.58299 |
| н | -1.16074 | -3.26881 | 1.07526  |
| С | 3.91444  | 1.06412  | -0.70051 |
| С | 3.97325  | 1.10402  | -2.23215 |
| н | 4.99974  | 1.20383  | -2.61565 |
| н | 3.50149  | 0.21610  | -2.67748 |
| н | 3.39492  | 1.98306  | -2.55546 |

| С  | 4.55065  | 2.32269  | -0.10888 |
|----|----------|----------|----------|
| Н  | 5.60219  | 2.45285  | -0.40431 |
| Н  | 3.96983  | 3.18127  | -0.48130 |
| н  | 4.47618  | 2.33793  | 0.98631  |
| Ti | 1.18945  | -0.23245 | -0.53882 |
| Cl | 0.48005  | -0.53255 | -2.76911 |
| Ν  | -0.23908 | 1.50536  | -0.21226 |
| Ν  | -4.26509 | -0.61366 | 0.44980  |
| 0  | 0.04879  | -1.06733 | 0.64835  |
| 0  | 2.60263  | 0.99549  | -0.26289 |
| Р  | 4.68361  | -0.59267 | -0.08480 |
| Р  | 3.16364  | -1.96939 | -0.79391 |
| С  | 6.25232  | -0.99486 | -1.01460 |
| С  | 6.86317  | -2.30505 | -0.50926 |
| С  | 7.30413  | 0.11090  | -1.13442 |
| н  | 5.83439  | -1.18432 | -2.01766 |
| Н  | 6.10832  | -3.10086 | -0.43082 |
| н  | 7.64157  | -2.64570 | -1.20943 |
| н  | 7.34013  | -2.17335 | 0.47480  |
| Н  | 6.88364  | 1.05398  | -1.50864 |
| н  | 7.80783  | 0.31415  | -0.18019 |
| н  | 8.07623  | -0.21042 | -1.85122 |
| С  | 5.02287  | -0.38201 | 1.73824  |
| С  | 6.30018  | 0.40010  | 2.06390  |
| С  | 5.00506  | -1.69695 | 2.51399  |
| н  | 4.14644  | 0.20814  | 2.05185  |
| н  | 6.40722  | 1.32836  | 1.49055  |
| н  | 6.29142  | 0.66636  | 3.13257  |
| Н  | 7.19371  | -0.21850 | 1.89070  |
| Н  | 4.05955  | -2.22981 | 2.38031  |
| н  | 5.82755  | -2.36228 | 2.21215  |
| Н  | 5.12295  | -1.48766 | 3.58880  |
| Si | 2.66589  | -3.74801 | 0.51815  |
| С  | 4.14137  | -4.89953 | 0.80016  |
| Н  | 4.62112  | -5.15527 | -0.15754 |
| Н  | 4.90103  | -4.45658 | 1.46178  |
| Н  | 3.79358  | -5.83521 | 1.26926  |
| С  | 1.44046  | -4.60508 | -0.63859 |
| Н  | 1.02788  | -5.50502 | -0.15313 |
| Н  | 0.60499  | -3.93180 | -0.88508 |
| Н  | 1.92456  | -4.90598 | -1.58022 |
| С  | 1.76815  | -3.44136 | 2.15571  |
| Н  | 2.43222  | -3.20651 | 3.00041  |
| Н  | 1.04820  | -2.61941 | 2.02346  |
| Н  | 1.21374  | -4.35850 | 2.41931  |



Figure S36. Optimized structure of 2d.

Below are presented xyz coordinates for optimized geometry for **2d**.

| С | -0.15153 | 2.76443 | 0.07924  |
|---|----------|---------|----------|
| С | -0.38565 | 3.48361 | 1.26407  |
| С | -0.97396 | 4.74461 | 1.15474  |
| Н | -1.16201 | 5.32999 | 2.05593  |
| С | -1.33673 | 5.26261 | -0.08589 |
| Н | -1.79677 | 6.25018 | -0.15237 |
| С | -1.13156 | 4.51194 | -1.23714 |
| Н | -1.44370 | 4.91323 | -2.20387 |
| С | -0.54741 | 3.24368 | -1.17850 |
| С | 0.00406  | 2.89088 | 2.60934  |
| Н | -0.05916 | 1.79602 | 2.51324  |
| С | 1.45417  | 3.24651 | 2.96434  |
| Н | 1.75474  | 2.75731 | 3.90418  |
| Н | 2.15625  | 2.93121 | 2.17871  |
| Н | 1.57184  | 4.33531 | 3.09147  |
| С | -0.93521 | 3.29632 | 3.74635  |
| Н | -0.69622 | 2.71752 | 4.65108  |
| Н | -0.83906 | 4.36346 | 4.00466  |
| Н | -1.98607 | 3.09965 | 3.48824  |
| С | -0.38345 | 2.41689 | -2.44467 |
| Н | 0.04866  | 1.44845 | -2.16133 |
| С | 0.58083  | 3.08229 | -3.43389 |
| Н | 0.75146  | 2.42968 | -4.30445 |
| Н | 0.17692  | 4.03766 | -3.80637 |
| Н | 1.55603  | 3.29191 | -2.96897 |
| С | -1.73253 | 2.10870 | -3.10355 |
| Н | -1.58277 | 1.49467 | -4.00554 |
| Н | -2.38390 | 1.55577 | -2.41194 |
| Н | -2.25659 | 3.02907 | -3.40832 |
| С | 2.64011  | 2.25570 | -0.41760 |
| н | 3.05886  | 1.96453 | -1.39360 |

| Н      | 2.18909              | 3.25128             | -0.49145 |
|--------|----------------------|---------------------|----------|
| Н      | 3.48717              | 2.29006             | 0.28143  |
| С      | 1.64833              | 1.21470             | 0.00417  |
| С      | 2.10462              | -0.22819            | 0.14592  |
| Н      | 1.58095              | -0.60594            | 1.04055  |
| С      | 3.58337              | -0.33505            | 0.48061  |
| С      | 3.90540              | -0.04175            | 1.92567  |
| Н      | 3.34402              | 0.83771             | 2.27726  |
| Н      | 3.56932              | -0.88885            | 2.54646  |
| н      | 4.97978              | 0.10998             | 2.08910  |
| С      | 5.79465              | -0.88187            | -0.10288 |
| С      | 6.22246              | -2.05011            | 0.56234  |
| С      | 7.59553              | -2.24055            | 0.74288  |
| Н      | 7.94564              | -3.14293            | 1.24873  |
| С      | 8.52462              | -1.30875            | 0.29592  |
| Н      | 9.59098              | -1.47666            | 0.45528  |
| С      | 8.08495              | -0.16260            | -0.35811 |
| Н      | 8.81497              | 0.57127             | -0.70540 |
| С      | 6.72585              | 0.06455             | -0.57675 |
| С      | 5.24758              | -3.11835            | 1.03752  |
| н      | 4.22969              | -2.71583            | 0.95797  |
| С      | 5.31034              | -4.35085            | 0.12684  |
| н      | 4.55989              | -5.09800            | 0.42967  |
| н      | 5.11979              | -4.07729            | -0.92202 |
| н      | 6.30344              | -4.82636            | 0.17403  |
| С      | 5.46662              | -3.49771            | 2.50599  |
| н      | 4.68619              | -4.19823            | 2.84112  |
| н      | 6.43941              | -3.99093            | 2.66070  |
| Н      | 5.43456              | -2.61098            | 3.15746  |
| С      | 6.24464              | 1.33467             | -1.25743 |
| н      | 5.20220              | 1.15604             | -1.55949 |
| C      | 7.03452              | 1.67921             | -2.52249 |
| н      | 7.03117              | 0.83999             | -3.23360 |
| н      | 6 59031              | 2 55439             | -3 02184 |
| н      | 8 08376              | 1 92968             | -2 29884 |
| C      | 6 25565              | 2 50458             | -0 26443 |
| н      | 5 80659              | 2.30430             | -0 70678 |
| н      | 5 70051              | 2 25536             | 0.65370  |
| н      | 7 28766              | 2.23330             | 0.03608  |
| c      | 1 53312              | -1 11020            | -1 02676 |
| c      | 2 00815              | -0 66573            | -2 41017 |
| н      | 3 09827              | -0 76410            | -2.41017 |
| н      | 1 52056              | -1 20150            | -2.17227 |
| н      | 1.52050              | 0 378/10            | -2 61270 |
| п<br>С | 1 99097              | -2 57806            | -2.01279 |
| с<br>ц | 1.00302              | -2.37600            | -0.77800 |
| п<br>ц | 2.90433              | -2.73012<br>2 07761 | -0.91017 |
| п      | 1,30000              | 2.07704             | 1 10607  |
| п<br>С | 1.55959              | -5.20275            | -1.49007 |
| C<br>C | -3.U302U<br>_1 20001 | -2.33413            | -2.2348/ |
| с<br>u | -4.30U01             | -3.U0440<br>1.02040 | -2.74294 |
| п      | -4.4929/<br>E 10F10  | -4.USU40            | -2.21102 |
| п      | -5.18545             | -2.44052            | -2.03142 |
| П      | -4.19401             | -3.32491            | -2.81308 |

| С  | -1.76506 | -3.19491 | -2.53391 |
|----|----------|----------|----------|
| Н  | -1.78874 | -4.19933 | -2.08792 |
| н  | -1.66620 | -3.32375 | -3.62433 |
| н  | -0.87705 | -2.66538 | -2.16321 |
| С  | -3.79523 | -3.21730 | 0.59597  |
| С  | -3.74471 | -2.80671 | 2.06845  |
| н  | -2.70373 | -2.67889 | 2.40008  |
| Н  | -4.26821 | -1.86027 | 2.25273  |
| Н  | -4.22128 | -3.58091 | 2.69148  |
| С  | -2.98360 | -4.49829 | 0.38231  |
| н  | -1.90659 | -4.31475 | 0.52667  |
| Н  | -3.29411 | -5.25389 | 1.12155  |
| н  | -3.13209 | -4.93126 | -0.61608 |
| С  | -7.47940 | -1.98614 | -1.00071 |
| н  | -7.47931 | -1.61175 | -2.03601 |
| н  | -6.94555 | -2.94922 | -0.98383 |
| н  | -8.52417 | -2.17552 | -0.70381 |
| С  | -7.66021 | 0.89347  | 0.08724  |
| н  | -7.30608 | 1.61334  | 0.84187  |
| Н  | -7.56776 | 1.36115  | -0.90508 |
| н  | -8.72894 | 0.70405  | 0.28109  |
| С  | -6.87358 | -1.40954 | 1.93694  |
| н  | -6.34898 | -0.79532 | 2.68313  |
| Н  | -7.94721 | -1.41062 | 2.19128  |
| Н  | -6.50687 | -2.44264 | 2.01946  |
| С  | -3.81597 | 1.16793  | 0.35674  |
| С  | -4.08799 | 1.10338  | 1.85803  |
| н  | -5.15774 | 1.22966  | 2.08554  |
| н  | -3.72960 | 0.15753  | 2.28725  |
| н  | -3.53348 | 1.92042  | 2.34742  |
| С  | -4.25004 | 2.52452  | -0.20332 |
| Н  | -5.32257 | 2.70506  | -0.03268 |
| Н  | -3.67011 | 3.31518  | 0.30015  |
| Н  | -4.05199 | 2.58838  | -1.28154 |
| Ti | -1.07340 | -0.22381 | 0.21740  |
| Cl | -0.60309 | -0.94133 | 2.41006  |
| Ν  | 0.39949  | 1.44607  | 0.20390  |
| Ν  | 4.42602  | -0.68554 | -0.40793 |
| 0  | 0.12778  | -1.00068 | -0.96654 |
| 0  | -2.45151 | 1.00041  | 0.13200  |
| Ρ  | -4.66511 | -0.21165 | -0.70045 |
| Ρ  | -3.14610 | -1.80465 | -0.45312 |
| Si | -6.70249 | -0.73428 | 0.18169  |
| Н  | -4.84090 | -3.40471 | 0.29697  |
| н  | -2.94127 | -1.42593 | -2.75658 |



## Figure S37. Optimized structure of 3a.

Below are presented xyz coordinates for optimized geometry for **3a**.

| С | 1.27221  | 2.71848  | -0.09896 |
|---|----------|----------|----------|
| С | 2.38855  | 2.87397  | -0.95119 |
| С | 3.51463  | 3.52574  | -0.43963 |
| Н | 4.38318  | 3.67675  | -1.08139 |
| С | 3.55120  | 3.99024  | 0.86986  |
| Н | 4.43531  | 4.51168  | 1.24136  |
| С | 2.47665  | 3.75008  | 1.71692  |
| Н | 2.53755  | 4.07502  | 2.75637  |
| С | 1.32919  | 3.09431  | 1.26044  |
| С | 2.39342  | 2.35711  | -2.38761 |
| Н | 1.72446  | 1.48658  | -2.42137 |
| С | 1.85181  | 3.36417  | -3.41247 |
| Н | 2.36446  | 4.33739  | -3.33073 |
| Н | 0.77169  | 3.52548  | -3.30428 |
| Н | 2.01730  | 2.97789  | -4.42995 |
| С | 3.78094  | 1.87608  | -2.82466 |
| Н | 4.21009  | 1.17579  | -2.09220 |
| Н | 3.69822  | 1.35467  | -3.78982 |
| Н | 4.48514  | 2.71178  | -2.96912 |
| С | 0.18266  | 2.79104  | 2.22303  |
| Н | -0.23802 | 1.81652  | 1.92340  |
| С | -0.94852 | 3.82657  | 2.15512  |
| Н | -1.51284 | 3.76659  | 1.21556  |
| Н | -1.66418 | 3.65909  | 2.97461  |
| Н | -0.54691 | 4.84707  | 2.26624  |
| С | 0.64438  | 2.66393  | 3.68032  |
| Н | -0.15497 | 2.20986  | 4.28524  |
| Н | 1.54399  | 2.04051  | 3.78400  |
| Н | 0.86791  | 3.64711  | 4.12482  |
| С | -3.38268 | -0.23951 | -0.14302 |
| С | -3.76376 | -0.04058 | 1.20324  |
| С | -4.69214 | -0.91322 | 1.77311  |
| Н | -5.00227 | -0.76682 | 2.80945  |
| С | -5.24008 | -1.96150 | 1.04046  |
| Н | -5.96295 | -2.63642 | 1.50246  |

| С      | -4.86541 | -2.13789            | -0.28430            |
|--------|----------|---------------------|---------------------|
| н      | -5.29869 | -2.95914            | -0.85886            |
| С      | -3.93960 | -1.28774            | -0.89998            |
| С      | -3.24855 | 1.15400             | 1.99133             |
| н      | -2.31598 | 1.47536             | 1.51015             |
| С      | -4.24901 | 2.31575             | 1.90840             |
| н      | -4.39130 | 2.65791             | 0.87379             |
| Н      | -5.23208 | 2.01228             | 2.30450             |
| н      | -3.89701 | 3.17690             | 2.49715             |
| С      | -2.93144 | 0.83318             | 3.45200             |
| н      | -2.47868 | 1.71078             | 3.93889             |
| н      | -3.83309 | 0.57652             | 4.03101             |
| н      | -2.22339 | -0.00210            | 3.52938             |
| C      | -3.55330 | -1.53811            | -2.34748            |
| н      | -2.93227 | -0.69780            | -2.68371            |
| c      | -4 77111 | -1 62794            | -3 27363            |
| н      | -4 44392 | -1 70046            | -4 37778            |
| н      | -5 38652 | -2 51649            | -3 05802            |
| <br>ц  | -5 42042 | -0.74420            | -3.05052            |
| п<br>С | -3.42043 | -0.74439            | -3.17790            |
|        | -2.09240 | -2.80082            | 2.43571             |
| п<br>  | -2.33770 | -2.94750            | -3.48538            |
| н      | -1.80768 | -2.72051            | -1.80695            |
| Н      | -3.25591 | -3.69766            | -2.14619            |
| C      | -0.37258 | 4.60431             | -1.2111/            |
| н      | -0.56067 | 5.07671             | -0.23543            |
| н      | 0.69121  | 4.74185             | -1.42671            |
| Н      | -0.96616 | 5.13764             | -1.96433            |
| С      | -0.79098 | 3.14837             | -1.14949            |
| С      | -2.08867 | 2.88127             | -1.59672            |
| Н      | -2.59916 | 3.70729             | -2.08848            |
| С      | -2.88443 | 1.75364             | -1.30870            |
| С      | -4.33398 | 1.84054             | -1.73133            |
| Н      | -4.62715 | 2.87876             | -1.92903            |
| н      | -4.46007 | 1.26586             | -2.66267            |
| н      | -5.01456 | 1.40714             | -0.98805            |
| С      | 2.88912  | -1.60857            | -3.80608            |
| н      | 3.83318  | -1.04491            | -3.75105            |
| н      | 2.98080  | -2.35488            | -4.61298            |
| н      | 2.07436  | -0.91637            | -4.06152            |
| С      | 4.13989  | -3.49796            | -1.82080            |
| н      | 5.00157  | -2.83731            | -1.63848            |
| н      | 4.05227  | -4.19805            | -0.97641            |
| н      | 4.36235  | -4.09807            | -2.71984            |
| c      | 1 15887  | -3 73952            | -2 40013            |
| н      | 0 99919  | -4 36017            | -1 50/181           |
| <br>ц  | 0.33313  | -2 22100            | -2 64667            |
| н      | 1 /0925  | -3.22130            | -2.04007            |
| с<br>С | 2 40721  | -4.41477            | -3.23300<br>2 /2025 |
| с<br>u | 2.49/31  | -0.24544<br>0.41222 | 2.43023             |
| п<br>С | 1.01303  | 0.41222             | 2.30302             |
| с<br>u | 2.00459  |                     | J.0720/             |
|        | 1.80511  | -1.24/95            | 4.28414             |
| Н      | 3.56918  | -1.30388            | 4.02302             |
| н      | 2.79118  | 0.20202             | 4.52656             |

| С  | 3.71907  | 0.55822  | 1.98365  |
|----|----------|----------|----------|
| Н  | 3.58591  | 0.98040  | 0.97984  |
| Н  | 3.87225  | 1.39346  | 2.68399  |
| Н  | 4.63226  | -0.05605 | 1.98496  |
| С  | 2.95730  | -3.16334 | 1.56086  |
| Н  | 2.70160  | -3.75974 | 0.66931  |
| С  | 2.55682  | -3.97634 | 2.79589  |
| Н  | 1.50401  | -4.28808 | 2.77359  |
| Н  | 3.16864  | -4.89171 | 2.82794  |
| Н  | 2.73481  | -3.42916 | 3.73165  |
| С  | 4.46539  | -2.89055 | 1.53947  |
| Н  | 4.75605  | -2.26259 | 0.68658  |
| Н  | 4.79008  | -2.39089 | 2.46476  |
| Н  | 5.01205  | -3.84324 | 1.46505  |
| С  | 0.14816  | -1.82315 | 1.49277  |
| С  | -0.37527 | -3.08794 | 0.79430  |
| Н  | -0.35046 | -2.97679 | -0.29702 |
| Н  | 0.24693  | -3.96116 | 1.05483  |
| С  | -1.78410 | -3.23897 | 1.37113  |
| Н  | -2.46482 | -2.56927 | 0.83434  |
| Н  | -2.17336 | -4.26077 | 1.26192  |
| С  | -1.66589 | -2.79268 | 2.84291  |
| Н  | -1.63871 | -3.65651 | 3.52436  |
| Н  | -2.53247 | -2.18348 | 3.13256  |
| С  | -0.34188 | -1.99743 | 2.94344  |
| Н  | 0.38766  | -2.56853 | 3.53222  |
| Н  | -0.44867 | -1.01176 | 3.41626  |
| Cl | -0.35551 | -0.20117 | -3.03699 |
| Ν  | 0.03164  | 2.22148  | -0.62660 |
| Ν  | -2.42173 | 0.66978  | -0.69759 |
| Ρ  | 2.24818  | -0.77606 | -0.72589 |
| Ρ  | 2.00920  | -1.59101 | 1.24442  |
| 0  | -0.40537 | -0.67355 | 0.92709  |
| Si | 2.56448  | -2.49794 | -2.17366 |
| Ti | -0.33665 | 0.18958  | -0.74078 |



## Figure S38. Optimized structure of 3b.

Below are presented xyz coordinates for optimized geometry for **3b**.

| С | -2.77648 | -1.82649 | -0.44592 |
|---|----------|----------|----------|
| С | -2.62729 | -2.72688 | -1.51423 |
| С | -2.81674 | -4.09057 | -1.26654 |
| Н | -2.70087 | -4.80458 | -2.08455 |
| С | -3.14773 | -4.55290 | 0.00068  |
| Н | -3.29849 | -5.61985 | 0.17445  |
| С | -3.27970 | -3.64887 | 1.05079  |
| Н | -3.53292 | -4.02185 | 2.04487  |
| С | -3.08502 | -2.28064 | 0.85573  |
| С | -2.22586 | -2.25521 | -2.90071 |
| Н | -2.32557 | -1.16204 | -2.92781 |
| С | -0.75098 | -2.58177 | -3.16637 |
| Н | -0.42979 | -2.17169 | -4.13624 |
| Н | -0.09487 | -2.15742 | -2.39019 |
| Н | -0.58233 | -3.67165 | -3.17624 |
| С | -3.12417 | -2.82389 | -4.00340 |
| Н | -2.87396 | -2.36126 | -4.97038 |
| Н | -3.00021 | -3.91276 | -4.11849 |
| Н | -4.18792 | -2.62867 | -3.79659 |
| С | -3.23612 | -1.30077 | 2.01342  |
| Н | -2.67178 | -0.39803 | 1.74059  |
| С | -2.66540 | -1.82864 | 3.33241  |
| Н | -2.72373 | -1.04854 | 4.10667  |
| Н | -3.22675 | -2.69669 | 3.71286  |
| Н | -1.61238 | -2.12292 | 3.23039  |
| С | -4.70082 | -0.88712 | 2.21315  |
| Н | -5.11180 | -0.38698 | 1.32602  |
| Н | -5.32911 | -1.76639 | 2.43195  |
| Н | -4.79011 | -0.18573 | 3.05782  |
| С | -0.55537 | 3.01278  | 0.79067  |
| С | -0.27901 | 2.79680  | 2.15924  |
| С | 0.54695  | 3.70515  | 2.82485  |
| Н | 0.76471  | 3.56111  | 3.88352  |

| С      | 1.11214  | 4.78554     | 2.15617  |
|--------|----------|-------------|----------|
| н      | 1.76115  | 5.48129     | 2.69087  |
| C      | 0.85021  | 4.97176     | 0.80532  |
| н      | 1.30205  | 5.81922     | 0.28556  |
| C      | 0.01303  | 4 10294     | 0.09678  |
| c      | -0 89741 | 1 61935     | 2 90104  |
| н      | -0.95081 | 0.78096     | 2.30104  |
| C C    | -0.06534 | 1 1/1596    | 1 00100  |
| ч      | -0 47531 | 0 20006     | 1 12001  |
| <br>ц  | 0.98445  | 0.20000     | 2 21662  |
| н<br>ц | 0.98443  | 1 96052     | 1 02555  |
| п<br>С | -0.00333 | 1.00952     | 2 2/02/  |
| с<br>u | -2.32330 | 1 1 2 7 2 1 | 2 06207  |
| п<br>  | -2.75057 | 1.12/51     | 3.90307  |
| н      | -2.34531 | 2.86423     | 3.95003  |
| н<br>С | -3.00727 | 2.08193     | 2.49558  |
| C      | -0.26311 | 4.37713     | -1.3//52 |
| Н      | -1.06501 | 3.70251     | -1./06/5 |
| C      | 0.95810  | 4.05863     | -2.24608 |
| Н      | 0.71984  | 4.21148     | -3.30971 |
| н      | 1.81255  | 4.70553     | -1.98698 |
| Н      | 1.25851  | 3.01036     | -2.12279 |
| С      | -0.71551 | 5.82280     | -1.62465 |
| Н      | -1.06023 | 5.93810     | -2.66360 |
| Н      | -1.53579 | 6.12360     | -0.95588 |
| Н      | 0.10880  | 6.53800     | -1.47295 |
| С      | -4.93970 | -0.33187    | -1.36844 |
| н      | -5.78160 | 0.37085     | -1.35850 |
| Н      | -4.77409 | -0.66520    | -2.40560 |
| Н      | -5.20391 | -1.22437    | -0.78625 |
| С      | -3.67248 | 0.32005     | -0.86718 |
| С      | -3.70157 | 1.71130     | -0.65855 |
| н      | -4.65320 | 2.20424     | -0.84933 |
| С      | -2.71016 | 2.50018     | -0.06537 |
| С      | -3.14507 | 3.88351     | 0.36531  |
| н      | -4.23449 | 3.92330     | 0.48458  |
| н      | -2.66913 | 4.18564     | 1.30684  |
| н      | -2.85874 | 4.62275     | -0.39625 |
| С      | 4.73179  | -1.70455    | 2.37016  |
| н      | 3.92608  | -1.89468    | 3.09353  |
| н      | 5.63553  | -2.22547    | 2.72947  |
| н      | 4.94812  | -0.62596    | 2.36442  |
| С      | 5.84792  | -1.94698    | -0.44282 |
| н      | 5.73939  | -2.36100    | -1.45680 |
| н      | 6.03439  | -0.86606    | -0.52484 |
| н      | 6.73718  | -2.40880    | 0.01797  |
| С      | 4.20207  | -4.23655    | 0.68990  |
| н      | 3.33925  | -4.58358    | 1.27692  |
| н      | 4.10022  | -4.64006    | -0.32970 |
| н      | 5.11264  | -4.66534    | 1.14037  |
| С      | 3.01491  | 0.59267     | -2.64296 |
| Н      | 2.73014  | 1.61888     | -2.93443 |
| С      | 4.53372  | 0.45537     | -2.74667 |
| Н      | 5.08765  | 1.13099     | -2.07952 |

| Н  | 4.84321  | -0.57614 | -2.52608 |
|----|----------|----------|----------|
| Н  | 4.85170  | 0.67820  | -3.77817 |
| С  | 2.34059  | -0.37404 | -3.61903 |
| Н  | 1.24791  | -0.29469 | -3.58441 |
| Н  | 2.66440  | -0.13804 | -4.64562 |
| Н  | 2.62277  | -1.41534 | -3.40166 |
| С  | 3.50755  | 1.42058  | 0.15643  |
| Н  | 4.47565  | 0.89826  | 0.07641  |
| С  | 3.05522  | 1.41745  | 1.61252  |
| Н  | 2.98598  | 0.40262  | 2.02042  |
| Н  | 3.76806  | 1.98303  | 2.23461  |
| Н  | 2.07178  | 1.89707  | 1.71280  |
| С  | 3.67136  | 2.86125  | -0.33143 |
| Н  | 3.94690  | 2.93447  | -1.39305 |
| Н  | 2.73894  | 3.42169  | -0.17875 |
| Н  | 4.45913  | 3.36144  | 0.25506  |
| Cl | -0.79208 | 1.08405  | -2.94569 |
| Ν  | -2.59482 | -0.41735 | -0.62829 |
| Ν  | -1.44144 | 2.10136  | 0.12552  |
| 0  | -0.02505 | -1.01448 | 0.25721  |
| Ρ  | 2.45435  | -1.69524 | -0.46306 |
| Ρ  | 2.28951  | 0.45687  | -0.90574 |
| Si | 4.35126  | -2.35080 | 0.63492  |
| Ti | -0.65631 | 0.38248  | -0.73692 |
| С  | 0.92914  | -1.92696 | 0.70068  |
| С  | 1.11709  | -1.75117 | 2.22790  |
| С  | 0.46646  | -3.40760 | 0.53284  |
| С  | 1.18959  | -3.15306 | 2.82949  |
| Н  | 0.20411  | -1.24718 | 2.57716  |
| Н  | 1.96018  | -1.10885 | 2.50221  |
| С  | 0.24131  | -3.96740 | 1.94229  |
| Н  | 1.24637  | -3.98790 | 0.01491  |
| Н  | -0.43260 | -3.44554 | -0.09488 |
| Н  | 2.21469  | -3.55388 | 2.76774  |
| Н  | 0.90668  | -3.16650 | 3.89317  |
| Н  | 0.42145  | -5.05099 | 2.00025  |
| Н  | -0.80038 | -3.79680 | 2.24938  |



Figure S39. Optimized structure of 3c.

Below are presented xyz coordinates for optimized geometry for **3c**.

| С | 0.20041  | 2.72382  | 0.57136  |
|---|----------|----------|----------|
| С | 0.61000  | 2.77056  | 1.91725  |
| С | 1.09066  | 3.98325  | 2.41485  |
| Н | 1.40481  | 4.05121  | 3.45753  |
| С | 1.17756  | 5.11132  | 1.60441  |
| Н | 1.55395  | 6.05059  | 2.01350  |
| С | 0.80648  | 5.02864  | 0.26879  |
| Н | 0.90513  | 5.90653  | -0.37318 |
| С | 0.32340  | 3.83499  | -0.27675 |
| С | 0.50843  | 1.54719  | 2.81610  |
| Н | 0.58317  | 0.66099  | 2.16492  |
| С | 1.63316  | 1.45695  | 3.85139  |
| Н | 1.61727  | 0.46767  | 4.33500  |
| Н | 2.62372  | 1.60000  | 3.39751  |
| Н | 1.51885  | 2.20801  | 4.64896  |
| С | -0.84719 | 1.49604  | 3.53500  |
| Н | -1.68647 | 1.41842  | 2.83243  |
| Н | -0.89798 | 0.62626  | 4.20901  |
| Н | -0.99379 | 2.40593  | 4.13894  |
| С | 0.00904  | 3.74951  | -1.76062 |
| Н | -0.41158 | 2.75721  | -1.97005 |
| С | 1.30610  | 3.84598  | -2.57290 |
| Н | 2.01095  | 3.06383  | -2.25529 |
| Н | 1.10305  | 3.69923  | -3.64425 |
| Н | 1.79005  | 4.82830  | -2.43884 |
| С | -1.01864 | 4.79604  | -2.20147 |
| Н | -1.95104 | 4.71300  | -1.62110 |
| Н | -0.63785 | 5.82276  | -2.07687 |
| Н | -1.26430 | 4.66094  | -3.26597 |
| С | -2.58411 | 2.21105  | 0.52599  |
| Н | -3.33226 | 1.70106  | 1.14436  |
| Н | -2.13345 | 3.05513  | 1.05800  |
| Н | -3.11867 | 2.60352  | -0.35503 |
| С | -1.55530 | 1.23423  | 0.04308  |
| С | -1.98015 | -0.09982 | -0.55593 |

| Н      | -1.53031            | -0.10495            | -1.56244                     |
|--------|---------------------|---------------------|------------------------------|
| С      | -3.47326            | -0.32057            | -0.75287                     |
| С      | -3.87783            | -0.64712            | -2.16693                     |
| н      | -3.24222            | -1.45352            | -2.56227                     |
| н      | -4.93385            | -0.93325            | -2.24411                     |
| н      | -3.69280            | 0.23218             | -2.80633                     |
| С      | -5.65505            | -0.49318            | 0.12234                      |
| С      | -6.52180            | 0.48889             | -0.40350                     |
| С      | -7.89465            | 0.22892             | -0.40572                     |
| Н      | -8.57984            | 0.98144             | -0.80088                     |
| С      | -8.40858            | -0.96796            | 0.08041                      |
| Н      | -9.48402            | -1.15177            | 0.06123                      |
| С      | -7.54083            | -1.92604            | 0.59135                      |
| н      | -7.94245            | -2.86846            | 0.97092                      |
| С      | -6.16301            | -1.70572            | 0.63085                      |
| С      | -6.00232            | 1.82762             | -0.90668                     |
| н      | -4.92692            | 1.72005             | -1.09692                     |
| С      | -6.63987            | 2.26259             | -2.22947                     |
| н      | -6.54231            | 1.47901             | -2.99616                     |
| н      | -7.71092            | 2.49230             | -2.11601                     |
| н      | -6.15044            | 3.17396             | -2.60637                     |
| С      | -6.16779            | 2.90423             | 0.17340                      |
| н      | -5.67685            | 2.60332             | 1.11104                      |
| н      | -5.73053            | 3.86144             | -0.15368                     |
| н      | -7.23430            | 3.07364             | 0.39333                      |
| С      | -5.23251            | -2.76962            | 1.18942                      |
| н      | -4.22601            | -2.33520            | 1.21617                      |
| С      | -5.18206            | -3.99797            | 0.27360                      |
| Н      | -4.43688            | -4.72456            | 0.63567                      |
| Н      | -6.15930            | -4.50580            | 0.23277                      |
| Н      | -4.91274            | -3.71682            | -0.75665                     |
| C      | -5.59150            | -3.15769            | 2.62686                      |
| н      | -4.85650            | -3.87559            | 3.02514                      |
| н      | -5.59973            | -2.27499            | 3.28374                      |
| н      | -6.58312            | -3.63427            | 2.68805                      |
| C      | -1.28704            | -1.31200            | 0.16966                      |
| c      | -1 60307            | -1 46083            | 1 67176                      |
| н      | -0 87794            | -0 87592            | 2 24834                      |
| н      | -2 60546            | -1 06752            | 1 89270                      |
| c      | -1 50401            | -2 97750            | 1 96952                      |
| н      | -2 45694            | -3 35022            | 2 37715                      |
| н      | -0 73204            | -3 20183            | 2 71928                      |
| C C    | -1 19609            | -3 65795            | 0.61884                      |
| ч      | -0 11024            | -3 77360            | 0.01004                      |
| н      | -0.11024            | -4 65278            | 0.40010                      |
| C C    | -1 71622            | -7 66600            | -0 /1011                     |
| с<br>н | -1.7 21222          | -2.00000            | -0.41911<br>-0 /17702        |
| н      | -7.010222           | -2.13323            | -0.47705<br>-1 10067         |
| <br>C  | -1.30403<br>2 07/10 | -2.00032<br>1 10710 | -1.4200/<br>_0 12002         |
| C<br>C | 2.2/413<br>1 62100  | 1 60004             | -0.13082                     |
| с<br>ц | 4.02198<br>5 57511  | 1 00/00             | -1.4441/<br>_1 6/1/0         |
| п      | 2 05270             | 1.09490<br>1.27200  | -1.0414U<br>_2 2010 <i>4</i> |
| n<br>C | 7 87677             | 1.37200<br>2 17861  | -2.20194<br>_1 72779         |
| C      | 7.04044             | <b>J.TZOOT</b>      | 1.20//0                      |

| Н  | 4.36439  | 3.72633  | -2.02356 |
|----|----------|----------|----------|
| н  | 5.92305  | 3.35930  | -1.27345 |
| С  | 4.27843  | 3.44591  | 0.15554  |
| Н  | 4.78257  | 4.29008  | 0.64732  |
| н  | 3.20713  | 3.68175  | 0.08785  |
| С  | 4.43857  | 2.13004  | 0.91984  |
| н  | 3.82191  | 2.08474  | 1.82611  |
| н  | 5.49360  | 1.97072  | 1.19475  |
| Ν  | -0.29164 | 1.48786  | 0.03261  |
| Ν  | -4.26361 | -0.25070 | 0.24688  |
| 0  | 2.58455  | 1.13885  | -0.19542 |
| 0  | 0.10262  | -1.20692 | 0.01007  |
| Cl | 0.50466  | 0.33736  | -3.06133 |
| Р  | 4.31365  | -0.72184 | 0.21829  |
| Ρ  | 3.22013  | -1.49815 | -1.45861 |
| Ti | 1.19305  | 0.02075  | -0.83242 |
| С  | 6.10955  | -1.21488 | 0.14244  |
| С  | 6.29623  | -2.64722 | 0.65456  |
| С  | 7.11448  | -0.23967 | 0.75884  |
| н  | 6.26850  | -1.22681 | -0.94863 |
| н  | 5.58978  | -3.34531 | 0.18301  |
| н  | 7.31416  | -2.99520 | 0.42012  |
| н  | 6.16552  | -2.71532 | 1.74487  |
| н  | 7.05603  | 0.75355  | 0.29203  |
| н  | 6.97737  | -0.12204 | 1.84275  |
| н  | 8.13397  | -0.62260 | 0.59337  |
| С  | 3.58621  | -0.91483 | 1.93376  |
| С  | 4.55381  | -0.59294 | 3.07459  |
| С  | 2.85801  | -2.23607 | 2.15273  |
| н  | 2.82050  | -0.12293 | 1.89561  |
| н  | 5.03769  | 0.38604  | 2.95638  |
| н  | 3.99449  | -0.56968 | 4.02280  |
| н  | 5.33804  | -1.35741 | 3.17902  |
| н  | 2.10572  | -2.40243 | 1.36943  |
| н  | 3.55145  | -3.08986 | 2.17431  |
| н  | 2.33644  | -2.20409 | 3.12299  |
| Si | 3.04835  | -3.74729 | -1.56455 |
| С  | 4.54182  | -4.41467 | -2.51780 |
| н  | 5.48240  | -4.28150 | -1.95974 |
| н  | 4.41880  | -5.49189 | -2.72066 |
| н  | 4.64630  | -3.88937 | -3.47972 |
| С  | 2.86090  | -4.81469 | -0.01356 |
| н  | 2.73375  | -5.85867 | -0.34761 |
| н  | 3.74543  | -4.78164 | 0.64039  |
| Н  | 1.97762  | -4.53917 | 0.57983  |
| С  | 1.49340  | -3.94954 | -2.61296 |
| Н  | 0.61038  | -3.67264 | -2.01710 |
| Н  | 1.51848  | -3.29420 | -3.49756 |
| н  | 1.38075  | -4.99322 | -2.94924 |



## Figure S40. Optimized structure of 3d.

Below are presented xyz coordinates for optimized geometry for **3d**.

| С | -0.00248 | 2.58912  | 0.87537  |
|---|----------|----------|----------|
| С | 0.41943  | 2.50944  | 2.21204  |
| С | 0.88923  | 3.67787  | 2.81772  |
| Н | 1.21599  | 3.64602  | 3.85945  |
| С | 0.94423  | 4.87674  | 2.11765  |
| Н | 1.30902  | 5.78081  | 2.60827  |
| С | 0.55836  | 4.91894  | 0.78038  |
| Н | 0.63560  | 5.85952  | 0.23397  |
| С | 0.09434  | 3.77593  | 0.12542  |
| С | 0.35813  | 1.20977  | 3.00129  |
| Н | 0.02117  | 0.41889  | 2.31747  |
| С | 1.73204  | 0.77899  | 3.52402  |
| Н | 1.64374  | -0.16678 | 4.08118  |
| Н | 2.43279  | 0.62137  | 2.69298  |
| Н | 2.16275  | 1.52935  | 4.20677  |
| С | -0.66136 | 1.29928  | 4.14398  |
| Н | -1.65729 | 1.58929  | 3.77890  |
| Н | -0.75562 | 0.32724  | 4.65351  |
| Н | -0.35049 | 2.04263  | 4.89569  |
| С | -0.29424 | 3.80000  | -1.34797 |
| Н | -0.03717 | 2.81296  | -1.76594 |
| С | 0.46708  | 4.85567  | -2.15483 |
| Н | 1.55095  | 4.80300  | -1.97943 |
| Н | 0.29030  | 4.69788  | -3.22917 |
| Н | 0.13156  | 5.87801  | -1.91539 |
| С | -1.80442 | 4.00617  | -1.53774 |
| Н | -2.39513 | 3.19286  | -1.09590 |
| Н | -2.13183 | 4.95077  | -1.07299 |
| Н | -2.05081 | 4.04917  | -2.61024 |
| С | -2.73232 | 1.80586  | 1.12762  |
| Н | -3.14057 | 1.11925  | 1.88304  |
| Н | -2.29769 | 2.68937  | 1.60641  |
| Н | -3.58854 | 2.10559  | 0.51133  |

| С   | -1.72498  | 1.06809             | 0.30160  |
|-----|-----------|---------------------|----------|
| С   | -2.10626  | -0.19631            | -0.44839 |
| н   | -1.55970  | -0.14307            | -1.40214 |
| С   | -3.57336  | -0.37585            | -0.79995 |
| С   | -3.84138  | -0.59052            | -2.26698 |
| Н   | -3.18491  | -1.38454            | -2.65417 |
| Н   | -4.88988  | -0.84294            | -2.46679 |
| Н   | -3.57782  | 0.32658             | -2.81992 |
| С   | -5.83131  | -0.54192            | -0.16167 |
| С   | -6.61099  | 0.51598             | -0.67607 |
| С   | -7.98256  | 0.30654             | -0.84130 |
| Н   | -8.60356  | 1.11582             | -1.22993 |
| С   | -8.57471  | -0.91158            | -0.52687 |
| Н   | -9.64657  | -1.05478            | -0.67251 |
| С   | -7.79049  | -1.94465            | -0.02644 |
| н   | -8.25374  | -2.90406            | 0.21386  |
| С   | -6.41895  | -1.77838            | 0.17236  |
| С   | -6.00612  | 1.87672             | -0.99212 |
| н   | -4.91916  | 1.74955             | -1.09451 |
| С   | -6.49859  | 2.46044             | -2.31960 |
| н   | -6.34842  | 1.74989             | -3.14649 |
| н   | -7.56874  | 2.71833             | -2.28596 |
| н   | -5.94835  | 3.38442             | -2.55562 |
| С   | -6.24743  | 2.84836             | 0.17041  |
| н   | -5.86542  | 2.43376             | 1.11589  |
| н   | -5.74949  | 3.81437             | -0.01139 |
| н   | -7.32495  | 3.03711             | 0.30182  |
| С   | -5.57034  | -2.92420            | 0.69899  |
| н   | -4.58026  | -2.51018            | 0.92970  |
| С   | -5.38169  | -4.00219            | -0.37541 |
| н   | -4.68721  | -4.78399            | -0.02789 |
| н   | -6.34058  | -4.48440            | -0.62537 |
| н   | -4.97525  | -3.57200            | -1.30421 |
| С   | -6.12356  | -3.52046            | 1.99620  |
| Н   | -5.43679  | -4.28837            | 2.38656  |
| Н   | -6.24568  | -2.74533            | 2.76743  |
| н   | -7.10215  | -4.00314            | 1.84295  |
| C   | -1.48178  | -1.44523            | 0.27557  |
| C   | -1.97002  | -1.67945            | 1.72105  |
| н   | -1.34325  | -1.11022            | 2,41986  |
| н   | -3.00315  | -1.32127            | 1.83138  |
| C   | -1.88030  | -3.20796            | 1.95053  |
| н   | -2.86731  | -3.60893            | 2,22953  |
| н   | -1 19147  | -3 46395            | 2 76784  |
| C   | -1.41410  | -3.81304            | 0.60947  |
| н   | -0 32015  | -3 92456            | 0.60477  |
| н   | -1.85397  | -4.80155            | 0.41302  |
| C   | -1.81744  | -2.76843            | -0.43062 |
| н   | -7 899/12 | -2 83650            | -0 6779/ |
| н   | -1 78207  | 2.03030<br>_2 25207 | -1 22705 |
| C C | 2 62721   | -3 26100            | 0 79525  |
| н   | 1 87638   | -3 82/120           | 0 30302  |
| C C | 2 14422   | -2 72355            | 2 12072  |
| -   | ·¬JJ      | , _333              | 2.120/5  |

| Н  | 1.24139  | -2.11864 | 1.95913  |
|----|----------|----------|----------|
| н  | 1.88127  | -3.56738 | 2.77971  |
| н  | 2.89925  | -2.11200 | 2.63883  |
| С  | 3.88273  | -4.18714 | 1.01713  |
| н  | 4.27340  | -4.60911 | 0.07856  |
| н  | 4.70203  | -3.64680 | 1.51761  |
| н  | 3.59576  | -5.03006 | 1.66661  |
| С  | 3.62676  | -2.72573 | -1.96614 |
| н  | 4.60313  | -3.18833 | -1.74087 |
| С  | 3.78794  | -1.70385 | -3.09146 |
| н  | 4.45506  | -0.88116 | -2.80716 |
| н  | 4.21611  | -2.19022 | -3.98285 |
| н  | 2.81467  | -1.26813 | -3.36202 |
| С  | 2.63364  | -3.81711 | -2.38115 |
| Н  | 2.58165  | -4.64480 | -1.65926 |
| н  | 1.62229  | -3.39489 | -2.50139 |
| н  | 2.93540  | -4.24109 | -3.35195 |
| С  | 7.22809  | -2.65171 | 0.46120  |
| Н  | 6.67928  | -3.48938 | 0.00323  |
| Н  | 8.29983  | -2.79370 | 0.24472  |
| н  | 7.08724  | -2.70421 | 1.55167  |
| C  | 7.68738  | 0.39989  | 0.53536  |
| н  | 7.46037  | 1.37151  | 0.06893  |
| н  | 7.51222  | 0.48753  | 1.61856  |
| н  | 8.75872  | 0.19478  | 0.37462  |
| С  | 7.00211  | -0.99870 | -2.08971 |
| Н  | 6.64154  | -0.09163 | -2.59621 |
| н  | 8.09584  | -1.05031 | -2.22578 |
| н  | 6.56067  | -1.87359 | -2.58825 |
| С  | 3.89421  | 1.05374  | 0.06706  |
| С  | 4.28625  | 1.60083  | -1.31182 |
| н  | 5.37810  | 1.52423  | -1.44558 |
| н  | 3.79113  | 1.05114  | -2.12406 |
| С  | 3.85012  | 3.06905  | -1.22929 |
| н  | 2.78870  | 3.13618  | -1.50487 |
| н  | 4.41443  | 3.70951  | -1.92243 |
| С  | 4.03789  | 3.47215  | 0.25645  |
| н  | 4.83280  | 4.22230  | 0.38251  |
| н  | 3.11184  | 3.90823  | 0.65366  |
| С  | 4.38138  | 2.16846  | 1.00706  |
| н  | 3.89960  | 2.09436  | 1.99039  |
| н  | 5.46846  | 2.07194  | 1.15669  |
| N  | -0.48512 | 1.41235  | 0.21062  |
| N  | -4.45564 | -0.35829 | 0.12103  |
| 0  | 2.49994  | 0.96762  | 0.14419  |
| 0  | -0.08963 | -1.29948 | 0.26922  |
| Cl | 0.67191  | 0.24535  | -2.75674 |
| Si | 6.66056  | -0.98922 | -0.23232 |
| Р  | 4.55873  | -0.66395 | 0.59588  |
| Р  | 3.01525  | -1.87057 | -0.41652 |
| Ti | 1.07328  | -0.03475 | -0.45425 |



# Figure S41. Optimized structure of 4a.

Below are presented xyz coordinates for optimized geometry for 4a.

| С | -1.44475 | 2.70426  | -0.11177 |
|---|----------|----------|----------|
| С | -2.61500 | 2.85331  | 0.66689  |
| С | -3.73494 | 3.42536  | 0.05572  |
| Н | -4.64730 | 3.57071  | 0.63440  |
| С | -3.71348 | 3.81879  | -1.27760 |
| Н | -4.59549 | 4.27979  | -1.72603 |
| С | -2.58175 | 3.58437  | -2.04745 |
| Н | -2.59429 | 3.85089  | -3.10514 |
| С | -1.43695 | 3.00681  | -1.49006 |
| С | -2.68383 | 2.40701  | 2.12591  |
| Н | -2.00801 | 1.54728  | 2.22919  |
| С | -2.20043 | 3.46117  | 3.13199  |
| Н | -2.71574 | 4.42562  | 2.98673  |
| Н | -1.11709 | 3.62573  | 3.07102  |
| Н | -2.41302 | 3.11526  | 4.15523  |
| С | -4.08561 | 1.92952  | 2.51742  |
| Н | -4.46909 | 1.18638  | 1.80183  |
| Н | -4.04640 | 1.45998  | 3.51104  |
| Н | -4.80593 | 2.76141  | 2.58266  |
| С | -0.22102 | 2.71482  | -2.36681 |
| Н | 0.25366  | 1.80369  | -1.96564 |
| С | 0.82369  | 3.83986  | -2.32716 |
| Н | 1.33457  | 3.89921  | -1.35723 |
| Н | 1.59672  | 3.67070  | -3.09236 |
| Н | 0.35196  | 4.81347  | -2.53848 |
| С | -0.59721 | 2.43762  | -3.82786 |
| Н | 0.26268  | 2.00285  | -4.35815 |
| Н | -1.44173 | 1.73881  | -3.91709 |
| Н | -0.87330 | 3.36197  | -4.36010 |
| С | 3.34467  | 0.04249  | 0.31213  |
| С | 3.79681  | 0.21648  | -1.01437 |
| С | 4.78722  | -0.63900 | -1.50105 |
| Н | 5.15258  | -0.51099 | -2.52265 |
| С | 5.32435  | -1.64617 | -0.70591 |

| Н | 6.09344  | -2.31054 | -1.10427 |
|---|----------|----------|----------|
| С | 4.88726  | -1.78798 | 0.60451  |
| Н | 5.31967  | -2.56993 | 1.23235  |
| С | 3.90395  | -0.94898 | 1.14026  |
| С | 3.29512  | 1.36673  | -1.87742 |
| Н | 2.43109  | 1.80609  | -1.36398 |
| С | 4.37114  | 2.45520  | -1.99058 |
| Н | 4.68054  | 2.82026  | -1.00027 |
| Н | 5.26917  | 2.07483  | -2.50449 |
| Н | 3.99166  | 3.31691  | -2.56197 |
| С | 2.81969  | 0.92754  | -3.26451 |
| Н | 2.58137  | 1.81008  | -3.87799 |
| Н | 3.58274  | 0.34951  | -3.80929 |
| Н | 1.91178  | 0.31493  | -3.18598 |
| С | 3.47646  | -1.13293 | 2.58729  |
| Н | 2.81138  | -0.30107 | 2.85305  |
| С | 4.67056  | -1.10803 | 3.54871  |
| Н | 4.31700  | -1.12841 | 4.59113  |
| Н | 5.33163  | -1.97815 | 3.40711  |
| Н | 5.28113  | -0.20252 | 3.41182  |
| С | 2.66723  | -2.42186 | 2.76039  |
| Н | 2.31969  | -2.52531 | 3.79976  |
| Н | 1.77785  | -2.41447 | 2.11485  |
| Н | 3.26703  | -3.31088 | 2.50294  |
| С | 0.01715  | 4.73852  | 0.96763  |
| Н | 0.15305  | 5.14556  | -0.04521 |
| Н | -1.04937 | 4.82389  | 1.19643  |
| Н | 0.58734  | 5.36546  | 1.66428  |
| С | 0.52732  | 3.31136  | 1.01096  |
| С | 1.81587  | 3.15319  | 1.52803  |
| Н | 2.25560  | 4.03614  | 1.98760  |
| С | 2.68793  | 2.06227  | 1.33698  |
| С | 4.11670  | 2.26511  | 1.78799  |
| н | 4.33055  | 3.32617  | 1.96374  |
| н | 4.26670  | 1.72224  | 2.73483  |
| Н | 4.84152  | 1.86328  | 1.06893  |
| С | -3.06319 | -1.35508 | 3.81028  |
| Н | -4.03608 | -0.86697 | 3.64706  |
| Н | -3.15283 | -2.01772 | 4.68731  |
| н | -2.30947 | -0.58579 | 4.03137  |
| С | -4.07707 | -3.50675 | 1.95766  |
| н | -4.96634 | -2.92173 | 1.67658  |
| н | -3.90089 | -4.26764 | 1.18239  |
| н | -4.31048 | -4.04288 | 2.89352  |
| С | -1.14337 | -3.51512 | 2.76459  |
| Н | -0.91927 | -4.26114 | 1.98646  |
| Н | -0.23694 | -2.92695 | 2.96927  |
| н | -1.41095 | -4.06173 | 3.68466  |
| C | -2.38181 | -0.50429 | -2.49027 |
| Η | -1.51153 | 0.17336  | -2.46217 |
| С | -2.52378 | -1.07992 | -3.90370 |
| н | -1.67459 | -1.69650 | -4.22047 |
| н | -3.44181 | -1.67955 | -3.99562 |

| Н  | -2.61211 | -0.24746 | -4.61955 |
|----|----------|----------|----------|
| С  | -3.62584 | 0.31214  | -2.13087 |
| Н  | -3.52484 | 0.81808  | -1.16328 |
| Н  | -3.77695 | 1.08254  | -2.90274 |
| Н  | -4.52797 | -0.31761 | -2.10008 |
| С  | -2.80558 | -3.35303 | -1.40226 |
| Н  | -2.55945 | -3.87745 | -0.46453 |
| С  | -2.35990 | -4.24582 | -2.56461 |
| Н  | -1.30239 | -4.53335 | -2.49408 |
| Н  | -2.95353 | -5.17340 | -2.54367 |
| Н  | -2.52405 | -3.77215 | -3.54189 |
| С  | -4.31970 | -3.11489 | -1.43279 |
| Н  | -4.64138 | -2.42515 | -0.64101 |
| Н  | -4.63640 | -2.70093 | -2.40216 |
| Н  | -4.84664 | -4.07096 | -1.29055 |
| С  | -0.00088 | -1.93795 | -1.31640 |
| С  | 0.41294  | -3.13852 | -0.44757 |
| Н  | 0.15020  | -2.91142 | 0.59481  |
| Н  | -0.16901 | -4.02990 | -0.74018 |
| С  | 1.90005  | -3.46262 | -0.56752 |
| Н  | 2.48670  | -2.61651 | -0.18472 |
| Н  | 2.13540  | -4.32972 | 0.06923  |
| С  | 2.29647  | -3.71467 | -2.01830 |
| Н  | 3.37338  | -3.93339 | -2.08496 |
| Н  | 1.76213  | -4.60003 | -2.41201 |
| С  | 1.96374  | -2.48206 | -2.85234 |
| Н  | 2.23601  | -2.62979 | -3.90956 |
| Н  | 2.56340  | -1.64364 | -2.47552 |
| С  | 0.48042  | -2.11721 | -2.76553 |
| Н  | -0.10737 | -2.91241 | -3.25124 |
| Н  | 0.28961  | -1.18483 | -3.31772 |
| Cl | 0.18579  | 0.09527  | 3.08037  |
| Ν  | -0.21285 | 2.30437  | 0.51033  |
| Ν  | 2.31201  | 0.91748  | 0.78141  |
| Ρ  | -2.26264 | -0.78886 | 0.71375  |
| Ρ  | -1.90013 | -1.73846 | -1.17533 |
| 0  | 0.48681  | -0.74156 | -0.78921 |
| Si | -2.58481 | -2.38445 | 2.30232  |
| Ti | 0.26077  | 0.30243  | 0.76197  |



## Figure S42. Optimized structure of 4b.

Below are presented xyz coordinates for optimized geometry for **4b**.

| С | 2.63230  | -2.09658 | 0.41441  |
|---|----------|----------|----------|
| С | 2.48832  | -2.89561 | 1.56145  |
| С | 2.51733  | -4.28654 | 1.41386  |
| Н | 2.39659  | -4.91973 | 2.29521  |
| С | 2.70765  | -4.87573 | 0.17184  |
| Н | 2.74335  | -5.96266 | 0.07762  |
| С | 2.84171  | -4.07227 | -0.95682 |
| Н | 2.97246  | -4.54404 | -1.93186 |
| С | 2.78485  | -2.68026 | -0.86386 |
| С | 2.27499  | -2.28897 | 2.93780  |
| Н | 2.47721  | -1.21212 | 2.86927  |
| С | 0.81234  | -2.44721 | 3.36784  |
| Н | 0.63534  | -1.95621 | 4.33696  |
| Н | 0.12703  | -1.99488 | 2.63423  |
| Н | 0.53936  | -3.51160 | 3.46268  |
| С | 3.22207  | -2.86841 | 3.99349  |
| Н | 3.09962  | -2.33079 | 4.94621  |
| Н | 3.02230  | -3.93418 | 4.18927  |
| Н | 4.27513  | -2.77859 | 3.68493  |
| С | 2.85658  | -1.82304 | -2.12127 |
| Н | 2.28755  | -0.90655 | -1.90729 |
| С | 2.21839  | -2.50313 | -3.33764 |
| Н | 2.07047  | -1.76882 | -4.14494 |
| Н | 2.85924  | -3.30221 | -3.74388 |
| Н | 1.24150  | -2.94657 | -3.09730 |
| С | 4.29547  | -1.41232 | -2.46619 |
| Н | 4.72141  | -0.73014 | -1.71862 |
| Н | 4.94617  | -2.29931 | -2.54004 |
| Н | 4.32284  | -0.89159 | -3.43620 |
| С | 0.91081  | 2.95088  | -0.93478 |
| С | 0.48937  | 2.72987  | -2.26530 |
| С | -0.23765 | 3.73400  | -2.90885 |
| Н | -0.56162 | 3.59057  | -3.94006 |

| С      | -0.58237 | 4.90770             | -2.24706  |
|--------|----------|---------------------|-----------|
| Н      | -1.16046 | 5.67687             | -2.76240  |
| С      | -0.19658 | 5.09230             | -0.92608  |
| Н      | -0.48009 | 6.01173             | -0.40953  |
| С      | 0.56352  | 4.13389             | -0.24668  |
| С      | 0.82025  | 1.42560             | -2.98012  |
| Н      | 0.76023  | 0.62427             | -2.22645  |
| С      | -0.17305 | 1.07205             | -4.08980  |
| Н      | 0.00338  | 0.04020             | -4.43011  |
| Н      | -1.21501 | 1.14022             | -3.74353  |
| Н      | -0.06153 | 1.72800             | -4.96826  |
| С      | 2.24805  | 1.43277             | -3.54264  |
| Н      | 2.43452  | 0.51354             | -4.11939  |
| Н      | 2.39564  | 2.29084             | -4.21839  |
| н      | 3.00622  | 1.47928             | -2.74902  |
| С      | 0.99999  | 4.41591             | 1.18771   |
| Н      | 1.73495  | 3.65358             | 1.47876   |
| С      | -0.16755 | 4.29345             | 2.17234   |
| Н      | 0.18993  | 4.44055             | 3.20285   |
| н      | -0.94489 | 5.04769             | 1.96577   |
| Н      | -0.62113 | 3.29545             | 2.12057   |
| С      | 1.65486  | 5.79673             | 1.33511   |
| н      | 2.10107  | 5.89794             | 2.33622   |
| н      | 2,44604  | 5.96774             | 0.58967   |
| Н      | 0.91802  | 6.60811             | 1.22194   |
| C      | 5.01902  | -0.84634            | 0.99897   |
| Н      | 5.91753  | -0.21770            | 0.98692   |
| н      | 4.87743  | -1.24316            | 2.01580   |
| н      | 5,17622  | -1.71166            | 0.34105   |
| C      | 3,79384  | -0.05758            | 0.59854   |
| C      | 3,97661  | 1.30745             | 0.30983   |
| н      | 4,99610  | 1.68026             | 0.38841   |
| c      | 3 04248  | 2 18736             | -0 24522  |
| c      | 3 60537  | 3 47130             | -0 81293  |
| н      | 4 69215  | 3 20208             | -0.93/130 |
| н      | 3 15270  | 3 70855             | -1 78/190 |
| н      | 3 30313  | J.70055<br>A 316/3  | -0 1//21  |
| C C    | -5 02863 | -0 63128            | -0.14421  |
| н      | -4 23106 | -0 77100            | -2 796/17 |
| ц      | -5 95670 | -1.06038            | -2.75047  |
| н      | -5 1883/ | -1.00038<br>0 //875 | -1 02157  |
| C II   | -5 08546 | _0.78202            | 0.021/21  |
| с<br>ц | -J.98540 | 1 202/2             | 1 70001   |
| п      | -3.94371 | -1.29245            | 1.70091   |
| п      | -5.90161 | 0.29952             | 0.90104   |
| п<br>С | -0.97754 | -0.97700            | 0.57200   |
|        | -5.11584 | -3.31220            | -0.51410  |
| н      | -4.57860 | -3.84964            | -1.30/52  |
|        | -4.91003 | -3.8193/            | 0.442/2   |
| н      | -0.19548 | -3.39815            | -0.72311  |
|        | -2.02862 |                     | 2.8/539   |
| Н      | -2.1/5// | 1.9/565             | 3.12910   |
| C<br>  | -4.13422 | 1.0/21/             | 3.11983   |
| н      | -4.65015 | 1.81121             | z.4904/   |

| н  | -4.59678 | 0.09000  | 2.94792  |
|----|----------|----------|----------|
| Н  | -4.32360 | 1.34452  | 4.17087  |
| С  | -2.00212 | -0.05357 | 3.78926  |
| н  | -0.91282 | -0.09208 | 3.67582  |
| н  | -2.22290 | 0.19519  | 4.83991  |
| н  | -2.41571 | -1.05203 | 3.57976  |
| С  | -3.21151 | 1.91943  | 0.11208  |
| н  | -4.23489 | 1.53106  | 0.23942  |
| С  | -2.83099 | 1.87255  | -1.36336 |
| Н  | -2.85236 | 0.85150  | -1.76251 |
| н  | -3.52674 | 2.48377  | -1.96120 |
| Н  | -1.82188 | 2.27866  | -1.50866 |
| С  | -3.16673 | 3.36492  | 0.60997  |
| н  | -3.36912 | 3.46460  | 1.68582  |
| Н  | -2.18603 | 3.81232  | 0.40066  |
| Н  | -3.92182 | 3.95955  | 0.07047  |
| Cl | 1.18812  | 1.14460  | 2.86819  |
| Ν  | 2.61707  | -0.66459 | 0.49783  |
| Ν  | 1.72094  | 1.95029  | -0.30164 |
| 0  | -0.09628 | -0.89526 | -0.22367 |
| Ρ  | -2.62768 | -1.31797 | 0.60998  |
| Ρ  | -2.07751 | 0.77725  | 1.08756  |
| Si | -4.69691 | -1.46902 | -0.38737 |
| Ti | 0.79956  | 0.38893  | 0.70773  |
| С  | -1.11875 | -1.77647 | -0.55732 |
| С  | -1.34073 | -1.67394 | -2.07296 |
| С  | -0.67105 | -3.19994 | -0.18728 |
| С  | -2.15870 | -2.80469 | -2.69634 |
| Н  | -0.32690 | -1.68342 | -2.50590 |
| Н  | -1.76689 | -0.69316 | -2.32403 |
| С  | -1.58064 | -4.28996 | -0.74052 |
| н  | -0.56758 | -3.28207 | 0.90321  |
| Н  | 0.33520  | -3.32621 | -0.61364 |
| С  | -1.67452 | -4.18919 | -2.26291 |
| н  | -2.12077 | -2.70860 | -3.79349 |
| Н  | -3.21890 | -2.69931 | -2.42587 |
| Н  | -1.18612 | -5.27459 | -0.44566 |
| Н  | -2.58518 | -4.21122 | -0.29150 |
| Н  | -0.67571 | -4.38127 | -2.69441 |
| н  | -2.34568 | -4.96494 | -2.66549 |



## Figure S43. Optimized structure of 4c.

Below are presented xyz coordinates for optimized geometry for **4c**.

| С | 0.16342  | 2.83004 | 0.59749  |
|---|----------|---------|----------|
| С | 0.54395  | 2.89456 | 1.94959  |
| С | 0.97625  | 4.12582 | 2.45115  |
| Н | 1.25874  | 4.20632 | 3.50268  |
| С | 1.06295  | 5.24570 | 1.63369  |
| Н | 1.40303  | 6.19824 | 2.04385  |
| С | 0.74741  | 5.13977 | 0.28303  |
| Н | 0.85434  | 6.01422 | -0.35971 |
| С | 0.30137  | 3.93448 | -0.26555 |
| С | 0.50752  | 1.67587 | 2.86104  |
| Н | 0.39437  | 0.78584 | 2.22444  |
| С | 1.81554  | 1.50943 | 3.64101  |
| Н | 1.83810  | 0.52886 | 4.14255  |
| Н | 2.67943  | 1.57883 | 2.96820  |
| Н | 1.93194  | 2.27972 | 4.41987  |
| С | -0.67440 | 1.72441 | 3.83780  |
| Н | -1.63945 | 1.79671 | 3.31939  |
| Н | -0.69527 | 0.81786 | 4.46359  |
| Н | -0.59063 | 2.59579 | 4.50727  |
| С | -0.02758 | 3.81612 | -1.74726 |
| Н | 0.21152  | 2.78635 | -2.05389 |
| С | 0.79711  | 4.76105 | -2.62541 |
| Н | 1.87071  | 4.70150 | -2.39586 |
| Н | 0.66245  | 4.49221 | -3.68362 |
| Н | 0.48169  | 5.81129 | -2.51239 |
| С | -1.52214 | 4.03430 | -2.02067 |
| Н | -2.14621 | 3.28458 | -1.51683 |
| Н | -1.84515 | 5.03107 | -1.67692 |
| Н | -1.72466 | 3.95939 | -3.10020 |
| С | -2.59402 | 2.15246 | 0.86121  |
| Н | -3.14886 | 1.55020 | 1.59320  |
| Н | -2.14520 | 3.03449 | 1.32897  |
| Н | -3.34071 | 2.48293 | 0.12618  |
| С | -1.57820 | 1.29161 | 0.17638  |

| <u> </u> | 1 00217  | 0 0 4 2 2 0 | 0 424 6 4   |
|----------|----------|-------------|-------------|
| C        | -1.99317 | -0.04228    | -0.42164    |
| Н        | -1.49600 | -0.07683    | -1.40296    |
| С        | -3.47694 | -0.24340    | -0./0405    |
| С        | -3.79461 | -0.50696    | -2.15343    |
| Н        | -3.19424 | -1.35648    | -2.51389    |
| Н        | -4.85922 | -0.70971    | -2.32057    |
| Н        | -3.48679 | 0.36305     | -2.75686    |
| С        | -5.70992 | -0.43526    | 0.00840     |
| С        | -6.53665 | 0.59630     | -0.48902    |
| С        | -7.90346 | 0.34447     | -0.62509    |
| Н        | -8.55748 | 1.13113     | -1.00458    |
| С        | -8.45109 | -0.88994    | -0.29215    |
| Н        | -9.52080 | -1.06682    | -0.41486    |
| С        | -7.62461 | -1.89363    | 0.19698     |
| Н        | -8.05287 | -2.86507    | 0.45343     |
| С        | -6.25361 | -1.68571    | 0.36315     |
| С        | -5.97442 | 1.97372     | -0.80788    |
| н        | -4.91054 | 1.85096     | -1.05670    |
| С        | -6.62763 | 2.64160     | -2.02006    |
| н        | -6.60517 | 1.98236     | -2.90105    |
| н        | -7.67684 | 2.91533     | -1.82742    |
| н        | -6.09248 | 3.56993     | -2.27234    |
| С        | -6.06110 | 2.87159     | 0.43373     |
| н        | -5.57131 | 2.39912     | 1.29809     |
| н        | -5.58161 | 3.84734     | 0.25313     |
| Н        | -7.11433 | 3.05172     | 0.70264     |
| С        | -5.36674 | -2.80755    | 0.87785     |
| н        | -4.38319 | -2.36880    | 1.08943     |
| C        | -5.17259 | -3.88562    | -0.19570    |
| н        | -4 45456 | -4 65056    | 0 14178     |
| н        | -6 12499 | -4 38979    | -0 42590    |
| н        | -4 79246 | -3 45053    | -1 13374    |
| C        | -5 87915 | -3 41207    | 2 1 8 7 9 9 |
| с<br>ц   | -5 16224 | -3.41207    | 2.10755     |
| н<br>ц   | 6 00012  | 2 62611     | 2.30920     |
| п        | -0.00912 | 2.03044     | 2.93747     |
| п<br>С   | -0.64020 | -5.92501    | 2.05509     |
| C<br>C   | -1.55002 | -1.23007    | 0.30137     |
|          | -1./5258 | -1.24857    | 1.85/14     |
| п<br>    | -1.44189 | -0.30700    | 2.33098     |
| н<br>С   | -2.85056 | -1.28143    | 1.91833     |
| C        | -1.13/39 | -2.43436    | 2.59920     |
| н        | -1.48555 | -2.43928    | 3.64437     |
| Н        | -0.04200 | -2.31014    | 2.62089     |
| С        | -1.48147 | -3./5839    | 1.91513     |
| н        | -2.57286 | -3.92//1    | 1.97591     |
| Н        | -1.00234 | -4.59901    | 2.44204     |
| C        | -1.05249 | -3./4017    | 0.44728     |
| Н        | 0.04375  | -3.64195    | 0.38870     |
| Н        | -1.32194 | -4.68546    | -0.05015    |
| С        | -1.67931 | -2.56383    | -0.29783    |
| Н        | -2.77146 | -2.69366    | -0.33081    |
| Н        | -1.31594 | -2.52493    | -1.33773    |
| С        | 3.98380  | 0.99326     | -0.18874    |

| С  | 4.46785  | 1.40401  | -1.59105 |
|----|----------|----------|----------|
| Н  | 5.56787  | 1.30820  | -1.64185 |
| Н  | 4.03971  | 0.72590  | -2.34211 |
| С  | 4.05062  | 2.84550  | -1.88492 |
| Н  | 2.95000  | 2.88312  | -1.89498 |
| Н  | 4.39183  | 3.12889  | -2.89260 |
| С  | 4.58727  | 3.81729  | -0.83486 |
| Н  | 4.21734  | 4.83637  | -1.03229 |
| Н  | 5.69043  | 3.86176  | -0.90616 |
| С  | 4.18094  | 3.38076  | 0.57202  |
| н  | 4.62306  | 4.04771  | 1.32903  |
| н  | 3.08803  | 3.45150  | 0.67657  |
| С  | 4.60154  | 1.93560  | 0.85780  |
| н  | 4.26925  | 1.65284  | 1.86483  |
| н  | 5.70026  | 1.85227  | 0.83863  |
| N  | -0.33181 | 1.59853  | 0.05201  |
| N  | -4.32924 | -0.20907 | 0.24591  |
| 0  | 2.59637  | 1.06380  | -0.09606 |
| 0  | 0.06406  | -1.07575 | 0.30868  |
| Cl | 0.47936  | 0.33575  | -2.96104 |
| Р  | 4.30977  | -0.86982 | 0.12583  |
| Р  | 3.01645  | -1.62016 | -1.41240 |
| Ti | 1.13369  | 0.02969  | -0.71459 |
| С  | 3.74150  | -1.09633 | 1.89499  |
| С  | 4.81248  | -0.86216 | 2.96366  |
| С  | 2.99428  | -2.40725 | 2.12257  |
| н  | 2.99910  | -0.28482 | 1.95673  |
| н  | 5.35001  | 0.08630  | 2.83271  |
| н  | 4.32888  | -0.83182 | 3.95280  |
| н  | 5.55213  | -1.67610 | 2.98784  |
| н  | 2.16815  | -2.51491 | 1.40623  |
| н  | 3.65929  | -3.27972 | 2.03640  |
| н  | 2.56813  | -2.40959 | 3.13875  |
| С  | 6.07290  | -1.41759 | -0.13445 |
| С  | 6.26462  | -2.86383 | 0.33542  |
| С  | 7.16415  | -0.49355 | 0.41013  |
| н  | 6.12916  | -1.40762 | -1.23574 |
| н  | 5.47744  | -3.53027 | -0.04302 |
| н  | 7.22951  | -3.24805 | -0.03060 |
| н  | 6.27347  | -2.93808 | 1.43293  |
| н  | 7.11554  | 0.50762  | -0.03911 |
| н  | 7.11609  | -0.38608 | 1.50276  |
| н  | 8.14986  | -0.91838 | 0.16267  |
| Si | 2.87371  | -3.85926 | -1.61330 |
| С  | 4.31920  | -4.45749 | -2.67976 |
| н  | 4.34326  | -3.90007 | -3.62890 |
| н  | 5.29211  | -4.31703 | -2.18314 |
| н  | 4.20777  | -5.53087 | -2.90825 |
| С  | 1.27774  | -4.04026 | -2.60551 |
| н  | 0.40197  | -3.88140 | -1.95953 |
| н  | 1.23536  | -3.30062 | -3.42030 |
| н  | 1.20951  | -5.04968 | -3.04334 |
| С  | 2.78988  | -4.98951 | -0.09796 |

| Н | 2.62130 | -6.01853 | -0.45893 |
|---|---------|----------|----------|
| Н | 3.72735 | -4.99114 | 0.47915  |
| Н | 1.96520 | -4.72775 | 0.57985  |



## Figure S44. Optimized structure of 4d.

Below are presented xyz coordinates for optimized geometry for **4d**.

| С | -0.00254 | 2.62203  | 0.94988  |
|---|----------|----------|----------|
| С | 0.39424  | 2.56786  | 2.29510  |
| С | 0.81605  | 3.75628  | 2.89785  |
| Н | 1.11784  | 3.74620  | 3.94741  |
| С | 0.86330  | 4.94624  | 2.18216  |
| Н | 1.19437  | 5.86476  | 2.66965  |
| С | 0.51834  | 4.96029  | 0.83363  |
| Н | 0.59321  | 5.89402  | 0.27521  |
| С | 0.08952  | 3.79995  | 0.18441  |
| С | 0.37124  | 1.27138  | 3.09166  |
| Н | 0.09448  | 0.45691  | 2.40694  |
| С | 1.75472  | 0.92690  | 3.65175  |
| Н | 1.71507  | -0.02605 | 4.20202  |
| Н | 2.48173  | 0.82351  | 2.83448  |
| Н | 2.11735  | 1.69974  | 4.34830  |
| С | -0.68547 | 1.31146  | 4.20229  |
| Н | -1.68648 | 1.52922  | 3.80144  |
| Н | -0.73262 | 0.34236  | 4.72353  |
| Н | -0.44853 | 2.08523  | 4.95019  |
| С | -0.26760 | 3.80096  | -1.29761 |
| Н | -0.01041 | 2.80540  | -1.69387 |
| С | 0.51991  | 4.83746  | -2.10445 |
| Н | 1.59825  | 4.78015  | -1.90207 |
| Н | 0.36797  | 4.66096  | -3.17972 |
| Н | 0.18488  | 5.86585  | -1.89209 |
| С | -1.77113 | 4.01496  | -1.52736 |
| Н | -2.37764 | 3.20539  | -1.10092 |
| Н | -2.10684 | 4.96218  | -1.07407 |
| Н | -1.98798 | 4.05652  | -2.60621 |
| С | -2.74143 | 1.87521  | 1.14758  |
| Н | -3.23397 | 1.18734  | 1.84898  |
| Н | -2.29828 | 2.72251  | 1.68069  |
| Н | -3.53738 | 2.24168  | 0.48791  |

| С      | -1.72150            | 1.11306   | 0.35886     |
|--------|---------------------|-----------|-------------|
| С      | -2.10647            | -0.14346  | -0.39808    |
| Н      | -1.52283            | -0.10360  | -1.32957    |
| С      | -3.56378            | -0.26199  | -0.81923    |
| С      | -3.77172            | -0.37322  | -2.30778    |
| н      | -3.14729            | -1.18472  | -2.71114    |
| н      | -4.82193            | -0.54724  | -2.57099    |
| н      | -3.42249            | 0.55396   | -2.79184    |
| С      | -5.85292            | -0.40508  | -0.29644    |
| С      | -6.58341            | 0.69942   | -0.78590    |
| С      | -7.94992            | 0.53496   | -1.02693    |
| Н      | -8.53291            | 1.38022   | -1.39705    |
| С      | -8.58437            | -0.68328  | -0.81131    |
| Н      | -9.65141            | -0.79049  | -1.01278    |
| С      | -7.84860            | -1.76273  | -0.33655    |
| Н      | -8.34406            | -2.72244  | -0.17410    |
| C      | -6.48459            | -1.64350  | -0.06478    |
| C      | -5.93297            | 2.05969   | -0.99321    |
| н      | -4.84797            | 1.90654   | -1.07833    |
| C      | -6.36927            | 2,75211   | -2.28757    |
| н      | -6.22372            | 2.09633   | -3.15926    |
| н      | -7 42899            | 3 05087   | -2 26170    |
| н      | -5 77839            | 3 66778   | -2 44420    |
| C      | -6 17855            | 2 95473   | 0 22849     |
| н      | -5 82814            | 2.55475   | 1 15115     |
| н      | -5.65544            | 2.40778   | 0 1 2 3 9 8 |
| н      | -7 25//2            | 3 15958   | 0.12330     |
| C C    | -7.23443            | -2 84205  | 0.34039     |
| с<br>ц | -3.09179            | -2.04203  | 0.43032     |
| п<br>С |                     | 2 95200   | 0.74040     |
| с<br>u | -J.406JJ<br>1 01117 | -3.633333 | -0.70020    |
| п<br>u | -4.01147            | -4.07424  | -0.30640    |
|        | -0.42209            | -4.29471  | -1.05100    |
|        | -5.00250            | -3.37627  | -1.57030    |
|        | -0.32511            | -3.50558  | 1.05024     |
| н      | -5.6/030            | -4.30548  | 2.03/11     |
| н      | -6.4/966            | -2.77499  | 2.46420     |
| H      | -7.29952            | -3.96308  | 1.42174     |
| C      | -1.53689            | -1.41986  | 0.34123     |
| C      | -2.08460            | -1.558/2  | 1.76992     |
| H      | -1./3689            | -0./0152  | 2.36/28     |
| Н      | -3.18309            | -1.49/26  | 1./4053     |
| C      | -1.63888            | -2.86307  | 2.431/4     |
| Н      | -2.09883            | -2.94539  | 3.42920     |
| Н      | -0.54787            | -2.83628  | 2.58164     |
| С      | -1.99541            | -4.08046  | 1.57788     |
| Н      | -3.09523            | -4.16721  | 1.50047     |
| Н      | -1.63950            | -5.00380  | 2.06172     |
| С      | -1.40090            | -3.95025  | 0.17557     |
| Н      | -0.30095            | -3.93513  | 0.24377     |
| Н      | -1.67538            | -4.81768  | -0.44567    |
| С      | -1.87163            | -2.66450  | -0.49914    |
| Н      | -2.96030            | -2.72365  | -0.65499    |
| Н      | -1.39797            | -2.54613  | -1.48737    |

| С  | 2.64704  | -3.20013 | 1.07374  |
|----|----------|----------|----------|
| Н  | 1.75900  | -3.75669 | 0.73112  |
| С  | 2.27375  | -2.48270 | 2.37204  |
| Н  | 1.42101  | -1.80618 | 2.21911  |
| Н  | 1.98858  | -3.22385 | 3.13642  |
| Н  | 3.12176  | -1.89956 | 2.76209  |
| С  | 3.80720  | -4.17161 | 1.28412  |
| Н  | 4.06447  | -4.72735 | 0.36942  |
| Н  | 4.70730  | -3.63286 | 1.62132  |
| Н  | 3.54980  | -4.90975 | 2.06083  |
| С  | 3.33811  | -2.99812 | -1.80632 |
| Н  | 4.31842  | -3.47806 | -1.64391 |
| С  | 3.39622  | -2.10597 | -3.04608 |
| н  | 4.09502  | -1.26966 | -2.91989 |
| Н  | 3.72714  | -2.69269 | -3.91837 |
| н  | 2.40690  | -1.67737 | -3.26193 |
| С  | 2.26629  | -4.08000 | -1.98488 |
| н  | 2.28288  | -4.83496 | -1.18604 |
| н  | 1.26080  | -3.62821 | -2.01321 |
| н  | 2.42427  | -4.60253 | -2.94154 |
| С  | 7.14650  | -2.86894 | 0.03181  |
| н  | 6.46223  | -3.66998 | -0.28928 |
| н  | 8.14760  | -3.10030 | -0.36787 |
| н  | 7.20069  | -2.88636 | 1.13120  |
| С  | 7.74149  | 0.16581  | 0.03560  |
| н  | 7.50148  | 1.14366  | -0.41097 |
| н  | 7.68656  | 0.26446  | 1.13057  |
| н  | 8.78099  | -0.08070 | -0.23735 |
| С  | 6.69123  | -1.19919 | -2.48768 |
| н  | 6.24508  | -0.30534 | -2.94749 |
| Н  | 7.76035  | -1.22386 | -2.75946 |
| Н  | 6.21382  | -2.08930 | -2.92199 |
| С  | 3.92063  | 0.96329  | 0.03319  |
| С  | 4.18014  | 1.42104  | -1.41070 |
| н  | 5.26951  | 1.44075  | -1.59125 |
| н  | 3.73321  | 0.70129  | -2.11308 |
| С  | 3.59363  | 2.81301  | -1.65247 |
| н  | 2.50005  | 2.74649  | -1.54033 |
| н  | 3.78919  | 3.12351  | -2.69107 |
| С  | 4.15376  | 3.83497  | -0.66255 |
| н  | 3.67787  | 4.81766  | -0.81549 |
| н  | 5.23415  | 3.97664  | -0.85422 |
| С  | 3.94578  | 3.37362  | 0.78013  |
| н  | 4.39485  | 4.09060  | 1.48573  |
| н  | 2.86801  | 3.33750  | 0.99760  |
| С  | 4.53079  | 1.98008  | 1.01264  |
| н  | 4.34665  | 1.64954  | 2.04553  |
| н  | 5.62570  | 1.99859  | 0.87030  |
| N  | -0.47295 | 1.43316  | 0.29961  |
| N  | -4.48749 | -0.27491 | 0.06077  |
| 0  | 2.53966  | 0.88511  | 0.25578  |
| 0  | -0.14092 | -1.29984 | 0.39382  |
| Cl | 0.68069  | 0.25486  | -2.62777 |

| Si | 6.58024 | -1.18209 | -0.60282 |
|----|---------|----------|----------|
| Р  | 4.61569 | -0.77879 | 0.47448  |
| Р  | 2.92918 | -1.96140 | -0.30250 |
| Ti | 1.06200 | -0.06449 | -0.32289 |



**Figure S45**. Optimized structure of **[(BDI\*)Ti(Cl)**{η<sup>2</sup>-P(SiMe<sub>3</sub>)PtBu<sub>2</sub>}].

Below are presented xyz coordinates for optimized geometry for  $[(BDI^*)Ti(CI){\eta^2-P(SiMe_3)-PtBu_2}]$ .

| Ti | -0.16938 | -0.19839 | -0.92380 |
|----|----------|----------|----------|
| Cl | -0.62288 | -0.18944 | -3.17290 |
| Ρ  | 0.98070  | 1.55527  | 0.31586  |
| Ρ  | -1.01551 | 2.19396  | -0.15645 |
| Si | 2.15479  | 2.49380  | 2.01188  |
| Ν  | -1.41185 | -1.74637 | -0.38551 |
| Ν  | 1.44797  | -1.52163 | -0.86236 |
| С  | 2.80973  | -1.19927 | -0.52814 |
| С  | 3.58076  | -0.37170 | -1.36874 |
| С  | 4.93803  | -0.21309 | -1.07314 |
| Н  | 5.55743  | 0.40424  | -1.72598 |
| С  | 5.51843  | -0.83059 | 0.02791  |
| Н  | 6.58226  | -0.69915 | 0.23301  |
| С  | 4.72919  | -1.59166 | 0.88118  |
| Н  | 5.17888  | -2.04205 | 1.76822  |
| С  | 3.36863  | -1.78139 | 0.62790  |
| С  | 2.99199  | 0.30230  | -2.59783 |
| Н  | 1.90573  | 0.35437  | -2.46329 |
| С  | 3.23873  | -0.52080 | -3.86647 |
| Н  | 2.80599  | -0.01313 | -4.74203 |
| Н  | 2.76556  | -1.51114 | -3.79696 |
| Н  | 4.31743  | -0.66340 | -4.04544 |
| С  | 3.47103  | 1.74620  | -2.76416 |
| Н  | 2.92048  | 2.22768  | -3.58719 |
| Н  | 4.54345  | 1.81131  | -3.00825 |
| Н  | 3.28543  | 2.32359  | -1.84536 |
| С  | 2.51651  | -2.54884 | 1.62920  |
| Н  | 1.55873  | -2.79454 | 1.15057  |
| С  | 2.20183  | -1.64189 | 2.82475  |
| Н  | 1.58451  | -2.17416 | 3.56426  |
| Н  | 1.65622  | -0.74381 | 2.49610  |
| Н  | 3.12655  | -1.31709 | 3.32934  |
| С  | 3.15191  | -3.86269 | 2.09261  |

| Н | 2.44463  | -4.42526 | 2.72157  |
|---|----------|----------|----------|
| Н | 4.05892  | -3.69277 | 2.69422  |
| Н | 3.43133  | -4.50369 | 1.24249  |
| С | -2.64341 | -1.56295 | 0.33327  |
| С | -2.63597 | -1.77707 | 1.73130  |
| С | -3.83729 | -1.63671 | 2.42945  |
| Н | -3.85746 | -1.79833 | 3.50723  |
| С | -5.01129 | -1.27259 | 1.77902  |
| Н | -5.93837 | -1.15964 | 2.34384  |
| С | -4.99734 | -1.04833 | 0.40987  |
| Н | -5.92063 | -0.75681 | -0.09455 |
| С | -3.82638 | -1.19766 | -0.34115 |
| С | -1.34738 | -2.12490 | 2.47170  |
| Н | -0.53601 | -1.56852 | 1.97460  |
| С | -1.37051 | -1.70135 | 3.94355  |
| Н | -0.36859 | -1.81326 | 4.38227  |
| Н | -2.05102 | -2.33060 | 4.53951  |
| н | -1.67596 | -0.65306 | 4.06846  |
| С | -1.00199 | -3.61806 | 2.37596  |
| н | -0.10537 | -3.83875 | 2.97707  |
| н | -0.78793 | -3.93223 | 1.34586  |
| н | -1.82822 | -4.23593 | 2.76384  |
| С | -3.88057 | -0.96350 | -1.84508 |
| н | -2.93786 | -1.31688 | -2.28271 |
| С | -3.98505 | 0.53166  | -2.16707 |
| н | -3.98139 | 0.69030  | -3.25640 |
| н | -3.13092 | 1.07927  | -1.74561 |
| н | -4.91242 | 0.96391  | -1.75493 |
| С | -5.02467 | -1.73302 | -2.51771 |
| н | -4.93844 | -1.64889 | -3.61179 |
| н | -6.01123 | -1.33226 | -2.23531 |
| н | -5.01537 | -2.80234 | -2.25586 |
| С | 2.44086  | -3.59406 | -1.78357 |
| н | 3.25841  | -2.99794 | -2.20579 |
| н | 2.12415  | -4.34985 | -2.51313 |
| н | 2.84494  | -4.11788 | -0.90390 |
| С | 1.26098  | -2.74031 | -1.37358 |
| C | 0.00094  | -3.35849 | -1.49757 |
| н | 0.00483  | -4.33870 | -1.97017 |
| С | -1.21258 | -2.95754 | -0.93563 |
| C | -2.33365 | -3.96942 | -0.96204 |
| н | -2.79592 | -4.08261 | 0.02793  |
| н | -1.96948 | -4.94610 | -1.30161 |
| н | -3.12465 | -3.63420 | -1.64793 |
| C | 3.87192  | 1.74549  | 1.85327  |
| Н | 3.85023  | 0.65413  | 1.97687  |
| н | 4.53538  | 2.17101  | 2.62461  |
| н | 4.30623  | 1.95524  | 0.86411  |
| С | 1.49289  | 2.15621  | 3.75125  |
| Н | 0.57798  | 2.72898  | 3.96503  |
| н | 2.26204  | 2.46941  | 4.47730  |
| Н | 1.28211  | 1.08915  | 3.91769  |
| С | 2.30668  | 4.36514  | 1.80966  |

| Н | 1.33964  | 4.88450 | 1.87192  |
|---|----------|---------|----------|
| Н | 2.77766  | 4.62540 | 0.84981  |
| Н | 2.95028  | 4.74728 | 2.62019  |
| С | -2.10220 | 2.57372 | 1.36390  |
| С | -1.81336 | 1.48350 | 2.39600  |
| Н | -0.77981 | 1.51179 | 2.75729  |
| Н | -2.00130 | 0.49119 | 1.97158  |
| Н | -2.49199 | 1.61187 | 3.25634  |
| С | -3.58642 | 2.45630 | 0.97856  |
| Н | -3.89535 | 3.18199 | 0.21595  |
| Н | -4.20296 | 2.63525 | 1.87598  |
| Н | -3.81962 | 1.44650 | 0.61296  |
| С | -1.81765 | 3.94343 | 1.98795  |
| Н | -0.75190 | 4.06268 | 2.23334  |
| Н | -2.39059 | 4.04098 | 2.92575  |
| Н | -2.11637 | 4.77461 | 1.33432  |
| С | -0.93446 | 3.70479 | -1.33378 |
| С | -0.35563 | 3.20087 | -2.66193 |
| Н | -1.01165 | 2.46416 | -3.14255 |
| Н | 0.63109  | 2.73423 | -2.52229 |
| Н | -0.23142 | 4.05785 | -3.34528 |
| С | -0.01463 | 4.80768 | -0.80156 |
| Н | -0.35856 | 5.23297 | 0.15036  |
| Н | 0.03151  | 5.62882 | -1.53712 |
| Н | 1.00530  | 4.42266 | -0.66259 |
| С | -2.33749 | 4.26644 | -1.60043 |
| Н | -2.77229 | 4.75484 | -0.71708 |
| Н | -3.03305 | 3.48778 | -1.94868 |
| Н | -2.27033 | 5.02938 | -2.39398 |

![](_page_71_Figure_0.jpeg)

## Figure S46. Optimized structure of a.

Below are presented xyz coordinates for optimized geometry for **a**.

| С | 2.03900  | -2.57500 | -0.12000 |
|---|----------|----------|----------|
| С | 1.33000  | -3.65800 | -0.67500 |
| С | 1.26900  | -4.85400 | 0.05000  |
| Н | 0.72600  | -5.70200 | -0.37000 |
| С | 1.90300  | -4.99400 | 1.27600  |
| Н | 1.85000  | -5.94100 | 1.81800  |
| С | 2.61600  | -3.92300 | 1.80500  |
| Н | 3.11800  | -4.03900 | 2.76700  |
| С | 2.68700  | -2.70200 | 1.13200  |
| С | 0.69000  | -3.60500 | -2.05300 |
| Н | 0.74400  | -2.57000 | -2.41800 |
| С | 1.45500  | -4.49700 | -3.04200 |
| Н | 1.04700  | -4.37700 | -4.05700 |
| Н | 2.52700  | -4.25600 | -3.07300 |
| Н | 1.36400  | -5.56100 | -2.76600 |
| С | -0.78500 | -4.01500 | -2.02200 |
| Н | -1.22500 | -3.90600 | -3.02500 |
| Н | -0.90900 | -5.06800 | -1.72200 |
| Н | -1.36200 | -3.38200 | -1.33100 |
| С | 3.46600  | -1.54300 | 1.73700  |
| Н | 3.06800  | -0.62400 | 1.28700  |
| С | 4.95800  | -1.62900 | 1.39100  |
| Н | 5.50800  | -0.79200 | 1.85000  |
| Н | 5.39300  | -2.57000 | 1.76700  |
| Н | 5.13000  | -1.58300 | 0.30800  |
| С | 3.29300  | -1.43500 | 3.25500  |
| Н | 2.23200  | -1.42300 | 3.54300  |
| Н | 3.78000  | -2.26600 | 3.78900  |
| Н | 3.75600  | -0.50600 | 3.62100  |
| С | 1.51400  | 2.83100  | -0.12700 |
| С | 1.80200  | 3.09200  | 1.23500  |
| С | 1.43100  | 4.32800  | 1.76900  |
| Н | 1.64900  | 4.55200  | 2.81300  |
| С | 0.77800  | 5.28400  | 0.99800  |
| Н | 0.49400  | 6.24200  | 1.43800  |
| С | 0.49200  | 5.01100  | -0.33000 |
|---|----------|----------|----------|
| Н | -0.02500 | 5.76000  | -0.93300 |
| С | 0.85800  | 3.79500  | -0.91900 |
| С | 2.50900  | 2.06100  | 2.10600  |
| Н | 2.06400  | 1.08600  | 1.85700  |
| С | 4.01500  | 2.00200  | 1.81400  |
| Н | 4.51700  | 1.33200  | 2.53000  |
| Н | 4.23100  | 1.61900  | 0.80800  |
| Н | 4.47200  | 3.00000  | 1.91400  |
| С | 2.29700  | 2.29200  | 3.60500  |
| Н | 1.23600  | 2.44400  | 3.85500  |
| Н | 2.65300  | 1.41800  | 4.17100  |
| Н | 2.85900  | 3.16600  | 3.97100  |
| С | 0.51400  | 3.56400  | -2.38200 |
| Н | 0.99200  | 2.63200  | -2.71200 |
| С | 1.01100  | 4.69900  | -3.28500 |
| Н | 2.08100  | 4.90700  | -3.13200 |
| Н | 0.86200  | 4.43300  | -4.34300 |
| Н | 0.46400  | 5.63900  | -3.10400 |
| С | -0.99500 | 3.36700  | -2.55200 |
| Н | -1.33900 | 2.47500  | -2.00900 |
| Н | -1.55800 | 4.24000  | -2.18300 |
| Н | -1.24600 | 3.21700  | -3.61200 |
| С | 4.07500  | -2.12500 | -2.03000 |
| Н | 5.10600  | -1.77500 | -2.17300 |
| Н | 4.07800  | -3.00700 | -1.37900 |
| Н | 3.68500  | -2.43200 | -3.01300 |
| С | 3.18800  | -1.01800 | -1.50900 |
| С | 3.56000  | 0.28600  | -1.86400 |
| Н | 4.45100  | 0.37800  | -2.48300 |
| С | 3.02000  | 1.48700  | -1.37800 |
| С | 3.80800  | 2.74000  | -1.68600 |
| Н | 4.84200  | 2.49300  | -1.95800 |
| Н | 3.34600  | 3.26400  | -2.53700 |
| Н | 3.81500  | 3.43700  | -0.83900 |
| С | -3.28800 | -1.82200 | -3.46300 |
| Н | -3.44700 | -2.81300 | -3.01200 |
| Н | -3.94300 | -1.72700 | -4.34500 |
| Н | -2.24100 | -1.75300 | -3.79700 |
| С | -3.57100 | 1.18200  | -3.19600 |
| Н | -2.58300 | 1.26300  | -3.67200 |
| Н | -4.34000 | 1.16700  | -3.98600 |
| Н | -3.73400 | 2.07800  | -2.57900 |
| С | -5.45100 | -0.65100 | -1.64500 |
| Н | -5.60600 | -1.59000 | -1.09200 |
| Н | -5.78900 | 0.19300  | -1.02600 |
| Н | -6.09600 | -0.68000 | -2.54000 |
| С | -3.88800 | -1.24500 | 2.22400  |
| С | -3.85700 | -2.65700 | 1.61400  |
| Н | -4.09600 | -2.63400 | 0.54200  |
| Н | -2.88600 | -3.15300 | 1.72300  |
| Н | -4.61300 | -3.27200 | 2.12900  |
| С | -3.66400 | -1.33500 | 3.74300  |

| Н  | -3.63100 | -0.34900 | 4.22500  |
|----|----------|----------|----------|
| Н  | -4.50800 | -1.88900 | 4.18600  |
| Н  | -2.74700 | -1.87800 | 4.00400  |
| С  | -2.92300 | 1.68700  | 1.59900  |
| С  | -4.05500 | 2.10200  | 0.64600  |
| Н  | -5.01700 | 1.62800  | 0.87300  |
| Н  | -4.19400 | 3.19200  | 0.72900  |
| Н  | -3.78900 | 1.88300  | -0.39700 |
| С  | -1.68000 | 2.48400  | 1.17800  |
| Н  | -0.79400 | 2.28600  | 1.78900  |
| Н  | -1.41600 | 2.27600  | 0.13300  |
| Н  | -1.90800 | 3.55900  | 1.25100  |
| С  | -0.77600 | -0.57900 | 2.09000  |
| С  | -0.51600 | 0.07500  | 3.44700  |
| Н  | -1.21200 | -0.27200 | 4.22200  |
| Н  | 0.50600  | -0.19300 | 3.75400  |
| Н  | -0.55700 | 1.16800  | 3.38900  |
| С  | -0.58000 | -2.09500 | 2.19900  |
| Н  | -1.20600 | -2.55600 | 2.97300  |
| Н  | -0.75200 | -2.59100 | 1.23500  |
| Н  | 0.47100  | -2.26400 | 2.46700  |
| Cl | 0.14100  | 0.01000  | -3.03000 |
| Ν  | 2.11200  | -1.30000 | -0.77400 |
| Ν  | 1.88300  | 1.55800  | -0.68300 |
| 0  | 0.12100  | -0.08100 | 1.15900  |
| Ρ  | -2.07800 | -0.73900 | -0.65100 |
| Ρ  | -2.54400 | -0.17500 | 1.36400  |
| Si | -3.66600 | -0.43900 | -2.23800 |
| Ti | 0.47800  | -0.00500 | -0.68300 |
| С  | -3.30600 | 2.05800  | 3.04100  |
| Н  | -3.42100 | 3.15200  | 3.09800  |
| Н  | -4.26200 | 1.61700  | 3.35300  |
| Н  | -2.54000 | 1.77200  | 3.77200  |
| С  | -5.29500 | -0.67900 | 1.98400  |
| Н  | -6.02700 | -1.40100 | 2.38000  |
| Н  | -5.46800 | 0.27300  | 2.50100  |
| Н  | -5.51200 | -0.54700 | 0.91800  |



## Figure S47. Optimized structure of b.

Below are presented xyz coordinates for optimized geometry for **b**.

| С | -2.84300 | -2.02600 | -0.27800 |
|---|----------|----------|----------|
| С | -2.71100 | -2.94800 | -1.33000 |
| С | -2.91200 | -4.30500 | -1.05800 |
| Н | -2.80700 | -5.03400 | -1.86300 |
| С | -3.25500 | -4.73900 | 0.21500  |
| Н | -3.42400 | -5.80100 | 0.40600  |
| С | -3.37100 | -3.81600 | 1.25000  |
| Н | -3.62000 | -4.16900 | 2.25200  |
| С | -3.14700 | -2.45500 | 1.03300  |
| С | -2.32300 | -2.50400 | -2.73000 |
| Н | -2.45400 | -1.41500 | -2.78900 |
| С | -0.83900 | -2.79300 | -2.98000 |
| Н | -0.52300 | -2.40700 | -3.96100 |
| Н | -0.20400 | -2.31400 | -2.21800 |
| Н | -0.63500 | -3.87600 | -2.94500 |
| С | -3.19600 | -3.13000 | -3.82200 |
| Н | -2.95900 | -2.67900 | -4.79700 |
| Н | -3.03200 | -4.21600 | -3.91400 |
| Н | -4.26700 | -2.97000 | -3.62400 |
| С | -3.20900 | -1.46800 | 2.19200  |
| Н | -2.53100 | -0.64200 | 1.93300  |
| С | -2.72700 | -2.07700 | 3.51300  |
| Н | -2.56800 | -1.28300 | 4.25900  |
| Н | -3.46800 | -2.77300 | 3.93900  |
| Н | -1.78200 | -2.62700 | 3.39400  |
| С | -4.61500 | -0.88100 | 2.38600  |
| Н | -4.92500 | -0.25900 | 1.53600  |
| Н | -5.35800 | -1.68500 | 2.51800  |
| Н | -4.64100 | -0.24500 | 3.28400  |
| С | -0.75500 | 2.97600  | 0.70700  |
| С | -0.36700 | 2.83300  | 2.06000  |
| С | 0.44300  | 3.81900  | 2.62700  |
| Н | 0.75500  | 3.73000  | 3.66800  |

| С      | 0.85800             | 4.92300  | 1.89000  |
|--------|---------------------|----------|----------|
| н      | 1.48700             | 5.68500  | 2.35400  |
| С      | 0.47500             | 5.04700  | 0.56200  |
| Н      | 0.81600             | 5.90900  | -0.01400 |
| С      | -0.32700            | 4.08400  | -0.05900 |
| С      | -0.85500            | 1.65300  | 2.89500  |
| Н      | -0.80300            | 0.75400  | 2.25900  |
| С      | 0.00000             | 1.38100  | 4.13400  |
| Н      | -0.30000            | 0.42400  | 4.58600  |
| н      | 1.07300             | 1.31800  | 3.89700  |
| н      | -0.13300            | 2.15900  | 4.90300  |
| С      | -2.31900            | 1.84000  | 3.32100  |
| H      | -2.62300            | 1.02900  | 4.00100  |
| н      | -2.44800            | 2,79500  | 3.85600  |
| н      | -3.00800            | 1.82500  | 2.46600  |
| C      | -0.68400            | 4.27000  | -1.53000 |
| н      | -1.44900            | 3.52800  | -1.79900 |
| c      | 0 52800             | 3 99600  | -2 42800 |
| н      | 0.25400             | A 11900  | -3 48700 |
| н      | 1 35400             | 4.11500  | -2 20100 |
| н      | 0.88800             | 2 96900  | -2 29600 |
| C C    | -1 24100            | 5 66900  | -1 82500 |
| ц      | -1 64700            | 5,70600  | -2.84700 |
| <br>Ц  | -2.04700            | 5 95900  | -2.84700 |
| н<br>Ц | -2.04200            | 6 44000  | 1 75000  |
| п<br>С | -0.43700<br>E 04700 | 0.44000  | 1 17000  |
| с<br>ц | -3.04700            | -0.04300 | 1 20100  |
|        | -5.88000            | 0.06000  | -1.50100 |
|        | -4.80800            | -1.15100 | -2.13800 |
| п<br>С | -5.33500            | -1.42000 | -0.45700 |
| C<br>C | -3.78900            | 0.07600  | -0.75000 |
| C      | -3.86900            | 1.47000  | -0.59500 |
| H      | -4.84500            | 1.91600  | -0.77800 |
| C      | -2.90300            | 2.31700  | -0.04100 |
| C      | -3.40200            | 3.68000  | 0.38500  |
| н      | -4.48800            | 3.65700  | 0.53300  |
| H      | -2.92000            | 4.01/00  | 1.31100  |
| H      | -3.18100            | 4.42900  | -0.38800 |
| С      | 0.81300             | -1.90900 | 1.04200  |
| С      | 1.02400             | -1.61500 | 2.52500  |
| Н      | 1.65500             | -2.37800 | 3.00400  |
| Н      | 1.47600             | -0.63100 | 2.67800  |
| Н      | 0.04400             | -1.62000 | 3.02500  |
| С      | 0.22300             | -3.31000 | 0.86100  |
| Н      | 0.93600             | -4.08000 | 1.18900  |
| Н      | -0.69900            | -3.40600 | 1.45200  |
| Н      | -0.02700            | -3.49400 | -0.19200 |
| С      | 4.67400             | -1.55600 | 2.80300  |
| Н      | 3.82500             | -1.34700 | 3.47000  |
| Н      | 5.39800             | -2.17200 | 3.36300  |
| Н      | 5.16500             | -0.60400 | 2.55700  |
| С      | 5.69900             | -2.75800 | 0.18300  |
| Н      | 5.48800             | -3.42300 | -0.66900 |
| Н      | 6.09900             | -1.81300 | -0.21000 |

| Н  | 6.48600  | -3.22900 | 0.79500  |
|----|----------|----------|----------|
| С  | 3.66000  | -4.26700 | 1.84300  |
| Н  | 2.84900  | -4.24900 | 2.58600  |
| Н  | 3.33900  | -4.89300 | 0.99600  |
| Н  | 4.53300  | -4.75000 | 2.31400  |
| С  | 3.17800  | -0.12000 | -2.58900 |
| С  | 4.51600  | -0.86600 | -2.54000 |
| Н  | 5.29500  | -0.32400 | -1.99200 |
| Н  | 4.39500  | -1.86100 | -2.08800 |
| Н  | 4.88100  | -1.01600 | -3.57100 |
| С  | 2.19600  | -0.97500 | -3.40500 |
| Н  | 1.21900  | -0.48600 | -3.50900 |
| Н  | 2.61600  | -1.13100 | -4.41300 |
| Н  | 2.05000  | -1.96400 | -2.94600 |
| С  | 3.40300  | 1.40800  | 0.14400  |
| С  | 2.89200  | 1.29600  | 1.58300  |
| Н  | 3.16400  | 0.33800  | 2.04000  |
| Н  | 3.32900  | 2.10400  | 2.19300  |
| Н  | 1.79900  | 1.41000  | 1.62400  |
| С  | 3.08100  | 2.83200  | -0.33000 |
| Н  | 3.37300  | 3.02100  | -1.37000 |
| Н  | 2.01000  | 3.04100  | -0.22800 |
| Н  | 3.62100  | 3.55300  | 0.30600  |
| Cl | -0.89000 | 0.82200  | -2.88400 |
| Ν  | -2.68200 | -0.61800 | -0.49700 |
| Ν  | -1.61500 | 1.98200  | 0.13000  |
| 0  | -0.06800 | -0.95800 | 0.53000  |
| Ρ  | 2.41600  | -1.87300 | -0.05500 |
| Ρ  | 2.35600  | 0.17800  | -0.88000 |
| Si | 4.16700  | -2.53600 | 1.26500  |
| Ti | -0.77500 | 0.24100  | -0.64400 |
| С  | 3.36100  | 1.22400  | -3.30700 |
| Н  | 2.43100  | 1.81100  | -3.32100 |
| Н  | 4.15900  | 1.83200  | -2.85700 |
| Н  | 3.64900  | 1.03300  | -4.35400 |
| С  | 4.91600  | 1.18500  | 0.11200  |
| Н  | 5.39500  | 1.83500  | 0.86600  |
| Н  | 5.19100  | 0.14700  | 0.34400  |
| Н  | 5.34900  | 1.44700  | -0.86300 |



Figure S48. Optimized structure of c.

Below are presented xyz coordinates for optimized geometry for  $\ensuremath{\mathbf{c}}$  .

| С | -0.08600 | 2.88400 | 0.19100  |
|---|----------|---------|----------|
| С | -0.12400 | 3.60000 | 1.40000  |
| С | -0.68600 | 4.88100 | 1.38700  |
| Н | -0.72300 | 5.45500 | 2.31500  |
| С | -1.19200 | 5.43500 | 0.21900  |
| Н | -1.62700 | 6.43600 | 0.22800  |
| С | -1.14500 | 4.70600 | -0.96600 |
| Н | -1.54700 | 5.14700 | -1.87900 |
| С | -0.60300 | 3.42000 | -1.00400 |
| С | 0.43600  | 3.04000 | 2.70000  |
| Н | 0.75400  | 2.00500 | 2.52100  |
| С | 1.65900  | 3.84400 | 3.16100  |
| Н | 2.10400  | 3.38600 | 4.05800  |
| Н | 2.43200  | 3.88800 | 2.37900  |
| Н | 1.38800  | 4.88200 | 3.41400  |
| С | -0.63000 | 2.97100 | 3.79700  |
| Н | -0.20500 | 2.52900 | 4.71000  |
| Н | -1.02300 | 3.96900 | 4.05200  |
| Н | -1.46700 | 2.33100 | 3.48200  |
| С | -0.54800 | 2.64400 | -2.31100 |
| Н | -0.58400 | 1.57200 | -2.05700 |
| С | 0.76400  | 2.92000 | -3.06100 |
| Н | 0.79800  | 2.35500 | -4.00500 |
| Н | 0.84900  | 3.99200 | -3.30000 |
| Н | 1.64700  | 2.64000 | -2.47300 |
| С | -1.72500 | 2.94300 | -3.24300 |
| Н | -1.75400 | 2.20800 | -4.06200 |
| Н | -2.68400 | 2.90400 | -2.71100 |
| Н | -1.63600 | 3.94000 | -3.70500 |
| С | 2.70500  | 2.33100 | -0.12900 |
| Н | 3.32600  | 2.05000 | -0.99100 |
| Н | 2.27000  | 3.32400 | -0.28300 |
| Н | 3.37900  | 2.37200 | 0.73900  |
| С | 1.65800  | 1.28100 | 0.09400  |

| С      | 2.09400  | -0.17500 | 0.22000  |
|--------|----------|----------|----------|
| Н      | 1.62600  | -0.51900 | 1.15900  |
| С      | 3.59100  | -0.31700 | 0.45700  |
| С      | 4.00800  | -0.12200 | 1.89500  |
| н      | 3.46700  | 0.72300  | 2.34700  |
| н      | 3.71500  | -1.01400 | 2.47500  |
| н      | 5.09000  | 0.02500  | 1.99900  |
| С      | 5.75300  | -0.86000 | -0.31000 |
| С      | 6.21000  | -2.04400 | 0.30600  |
| С      | 7.59000  | -2.26400 | 0.37500  |
| н      | 7.96000  | -3.17900 | 0.84300  |
| С      | 8.50000  | -1.34700 | -0.13500 |
| н      | 9.57200  | -1.53700 | -0.06000 |
| С      | 8.03300  | -0.18900 | -0.74800 |
| н      | 8.74800  | 0.53100  | -1.15100 |
| C      | 6.66600  | 0.06700  | -0.85700 |
| c<br>C | 5 26200  | -3 10800 | 0.84100  |
| н      | 4 24300  | -2 70300 | 0.82600  |
| C C    | 5 26100  | _/ 3/000 | -0.02000 |
| ч      | 1 52/00  | -5.08200 | 0.07300  |
| н      | 5 01000  | -4.06300 | -1 10000 |
| <br>ц  | 6 25100  | -4.00300 | -0.08700 |
| с<br>С | 5 57100  | 2 10200  | 2 20200  |
| с<br>ц | 3.37100  | -5.49200 | 2.29200  |
| п<br>  | 4.80900  | -4.18900 | 2.07400  |
| H      | 6.54900  | -3.99100 | 2.38500  |
| H<br>C | 5.58400  | -2.60700 | 2.94700  |
| C      | 6.15900  | 1.34/00  | -1.49/00 |
| Н      | 5.10800  | 1.16300  | -1.//200 |
| C      | 6.90600  | 1.72600  | -2.//800 |
| н      | 6.90000  | 0.89800  | -3.50200 |
| H      | 6.43100  | 2.59900  | -3.25100 |
| Н      | 7.95600  | 1.99500  | -2.57900 |
| С      | 6.19400  | 2.49400  | -0.47900 |
| Н      | 5.72700  | 3.40600  | -0.88600 |
| Н      | 5.66700  | 2.22100  | 0.44800  |
| Н      | 7.23400  | 2.73600  | -0.20800 |
| С      | 1.43700  | -1.08700 | -0.87900 |
| С      | 1.74100  | -0.62100 | -2.30100 |
| Н      | 2.82400  | -0.62000 | -2.48300 |
| Н      | 1.25000  | -1.29700 | -3.01600 |
| Н      | 1.34300  | 0.38900  | -2.46800 |
| С      | 1.87300  | -2.54000 | -0.68000 |
| Н      | 2.91600  | -2.69200 | -0.98100 |
| Н      | 1.74900  | -2.84200 | 0.37200  |
| Н      | 1.23100  | -3.18600 | -1.29500 |
| С      | -3.80000 | 1.19800  | 0.37400  |
| С      | -3.95100 | 1.45500  | 1.87900  |
| Н      | -4.98800 | 1.65000  | 2.18400  |
| Н      | -3.53700 | 0.62700  | 2.47200  |
| н      | -3.35500 | 2.35600  | 2.09400  |
| С      | -4.38400 | 2.37900  | -0.40200 |
| н      | -5.46200 | 2.51300  | -0.23500 |
| н      | -3.85700 | 3.28300  | -0.06100 |

| Н  | -4.19600 | 2.28400  | -1.47700 |
|----|----------|----------|----------|
| Ti | -1.08100 | -0.14500 | 0.48800  |
| Cl | -0.36000 | -0.49100 | 2.71900  |
| Ν  | 0.40300  | 1.53600  | 0.21000  |
| Ν  | 4.37100  | -0.62100 | -0.50500 |
| 0  | 0.04100  | -1.03500 | -0.67100 |
| 0  | -2.45900 | 1.08200  | 0.07100  |
| Р  | -4.55700 | -0.54700 | -0.10700 |
| Р  | -3.09400 | -1.78300 | 0.91200  |
| С  | -6.29500 | -0.78800 | 0.65800  |
| С  | -7.00500 | -1.98000 | -0.00300 |
| С  | -7.16500 | 0.47000  | 0.50800  |
| н  | -6.36700 | -2.87600 | -0.02500 |
| н  | -7.90000 | -2.22600 | 0.59100  |
| н  | -7.34400 | -1.75600 | -1.02300 |
| н  | -6.78900 | 1.30400  | 1.11500  |
| н  | -7.25300 | 0.81300  | -0.53100 |
| н  | -8.18200 | 0.24000  | 0.86800  |
| С  | -4.63100 | -0.68900 | -2.01500 |
| С  | -5.70600 | 0.20000  | -2.65900 |
| С  | -4.91100 | -2.14000 | -2.44300 |
| н  | -5.59700 | 1.26400  | -2.42100 |
| н  | -5.62500 | 0.09600  | -3.75400 |
| н  | -6.72200 | -0.11600 | -2.38200 |
| н  | -4.31500 | -2.86200 | -1.87900 |
| н  | -5.96700 | -2.41600 | -2.34700 |
| н  | -4.63900 | -2.24700 | -3.50500 |
| Si | -2.51100 | -3.72800 | -0.08400 |
| С  | -3.91900 | -4.99700 | -0.08300 |
| н  | -4.36200 | -5.07200 | 0.92300  |
| н  | -4.72100 | -4.74600 | -0.79400 |
| н  | -3.52600 | -5.98900 | -0.36000 |
| С  | -1.19000 | -4.28300 | 1.14800  |
| Н  | -0.70900 | -5.21100 | 0.79800  |
| н  | -0.41800 | -3.50600 | 1.25900  |
| Н  | -1.62700 | -4.46700 | 2.14200  |
| C  | -1.71000 | -3.66700 | -1.79700 |
| Н  | -2.42700 | -3.54400 | -2.62100 |
| н  | -0.98400 | -2.84000 | -1.82800 |
| н  | -1.17100 | -4.61600 | -1.96200 |
| C  | -3.23700 | -0.30600 | -2.54500 |
| н  | -2.95400 | 0.72000  | -2.29100 |
| н  | -2.46000 | -0.97200 | -2.14400 |
| н  | -3.24200 | -0.41000 | -3.64200 |
| C  | -6.15200 | -1.12200 | 2,15300  |
| H  | -5.63200 | -2.07700 | 2,30300  |
| Н  | -5.60700 | -0.35600 | 2,71600  |
| н  | -7.16500 | -1.20100 | 2.58300  |
|    |          |          |          |



## Figure S49. Optimized structure of d.

Below are presented xyz coordinates for optimized geometry for  $\ensuremath{\textbf{d}}.$ 

| С | -0.04900 | 2.86800 | -0.12300 |
|---|----------|---------|----------|
| С | 0.14000  | 3.58300 | -1.31800 |
| С | 0.68200  | 4.86600 | -1.23000 |
| Н | 0.83400  | 5.44800 | -2.14000 |
| С | 1.04200  | 5.41100 | -0.00100 |
| Н | 1.46400  | 6.41700 | 0.04900  |
| С | 0.88200  | 4.66600 | 1.16100  |
| Н | 1.19000  | 5.09000 | 2.11900  |
| С | 0.34700  | 3.37500 | 1.12400  |
| С | -0.24800 | 2.96600 | -2.65300 |
| Н | -0.17600 | 1.87400 | -2.54000 |
| С | -1.70100 | 3.30600 | -3.01000 |
| Н | -1.99900 | 2.80400 | -3.94400 |
| Н | -2.40000 | 2.99400 | -2.21900 |
| Н | -1.82900 | 4.39300 | -3.14900 |
| С | 0.69000  | 3.35800 | -3.79600 |
| Н | 0.44900  | 2.76800 | -4.69300 |
| Н | 0.59500  | 4.42200 | -4.06700 |
| Н | 1.74000  | 3.16200 | -3.53400 |
| С | 0.23900  | 2.55400 | 2.39900  |
| Н | -0.11100 | 1.55000 | 2.12400  |
| С | -0.78200 | 3.15200 | 3.37400  |
| Н | -0.89600 | 2.50600 | 4.25900  |
| Н | -0.46100 | 4.14700 | 3.72500  |
| Н | -1.77100 | 3.26900 | 2.90700  |
| С | 1.60400  | 2.36900 | 3.06800  |
| Н | 1.50900  | 1.72600 | 3.95700  |
| Н | 2.30600  | 1.89200 | 2.37100  |
| Н | 2.03500  | 3.32900 | 3.39300  |
| С | -2.82300 | 2.27300 | 0.38200  |
| Н | -3.24100 | 1.97400 | 1.35500  |
| Н | -2.40300 | 3.28300 | 0.45300  |
| Н | -3.66500 | 2.27900 | -0.32400 |

| С | -1.79700 | 1.26000  | -0.02600 |
|---|----------|----------|----------|
| С | -2.21100 | -0.19700 | -0.15900 |
| Н | -1.68500 | -0.56300 | -1.05700 |
| С | -3.68900 | -0.34800 | -0.47900 |
| С | -4.03200 | -0.07200 | -1.92300 |
| Н | -3.49200 | 0.81500  | -2.28800 |
| Н | -3.68500 | -0.91800 | -2.54100 |
| Н | -5.11100 | 0.05600  | -2.07700 |
| С | -5.87900 | -0.95100 | 0.12800  |
| С | -6.28200 | -2.13300 | -0.52800 |
| С | -7.65100 | -2.36000 | -0.69700 |
| Н | -7.98100 | -3.27400 | -1.19700 |
| С | -8.60000 | -1.45000 | -0.24800 |
| н | -9.66300 | -1.64600 | -0.39900 |
| С | -8.18500 | -0.29000 | 0.39800  |
| н | -8.93100 | 0.42600  | 0.74800  |
| С | -6.83100 | -0.02700 | 0.60500  |
| С | -5.28400 | -3.17900 | -1.00600 |
| Н | -4.27500 | -2.75300 | -0.93000 |
| C | -5.31500 | -4.41200 | -0.09500 |
| Н | -4.55100 | -5.14300 | -0.40100 |
| н | -5.12500 | -4.13400 | 0.95300  |
| н | -6.29800 | -4.90800 | -0.13600 |
| С | -5.49900 | -3.56400 | -2.47400 |
| Н | -4.70600 | -4.24900 | -2.81100 |
| н | -6.46300 | -4.07700 | -2.62500 |
| н | -5.48700 | -2.67800 | -3.12600 |
| С | -6.37800 | 1.25800  | 1.27700  |
| Н | -5.32900 | 1.10800  | 1.57000  |
| С | -7.16500 | 1.58600  | 2.54900  |
| н | -7.13500 | 0.74900  | 3.26200  |
| н | -6.73800 | 2.47300  | 3.04200  |
| н | -8.22200 | 1.81000  | 2.33400  |
| С | -6.43000 | 2.42300  | 0.28100  |
| Н | -5.99800 | 3.34000  | 0.71400  |
| н | -5.88000 | 2.18500  | -0.64300 |
| Н | -7.47100 | 2.64100  | -0.00800 |
| C | -1.60400 | -1.05800 | 1.01100  |
| C | -2.06300 | -0.60400 | 2.39600  |
| Н | -3.15100 | -0.71800 | 2.49900  |
| н | -1.55400 | -1.21300 | 3.15800  |
| н | -1.79700 | 0.44700  | 2.58100  |
| С | -1.93700 | -2.53500 | 0.79000  |
| Н | -3.00500 | -2.73600 | 0.94400  |
| Н | -1.64700 | -2.84500 | -0.22600 |
| Н | -1.36000 | -3.13600 | 1.50800  |
| C | 2.93900  | -2.34600 | 2.14400  |
| С | 4.30100  | -2.74200 | 2.72600  |
| Н | 4,77600  | -3.56600 | 2,17800  |
| н | 4.99300  | -1.88600 | 2.73600  |
| н | 4.16600  | -3.07200 | 3.77000  |
| С | 1.96800  | -3.53200 | 2.20700  |
| Н | 2.39100  | -4.44000 | 1.75500  |

| Н  | 1.75600  | -3.76200 | 3.26500  |
|----|----------|----------|----------|
| н  | 1.01400  | -3.29100 | 1.71500  |
| С  | 2.35600  | -1.20400 | 2.99400  |
| н  | 1.34100  | -0.93800 | 2.66400  |
| н  | 2.29900  | -1.53900 | 4.04400  |
| н  | 2.99400  | -0.30900 | 2.96200  |
| С  | 3.42800  | -3.06900 | -0.89300 |
| С  | 3.74600  | -2.37600 | -2.22500 |
| н  | 2.87700  | -1.81200 | -2.59200 |
| н  | 4.60000  | -1.69600 | -2.14500 |
| н  | 3.99200  | -3.14400 | -2.97700 |
| С  | 4.58800  | -3.98100 | -0.48400 |
| н  | 4.34400  | -4.58800 | 0.40000  |
| н  | 4.81200  | -4.67900 | -1.30800 |
| н  | 5.50500  | -3.41200 | -0.27100 |
| С  | 2.14900  | -3.90000 | -1.10800 |
| н  | 1.30000  | -3.25700 | -1.38100 |
| н  | 2.32300  | -4.59800 | -1.94400 |
| н  | 1.87400  | -4.49800 | -0.23100 |
| С  | 7.48200  | -1.62700 | 1.13700  |
| н  | 7.40800  | -1.18400 | 2.14200  |
| н  | 7.01500  | -2.62200 | 1.17000  |
| н  | 8.55000  | -1.76200 | 0.89800  |
| С  | 7.51300  | 1.20500  | -0.03800 |
| н  | 7.16700  | 1.88100  | -0.83500 |
| н  | 7.32400  | 1.68900  | 0.93300  |
| н  | 8.60300  | 1.08100  | -0.15500 |
| С  | 7.05100  | -1.17500 | -1.87300 |
| н  | 6.54800  | -0.59800 | -2.66500 |
| н  | 8.13900  | -1.09800 | -2.03800 |
| н  | 6.76800  | -2.23200 | -1.98200 |
| С  | 3.71100  | 1.30500  | -0.43300 |
| С  | 3.97800  | 1.27800  | -1.93600 |
| н  | 5.05200  | 1.37100  | -2.16100 |
| н  | 3.59000  | 0.35800  | -2.39100 |
| н  | 3.45400  | 2.12900  | -2.40100 |
| С  | 4.14900  | 2.64800  | 0.15700  |
| н  | 5.21100  | 2.85100  | -0.04300 |
| н  | 3.54100  | 3.44400  | -0.30300 |
| н  | 3.98700  | 2.67700  | 1.24300  |
| Ti | 0.97000  | -0.08900 | -0.25300 |
| Cl | 0.46600  | -0.76900 | -2.46500 |
| Ν  | -0.55600 | 1.53000  | -0.22500 |
| Ν  | -4.51300 | -0.71600 | 0.41900  |
| 0  | -0.20300 | -0.92700 | 0.92300  |
| 0  | 2.34700  | 1.13800  | -0.20100 |
| Ρ  | 4.56400  | -0.10300 | 0.58600  |
| Ρ  | 3.03600  | -1.68600 | 0.35400  |
| Si | 6.68700  | -0.49300 | -0.14900 |



## Figure S50. Optimized structure of CH<sub>3</sub>C(O)CH<sub>3</sub>.

Below are presented xyz coordinates for optimized geometry for  $CH_3C(O)CH_3$ .

| С | -0.00000100 | 0.18658400  | 0.00000000  |
|---|-------------|-------------|-------------|
| С | -1.28640100 | -0.61326800 | -0.00262600 |
| Н | -1.27290900 | -1.37446500 | -0.79799200 |
| Н | -1.38692400 | -1.14952800 | 0.95503300  |
| Н | -2.14357100 | 0.05794500  | -0.13459800 |
| С | 1.28640100  | -0.61327000 | 0.00262600  |
| Н | 2.14356700  | 0.05794600  | 0.13461100  |
| Н | 1.27290600  | -1.37447700 | 0.79798200  |
| Н | 1.38693100  | -1.14951500 | -0.95504100 |
| 0 | 0.00000100  | 1.39647700  | 0.00000000  |
|   |             |             |             |



Figure S51. Optimized structure of Cp (=O).

Below are presented xyz coordinates for optimized geometry for **Cp (=O)**.

| С | 1.37481900  | -0.73424000 | -0.23192700 |
|---|-------------|-------------|-------------|
| С | -0.02833100 | -1.23224900 | 0.12411100  |
| С | -0.02832500 | 1.23224100  | -0.12410400 |
| С | 1.37482900  | 0.73424000  | 0.23192300  |
| Н | 2.17738500  | -1.32597500 | 0.22945100  |
| Н | 1.52163100  | -0.77779000 | -1.32418500 |
| Н | -0.07890900 | -1.55806900 | 1.17826800  |
| Н | -0.40997000 | -2.06024000 | -0.48828200 |
| Н | -0.07892000 | 1.55805800  | -1.17826100 |
| Н | -0.40995600 | 2.06023700  | 0.48828700  |
| Н | 2.17739100  | 1.32596400  | -0.22947800 |
| Н | 1.52165100  | 0.77780800  | 1.32417800  |
| С | -0.92394300 | 0.00000200  | 0.00000800  |
| 0 | -2.12932500 | 0.00000700  | -0.00000500 |
|   |             |             |             |



Figure S52. Optimized structure of Cy(=O).

Below are presented xyz coordinates for optimized geometry for Cy(=O).

| С | -1.00939800 | -1.26020000 | -0.28428500 |
|---|-------------|-------------|-------------|
| С | 0.38919700  | -1.28056300 | 0.35051900  |
| С | 1.15556200  | 0.00000000  | 0.06705100  |
| С | 0.38919700  | 1.28056400  | 0.35051800  |
| С | -1.00940000 | 1.26020000  | -0.28428400 |
| С | -1.78349600 | -0.00000100 | 0.10465400  |
| Н | 0.28472100  | -1.36148500 | 1.44827600  |
| Н | 0.99178800  | -2.13189200 | 0.00634800  |
| Н | -0.90662000 | -1.29923900 | -1.38295400 |
| Н | -1.56358600 | -2.16446000 | 0.01069200  |
| Н | 0.28472300  | 1.36148700  | 1.44827500  |
| Н | 0.99178600  | 2.13189200  | 0.00634400  |
| Н | -1.56358900 | 2.16445800  | 0.01069700  |
| Н | -0.90662400 | 1.29924100  | -1.38295300 |
| Н | -1.96122600 | -0.00000200 | 1.19553700  |
| Н | -2.77371700 | -0.00000100 | -0.37648000 |
| 0 | 2.29154700  | 0.00000000  | -0.35110200 |
|   |             |             |             |



Figure S53. The DFT Mayer bond order (MBO) calculation conducted for 5.



**Figure S54**. Electron density surface (Isovalue =  $0.004 \text{ e/Å}^3$ ) mapped with electrostatic potential for compound **5**. The red areas correspond to the negative electrostatic potential and the blue areas to the positive one.

## **PART D. References**

- 1. G. Sheldrick, *Acta Crystallogr. A*, 2008, **64**, 112-122.
- 2. L. Farrugia, J. Appl. Cryst., 2012, 45, 849-854.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Journal*, 2016.
- 4. J.-D. Chai and M. Head-Gordon, *Phys. Chem. Chem. Phys.*, 2008, **10**, 6615-6620.
- 5. S. Grimme, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2011, 1, 211-228.
- 6. K. Wolinski, J. F. Hinton and P. Pulay, J. Am. Chem. Soc., 1990, 112, 8251-8260.
- 7. V. Barone and M. Cossi, J. Phys. Chem. A., 1998, **102**, 1995-2001.
- 8. R. Peverati and D. G. Truhlar, *Phys. Chem. Chem. Phys.*, 2012, **14**, 16187-16191.
- 9. F. Weigend, *Phys. Chem. Chem. Phys.*, 2006, **8**, 1057-1065.
- 10. F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297-3305.
- 11. E. D. Glendening, A. E. Reed, J. E. Carpenter and F. Weinhold.
- 12. P. Fuentealba, P. Pérez and R. Contreras, J. Chem. Phys., 2000, **113**, 2544-2551.
- 13. W. Yang and R. G. Parr, *Proc. Natl. Acad. Sci.*, 1985, **82**, 6723-6726.
- 14. C. Morell, A. Grand and A. Toro-Labbé, J. Phys. Chem. A., 2005, **109**, 205-212.