Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

Impact of Deboronation on the Electronic Characteristics of Closo-o-carborane: Intriguing Photophysical Changes in Triazole-appended Carboranyl Luminophores

Mingi Kim,^a‡ Sehee Im,^a‡ Chan Hee Ryu,^a Seok Ho Lee,^a Ju Hyun Hong,^a and Kang Mun Lee^{*a}

^a Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.

[‡]The first and second authors contributed equally to this work.

Contents

Synthetic procedures for the precursors and measurementsS2	2–S5
NMR spectra for <i>closo-</i> , <i>nido-</i> compounds and their precursorsS6	5–S17
Crystallographic data and parameters for CB1 and CB2······S1	18
Selected bond lengths (Å) and angles (°) for CB1 and CB2······S1	19
Excitation graphs in THF solution for CB1 and CB2	20
PL spectra of <i>closo-</i> and <i>nido-</i> compounds in various organic solvents	20
Emission decay curves for <i>closo-</i> and <i>nido-</i> compounds in solution stateS2	21
¹ H NMR spectra of CB1 and CB2 with 3.0 equiv. of TBAF in THF- <i>d</i> ⁸ ·······S2	22
Theoretical calculation results for <i>closo-</i> and <i>nido-</i> compounds ······S2	23–S34
Cartesian coordinates for <i>closo</i> - and <i>nido</i> -compoundsS3	35–S42

Synthesis of 5-(4-ethynylphenyl)-3-methyl-1-phenyl-1H-1,2,4-triazole, A1

Toluene (23.0 mL) and triethylamine (15.0 mL) were added via cannula to a mixture of **Br1** (1.57 g, 5.0 mmol), CuI (76.2 mg, 0.4 mmol), and $Pd(PPh_3)_2Cl_2$ (0.31 g, 0.44 mmol) at 90 °C. After stirring for 10 min, trimethylsilylacetylene (2.77 mL, 20.0 mmol) was added. Subsequently, the reaction mixture was heated under reflux for 24 h. After this time, the

volatiles were removed by rotary evaporation to afford a dark brown residue. The crude product was purified by column chromatography on silica gel (ethyl acetate:*n*-hexane = 1:4, v/v) to yield 3-methyl-1-phenyl-5-(4-((trimethylsilyl)ethynyl)phenyl)-1*H*-1,2,4-triazole (1.61 g, 97%) as a white solid. The product was then used *in situ* for the next step without characterization. After dissolving the obtained 3-methyl-1-phenyl-5-(4-((trimethylsilyl)ethynyl)phenyl)-1*H*-1,2,4-triazole (1.44 g, 4.3 mmol) with K₂CO₃ (2.40 g, 17.4 mmol) in methanol (25.0 mL) and stirring for 2 h at ambient temperature, the resulting mixture was extracted with DCM (20.0 mL × 3). The combined organic extracts were dried over anhydrous MgSO₄, filtered, and the solvent was removed under reduced pressure. Purification of the crude product by column chromatography on silica gel (ethyl acetate:*n*-hexane = 1:4, v/v) afforded **A1** (1.10 g, 98%) as an ivory solid. ¹H NMR (CDCl₃): δ 7.45 (s, 5H), 7.42 (d, *J* = 2.4 Hz, 2H), 7.32 (m, 2H), 3.15 (s, 1H, -CC*H*), 2.51 (s, 3H, -C*H*₃). ¹³C NMR (CDCl₃): δ 161.06, 153.44, 138.18, 132.35, 129.59, 129.02, 128.77, 128.24, 125.43, 123.84, 82.94 (acetylene-*C*), 79.26 (acetylene-*C*), 14.00 (-*C*H₃). Anal. Calcd for C₁₇H₁₃N₃: C, 78.74; H, 5.05; N, 16.20. Found: C, 78.54; H, 5.04; N, 16.11.

Synthesis of ((4-bromophenyl)ethynyl)trimethylsilane, Br2

THF (30.0 mL) and triethylamine (20.0 mL) were added via cannula to a mixture of 1-bromo-4- iodobenzene (2.83 g, 10.0 mmol), CuI (95.2 mg, 0.5 mmol), and $Br - si - si - Pd(PPh_3)_2Cl_2$ (0.35 g, 0.5 mmol) at 60 °C. After stirring for 10 min, trimethylsilylacetylene (1.66 mL, 12.0 mmol) was added, and the reaction mixture was heated under reflux for 30 min. The solvents were then removed under vacuum to obtain the crude product as a dark brown residue. Purification by column chromatography on silica gel (*n*-hexane) and recrystallization from methanol gave **Br2** (2.16 g, 85%) as an ivory solid. ¹H NMR (CDCl₃): δ 7.43 (d, *J* = 8.2 Hz, 2H), 7.32

 $(d, J = 8.2 \text{ Hz}, 2\text{H}), 0.25 (s, 9\text{H}, -\text{Si}(CH_3)_3).$ ¹³C NMR (CDCl₃): δ 133.52, 131.61, 122.88, 122.24, 104.00 (acetylene-*C*), 95.73 (acetylene-*C*), 0.03 (-Si(*C*H₃)₃). Anal. Calcd for C₁₁H₁₃BrSi: C, 52.18; H, 5.18. Found: C, 52.15; H, 5.14.

Synthesis of (4-((trimethysilyl)ethynyl)phenyl)boronic acid, B2

An *n*-hexane solution of *n*-BuLi (1.6 M, 7.98 mL, 12.8 mmol) was added dropwise to a solution of **Br2** (2.16 g, 8.5 mmol) in THF (85.0 mL) at -78 °C and the mixture was stirred for 1 h. After cooling once again to -78 °C,

Synthesis of 1-(2,6-diisopropylphenyl)-5-(4-ethynylphenyl)-3-methyl-1H-1,2,4-triazole, A2

Toluene (20.0 mL) and distilled water (10.0 mL) were added via cannula to the mixture of **TB2** (1.30 g, 6.0 mmol), 5-bromo-1-(2,6-diisopropylphenyl)-3-methyl-1*H*-1,2,4-triazole (1.60 g, 5.0 mmol), Pd(PPh₃)₄ (0.57 g, 0.5 mmol) and K₂CO₃ (2.06 g, 14.9 mmol). The resulting mixture was then heated at reflux at 120 °C for 12 h, after which it was extracted with ethyl acetate (20.0

mL \times 3), the organic layer was dried over anhydrous MgSO₄, and the solvents were removed using a rotary evaporator. Purification by column chromatography on silica gel (ethyl acetate: *n*-hexane = 1:4, v/v) 1-(2,6-diisopropylphenyl)-3-methyl-5-(4-((trimethylsilyl)ethynyl)phenyl)-1H-1,2,4-triazole vielded (0.31 g, 15%) as a white solid. The product was then used *in situ* for the next step without characterization. Thus, the obtained 1-(2,6-diisopropylphenyl)-3-methyl-5-(4-((trimethylsilyl)ethynyl)phenyl)-1H-1,2,4triazole (0.31 g, 0.7 mmol) and K₂CO₃ (0.41 g, 2.9 mmol) were dissolved in methanol (7.0 mL), and the mixture was stirred for 2 h at ambient temperature. After this time, the mixture was extracted with DCM (10.0 mL \times 3), the combined organic extracts were dried over anhydrous MgSO₄ and filtered, then the solvent was removed under reduced pressure. The product was recrystallized from *n*-hexane, affording A2 (0.23 g, 92%) as a white solid. ¹H NMR (CD₂Cl₂): δ 7.51 (t, J = 7.7 Hz, 1H), 7.43 (dd, J = 8.2, 2.4 Hz, 2H), 7.36 (dd, J = 8.2, 2.4 Hz, 2H), 7.29 (d, J = 7.8 Hz, 1H), 3.19 (s, 1H, -CCH), 2.46 (s, 3H, -CH₃), 2.36 (m, 2H, $-CH(CH_3)_2$), 1.11 (d, J = 6.8 Hz, 6H, $-CH(CH_3)_2$), 0.89 (d, J = 6.9 Hz, 6H, $-CH(CH_3)_2$). ¹³C NMR (CD₂Cl₂): δ 160.95, 154.37, 146.50, 134.96, 132.50, 131.01, 128.46, 127.84, 124.78, 123.72, 83.10 (acetylene-C), 79.26 (acetylene-C), 28.84 (-CH(CH₃)₂), 24.77 (-CH(CH₃)₂), 22.84 (-CH(CH₃)₂), 14.17 (-*C*H₃). Anal. Calcd for C₂₃H₂₅N₃: C, 80.43; H, 7.34; N, 12.23. Found: C, 80.37; H, 7.25; N, 12.01.

-H

Photophysical measurements

An Agilent VARIAN Cary 100Conc spectrophotometer and a HORIBA Fluoromax-4P Luminescence spectrophotometer were used to obtain the UV/vis absorption and PL spectra of **CB1**, **CB2**, *nido*-**CB1**, and *nido*-**CB2**, respectively. The solution-phase UV–Vis absorption experiments were performed in degassed THF. The PL measurements were carried out in degassed organic solvents (*n*-hexane, THF, and MeCN) with a 1 cm quartz cuvette $(5.0 \times 10^{-5} \text{ M})$ at 298 K. The PL measurements were also performed in THF $(5.0 \times 10^{-5} \text{ M})$ at 77 K, and in the film form (5 wt% doped in PMMA) on 1.5×1.5 cm quartz plates (thickness = 1 mm) at 298 K. The absolute PL quantum yields (PLQYs) in THF $(5.0 \times 10^{-5} \text{ M})$ and in the film form were obtained at 298 K on a Fluoromax-4P spectrophotometer (HORIBA) equipped with a 3.2 inch integrating sphere (FM-sphere, HORIBA). The fluorescence decay lifetimes in THF $(5.0 \times 10^{-5} \text{ M})$ and in the film form were measured at 298 K using a time-correlated single-photon counting (TCSPC) spectrometer (FLS920–EDINBURGH instrument at the Central Laboratory of Kangwon National University) equipped with a EPL-372 nm pulsed semiconductor diode laser excitation source and a microchannel plate photomultiplier tube detector (MCP-PMT, 200–850 nm).

X-ray crystallography

Single X-ray quality **CB1** and **CB2** crystals were grown from mixtures of MeOH and *n*-hexane. Each single crystal was coated with Paratone oil and mounted on a glass capillary for X-ray diffractometry measurements. Crystallographic measurements were performed using a Bruker D8QUEST CCD area detector diffractometer with graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The structures of **CB1** and **CB2** were assessed using direct methods, and all nonhydrogen atoms were subjected to anisotropic refinement with a full-matrix least-squares method on F^2 using the SHELXTL/PC software package. The X-ray crystallographic data of **CB1** and **CB2** are available in CIF format (CCDC–2045310 and 2045311, respectively), provided free of charge by The Cambridge Crystallographic Data Centre. The hydrogen atoms were placed at their geometrically calculated positions and refined using a riding model on the corresponding carbon atoms with isotropic thermal parameters. Detailed crystallographic data are given in Tables S1 and S2.

Cyclic voltammetry measurement

Cyclic voltammetry (CV) measurements using a WPG100e instrument (WonATech) were carried out in acetonitrile (0.5 mM) using a three-electrode cell configuration (Pt working and counter electrodes and a Ag/AgNO₃ (0.1 M in acetonitrile) reference electrode) at room temperature. Tetrabutylammonium hexafluorophosphate (*n*-Bu₄PF₆, 0.1 M in acetonitrile) was used as a supporting electrolyte after nitrogen bubbling for 1 h to remove oxygen. The oxidative potentials were observed at a scan rate of 100 mV/s and measured with reference to the ferrocene/ferrocenium (Fc/Fc⁺) redox couple.

Computational studies

The geometries of the *closo-* and *nido-o*-carboranyl compounds in their ground (S_0) and first-excited (S_1) states in THF were optimized at the B3LYP/6-31G(d)¹ level of theory. The vertical excitation energies in the optimized S_0 and S_1 state geometries were calculated using the time-dependent density functional theory (TD-DFT) method² at the same level of theory. Solvent effects were evaluated using the self-consistent reaction field (SCRF) method based on the conductor-like polarizable continuum model (CPCM) with THF as the solvent.^{3,4} All geometry optimizations were performed using the Gaussian 16 program.⁵ The percent contribution (%) of a group in a molecule to each molecular orbital was calculated using the GaussSum 3.0 software program.⁶ Visualizations were prepared using GaussView 6.⁷

Reference

- 1. J. S. Binkley, J. A. People and W. J. Hehre, J. Am. Chem. Soc., 1980, 102, 939.
- 2. E. Runge and E. K. U. Gross, Phys. Rev. Lett., 1984, 52, 997.
- 3. M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comput. Chem., 2003, 24, 669-681.
- 4. V. Barone and M. Cossi, J. Phys. Chem. A., 1998, 102, 1995.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Gaussian 16 Revision B.01*, Gaussian. Inc., Wallingford, CT, 2016.
- 6. N. M. O'Boyle, A. L. Tenderholt and K. M. Langner, J. Comp. Chem., 2008, 29, 839.
- R. Dennington, T. A. Keith and J. M. Millam, *GaussView 6*, Semichem Inc., Shawnee Mission, KS, 2016.

Fig. S1 ¹H (top) and ¹³C (bottom) NMR spectra of A1 in CDCl₃ (* from residual CHCl₃ in CDCl₃).

Fig. S2 ¹H (top) and ¹³C (bottom) NMR spectra of Br2 in CDCl₃ (* from residual CHCl₃ in CDCl₃).

Fig. S3 ¹H (top) and ¹³C (bottom) NMR spectra of B2 in CDCl₃ (* from residual CHCl₃ in CDCl₃).

Fig. S4 ¹H (top) and ¹³C (bottom) NMR spectra of A2 in CD₂Cl₂ (* from residual CH₂Cl₂ in CD₂Cl₂).

Fig. S5 ¹H{¹¹B} (top) and ¹³C (bottom) NMR spectra of **CB1** in CDCl₃ (* from residual CHCl₃ in CDCl₃).

Fig. S6 ¹¹B{¹H} NMR spectra of CB1 in CDCl₃.

Fig. S7 ${}^{1}H{}^{11}B{}$ (top) and ${}^{13}C$ (bottom) NMR spectra of CB2 in CD₂Cl₂ (* from residual CH₂Cl₂ in CD₂Cl₂).

Fig. S9 ¹H{¹¹B} (top) and ¹³C (bottom) NMR spectra of *nido*-CB1 in CD_2Cl_2 (* from residual CH_2Cl_2 in CD_2Cl_2).

Fig. S10 ${}^{11}B{}^{1H}$ NMR spectra of *nido*-CB1 in CD₂Cl₂.

Fig. S11 ${}^{1}H{}^{11}B{}$ (top) and ${}^{13}C$ (bottom) NMR spectra of *nido*-CB2 in CD₂Cl₂ (* from residual CH₂Cl₂ in CD₂Cl₂).

Fig. S12 ¹¹B $\{^{1}H\}$ NMR spectra of *nido*-CB2 in CD₂Cl₂.

Compound	(CB1) ₂ ·CH ₃ OH	CB2
Formula	$(C_{17}H_{23}B_{10}N_3)_2 \cdot CH_3OH$	C ₂₃ H ₃₅ B ₁₀ N ₃
Formula weight	787.01	461.64
Crystal system	Triclinic	Monoclinic
Space group	P ₋₁	C2/c
<i>a</i> (Å)	10.4481(4)	25.430(5)
<i>b</i> (Å)	14.8507(6)	14.506(3)
<i>c</i> (Å)	15.1867(6)	16.515(3)
α (°)	93.0616(14)	90
β (°)	109.8435(13)	100.40(3)
γ (°)	90.8587(13)	90
$V(Å^3)$	2211.94(15)	5992(2)
Ζ	2	8
$\rho_{\text{calc}}(\text{g cm}^{-3})$	1.182	1.023
μ (mm ⁻¹)	0.065	0.055
<i>F</i> (000)	820	1952
<i>T</i> (K)	173(2)	296(2)
Scan mode	multi-scan	multi-scan
	-13 < h < 13,	-32 < h < 32,
hkl range	-19 < k < 19,	-18 < k < 18,
	-19 < l < 19	-21 < l < 21
Measd reflns	127691	29568
Unique reflns [<i>R</i> _{int}]	10132 [0.0529]	6880 [0.0820]
Reflns used for refinement	10132	6880
Refined parameters	571	361
$R_1^a (\mathbf{I} > 2\sigma(\mathbf{I}))$	0.0540	0.0749
wR_2^b all data	0.1430	0.2531
GOF on F^2	1.047	1.051
$\rho_{\rm fin}$ (max/min) (e Å ⁻³)	0.298, -0.258	0.255, -0.159

Table S1 Crystallographic data and parameters for CB1 and CB2.

Compound	CB1	CB2						
	length (Å)							
С1-Н1	0.98(2)	0.940						
C1–C2	1.642(2)	1.622(3)						
C2–C3	1.5068(19)	1.492(3)						
C9-N1	1.3467(19)	1.352(2)						
C9–N4	1.3262(19)	1.328(3)						
N1-N2	1.3749(17)	1.369(2)						
C10-N2	1.314(2)	1.329(3)						
C10-N4	1.3632(19)	1.351(3)						
	angles (°)							
H1C1C2	114.0(12)	117.98						
C1–C2–C3	118.16(12)	119.84(15)						
C9-N1-N2	109.77(12)	109.57(15)						
N1-N2-C10	102.61(12)	102.54(15)						
N2-C10-N4	114.42(13)	114.5(2)						
C9-N4-C10	103.86(13)	103.94(16)						
N1-C9-N4	109.33(13)	09.49(17)						

Table S2 Selected bond lengths (Å) and angles (°) for CB1 and CB2.

Fig. S13 Excitation graphs of CB1 and CB2 in THF (5.0×10^{-5} M).

Fig. S14 PL spectra of (a) **CB1** ($\lambda_{ex} = 290 \text{ nm}$), (b) **CB2** ($\lambda_{ex} = 303 \text{ nm}$), (b) *nido*-**CB1** ($\lambda_{ex} = 290 \text{ nm}$), and (d) *nido*-**CB2** ($\lambda_{ex} = 303 \text{ nm}$) in various organic solvents (*n*-hexane (*n*-Hex), tetrahydrofuran (THF), and acetonitrile (MeCN), 5.0 × 10⁻⁵ M).

Fig. S15 Emission decay curves for (a) **CB1**, (b) **CB2**, (c) *nido*-**CB1**, and (d) *nido*-**TCB1** in THF (5.0 \times 10⁻⁵ M) detected at each maximum emissive point at 298 K. Each red-line is its exponential fitting curve.

Fig. S16 ¹H NMR spectra of (a) **CB1** and (b) **CB2** with 3.0 equiv. of TBAF in THF- d^8 (* from residual THF in THF- d^8 , † from *n*-butyl group of excess TBAF, ‡ from residual CH₂Cl₂, and + from residual H₂O).

Fig. S17 The selected frontier orbitals of **CB1** from B3LYP calculations (Isovalue = 0.02 a.u.) at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF.

 state	λ_{calc} (/nm)	f_{calc}	Major contribution
			S ₀
1	289.88	0.4424	HOMO \rightarrow LUMO (97.1%)
2	260.11	0.0070	HOMO-3 \rightarrow LUMO (17.0%)
			HOMO-2 \rightarrow LUMO (44.6%)
			HOMO \rightarrow LUMO+1 (32.8%)
3	254.17	0.2196	HOMO-1 \rightarrow LUMO (81.3%)
4	248.28	0.0971	HOMO-3 \rightarrow LUMO (39.0%)
			HOMO-2 \rightarrow LUMO (37.2%)
			HOMO-1 \rightarrow LUMO (5.8%)
			S_1
1	495.78	0.2335	HOMO \rightarrow LUMO (99.6%)
2	402.50	0.4560	HOMO \rightarrow LUMO+1 (96.2%)
3	392.24	0.1178	HOMO-3 \rightarrow LUMO (8.72%)
			HOMO-2 \rightarrow LUMO (87.7%)
4	369.91	0.0078	HOMO-4 \rightarrow LUMO (25.0%)
			HOMO-3 \rightarrow LUMO (59.5%)
			HOMO \rightarrow LUMO+1 (11.5%)

Table S3 Computed absorption wavelengths (λ_{calc} in nm) and oscillator strengths ($f_{calc.}$) for **CB1** from TD-B3LYP calculations using the B3LYP geometries at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF.

	E (eV)	N-phenyl	triazole +bridged phenyl	carborane
		S_{0}		
LUMO+3	-0.36	76.9	19.6	3.5
LUMO+2	-0.62	76.6	17.1	6.2
LUMO+1	-0.78	22.8	70.9	6.3
LUMO	-1.67	6.2	81.7	12.1
HOMO	-6.51	20.0	77.7	2.3
HOMO-1	-7.09	46.1	52.1	1.8
HOMO-2	-7.19	66.4	33.3	0.2
HOMO-3	-7.46	23.4	76.4	0.2
		S_1		
LUMO+3	-0.48	48.8	45.5	5.7
LUMO+2	-0.83	10.6	84.8	4.6
LUMO+1	-1.54	23.5	66.8	9.7
LUMO	-3.13	0.4	19.0	80.6
HOMO	-6.52	45.5	52.9	1.6
HOMO-1	-7.08	38.1	55.2	6.7
HOMO-2	-7.25	68.8	28.6	2.6
HOMO-3	-7.62	12.5	82.7	4.8

Table S4 Molecular orbital energies (in eV) and molecular orbital distributions (in %) of **CB1** at the ground state (S_0) and first singlet excited state (S_1) optimized geometries in THF.

Fig. S18 The selected frontier orbitals of **CB2** from B3LYP calculations (Isovalue = 0.02 a.u.) at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF.

state	λ_{calc} (/nm)	f_{calc}	Major contribution			
			S ₀			
1	280.15	0.6336	HOMO \rightarrow LUMO (92.5%)			
2	278.27	0.0132	HOMO-1 \rightarrow LUMO (98.1%)			
3	270.78	0.0851	HOMO-2 \rightarrow LUMO (90.8%)			
4	259.35	0.0040	HOMO-3 \rightarrow LUMO (58.7%)			
			HOMO \rightarrow LUMO+1 (36.0%)			
			S ₁			
1	483.22	0.4667	HOMO \rightarrow LUMO (99.4%)			
2	424.89	0.0035	HOMO-1 \rightarrow LUMO (99.0%)			
3	380.15	0.2315	HOMO \rightarrow LUMO+1 (95.2%)			
4	345.33	0.0108	HOMO-4 \rightarrow LUMO (12.8%)			
			HOMO-2 \rightarrow LUMO (84.5%)			

Table S5 Computed absorption wavelengths (λ_{calc} in nm) and oscillator strengths ($f_{calc.}$) for **CB2** from TD-B3LYP calculations using the B3LYP geometries at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF.

	E (eV)	N-phenyl	triazole +bridged phenyl	carborane		
S_0						
LUMO+3	-0.32	82.6	15.4	2.0		
LUMO+2	-0.50	93.5	6.1	0.4		
LUMO+1	-0.74	18.5	75.7	5.8		
LUMO	-1.70	1.0	86.7	12.3		
HOMO	-6.57	1.9	94.8	3.3		
HOMO-1	-6.74	99.0	1.0	0.0		
HOMO-2	-6.98	75.9	24.0	0.1		
HOMO-3	-7.38	1.6	97.3	1.1		
		\mathbf{S}_1				
LUMO+3	-0.49	83.8	14.5	1.7		
LUMO+2	-0.75	16.6	79.0	4.4		
LUMO+1	-1.41	8.7	79.7	11.6		
LUMO	-3.03	0.3	17.3	82.4		
HOMO	-6.35	18.8	76.5	4.7		
HOMO-1	-6.65	96.2	3.7	0.1		
HOMO-2	-7.01	59.9	37.0	3.1		
НОМО-3	-7.45	3.8	92.7	3.5		

Table S6 Molecular orbital energies (in eV) and molecular orbital distributions (in %) of **CB2** at the ground state (S_0) and first singlet excited state (S_1) optimized geometries in THF.

Fig. S19 The selected frontier orbitals of *nido*-**CB1** from B3LYP calculations (Isovalue = 0.02 a.u.) at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF.

	<u> </u>		
state	λ_{calc} (/nm)	f_{calc}	Major contribution
			S_0
1	325.61	0.3551	HOMO \rightarrow LUMO (98.0%)
2	281.91	0.1955	HOMO-1 \rightarrow LUMO (92.4%)
3	277.86	0.0336	HOMO \rightarrow LUMO+1 (80.0%)
			HOMO \rightarrow LUMO (12.5%)
4	267.61	0.1150	HOMO \rightarrow LUMO+1 (93.4%)
			S_1
1	480.22	0.3728	HOMO \rightarrow LUMO (99.1%)
2	361.55	0.0562	HOMO-1 \rightarrow LUMO (97.2%)
3	336.06	0.0016	HOMO \rightarrow LUMO+1 (69.5%)
			HOMO \rightarrow LUMO+2 (11.2%)
			HOMO \rightarrow LUMO+3 (18.5%)
4	319.56	0.0010	HOMO \rightarrow LUMO+1 (11.5%)
			HOMO \rightarrow LUMO+2 (86.4%)

Table S7 Computed absorption wavelengths (λ_{calc} in nm) and oscillator strengths ($f_{calc.}$) for *nido*-CB1 from TD-B3LYP calculations using the B3LYP geometries at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF.

	E (eV)	N-phenyl	triazole +bridged phenyl	carborane			
S_0							
LUMO+3	0.21	3.1	94.7	2.2			
LUMO+2	-0.10	36.8	59.7	3.5			
LUMO+1	-0.22	96.5	3.4	0.1			
LUMO	-0.86	57.0	41.6	1.4			
HOMO	-5.17	0.1	4.1	95.8			
HOMO-1	-5.81	1.2	47.3	51.5			
HOMO-2	-6.46	0.3	5.2	94.5			
HOMO-3	-6.65	2.6	23.7	73.7			
		S_1					
LUMO+3	0.22	4.8	93.1	2.1			
LUMO+2	-0.03	63.3	35.0	1.7			
LUMO+1	-0.15	95.5	4.5	0.0			
LUMO	-1.62	26.5	71.5	2.0			
HOMO	-4.55	0.0	1.3	98.7			
HOMO-1	-5.73	5.2	67.4	27.4			
HOMO-2	-6.41	0.5	8.2	91.3			
HOMO-3	-6.70	3.1	12.2	84.7			

Table S8 Molecular orbital energies (in eV) and molecular orbital distributions (in %) of *nido*-CB1 at the ground state (S_0) and first singlet excited state (S_1) optimized geometries in THF.

Fig. S20 The selected frontier orbitals of *nido*-CB2 from B3LYP calculations (Isovalue = 0.02 a.u.) at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF.

state	λ_{calc} (/nm)	f_{calc}	Major contribution
			S ₀
1	321.26	0.2538	HOMO \rightarrow LUMO (99.0%)
2	276.62	0.0137	HOMO \rightarrow LUMO+1 (66.1%)
			HOMO \rightarrow LUMO+2 (12.6%)
			HOMO \rightarrow LUMO+3 (12.3%)
3	272.98	0.6141	HOMO-1 \rightarrow LUMO (87.3%)
			HOMO \rightarrow LUMO+2 (8.1%)
4	270.36	0.0783	HOMO-1 \rightarrow LUMO (8.0%)
			HOMO \rightarrow LUMO+1 (24.9%)
			HOMO \rightarrow LUMO+2 (54.9%)
			HOMO \rightarrow LUMO+3 (6.6%)
			\mathbf{S}_1
1	476.20	0.1923	HOMO \rightarrow LUMO (99.3%)
2	384.22	0.0112	HOMO \rightarrow LUMO+1 (72.8%)
			HOMO \rightarrow LUMO+2 (22.0%)
3	338.04	0.0001	HOMO \rightarrow LUMO+2 (96.1%)
4	328.98	0.0153	HOMO \rightarrow LUMO+2 (23.4%)
			HOMO \rightarrow LUMO+3 (76.2%)

Table S9 Computed absorption wavelengths (λ_{calc} in nm) and oscillator strengths ($f_{calc.}$) for *nido*-CB2 from TD-B3LYP calculations using the B3LYP geometries at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF.

	E (eV)	N-phenyl	triazole +bridged phenyl	carborane
		\mathbf{S}_{0}		
LUMO+3	0.20	3.0	94.9	2.1
LUMO+2	-0.15	54.5	43.3	2.2
LUMO+1	-0.24	65.5	33.1	1.4
LUMO	-0.77	74.4	24.6	1.0
HOMO	-5.17	0.0	4.6	95.4
HOMO-1	-5.78	0.3	49.6	50.1
НОМО-2	-6.47	0.0	5.0	95.0
НОМО-3	-6.60	0.3	27.2	72.5
		\mathbf{S}_1		
LUMO+3	0.20	3.9	94.2	1.9
LUMO+2	-0.16	96.6	3.3	0.1
LUMO+1	-0.24	94.8	5.2	0.0
LUMO	-1.25	2.4	94.4	3.2
HOMO	-4.35	0.0	1.0	99.0
HOMO-1	-5.76	0.5	75.8	23.7
НОМО-2	-6.45	0.0	5.7	94.3
НОМО-3	-6.66	0.1	11.4	88.5

Table S10 Molecular orbital energies (in eV) and molecular orbital distributions (in %) of *nido*-CB2 at the ground state (S_0) and first singlet excited state (S_1) optimized geometries in THF.

Atom	Х	Y	Z	Н	5.347571	-4.158468	0.763800	Н	-2.940396	1.812756	1.611814
С	-3.878242	-0.320041	-1.354704	C	3.831345	1.028013	0.055133	В	-5.301627	0.566007	1.402550
С	-2.980470	-0.112585	0.031638	C	3.185479	1.686840	1.104590	Н	-5.802126	0.888274	2.429279
С	-1.492558	-0.384126	-0.002242	Н	2.636458	1.117671	1.846566	В	-5.503050	-1.076736	0.725801
С	-0.596256	0.470491	-0.658788	C	3.264949	3.076958	1.188878	Н	-6.141778	-1.924190	1.255305
Н	-0.954761	1.347057	-1.181884	Н	2.763241	3.592279	2.001721	В	-4.018744	-1.498888	-0.126150
С	0.771253	0.209503	-0.658826	C	3.998651	3.799300	0.245372	Н	-3.506337	-2.545443	-0.300665
Н	1.432826	0.880049	-1.194138	Н	4.062816	4.880326	0.319077	В	-3.608864	1.275355	-0.799824
С	1.284700	-0.912036	0.007678	C	4.655515	3.128641	-0.789215	Н	-2.874262	1.968417	-1.403343
С	0.388202	-1.773527	0.658014	Н	5.230911	3.685544	-1.521928	В	-5.091952	1.708105	0.046734
Н	0.771035	-2.651811	1.164859	C	4.572095	1.740432	-0.891472	Н	-5.437980	2.841796	0.085920
С	-0.976741	-1.512449	0.654567	Н	5.074839	1.205207	-1.689078	В	-6.229332	0.334982	-0.099785
Н	-1.641097	-2.193234	1.172290	Ν	3.167112	-2.512005	-0.011057	Н	-7.403318	0.494974	-0.163424
С	2.714449	-1.261565	0.001791	Ν	4.938166	-1.111231	-0.099062	В	-5.430738	-0.939205	-1.045824
С	4.522023	-2.371058	-0.076501	Ν	3.772131	-0.397498	-0.042543	Н	-5.898778	-1.684345	-1.836030
С	5.465486	-3.528159	-0.123057	В	-3.932886	-0.564287	1.383580	В	-5.175141	0.768300	-1.462882
Н	6.496524	-3.173855	-0.169298	Н	-3.378454	-1.034291	2.315304	Н	-5.472356	1.174911	-2.532906
Н	5.267260	-4.154064	-0.998762	В	-3.676474	1.147607	0.968363	Н	-3.308930	-0.618420	-2.225803

Table S11 Cartesian coordinates of the ground state (S₀) fully optimized geometry of **CB1** in THF from B3LYP calculations (in Å)

Atom	Х	Y	Z	Н	5.462980	-4.073027	0.761087	Н	-2.742332	2.325103	0.235158
С	-4.539895	-1.101781	-1.238576	С	3.879739	1.009233	0.019250	В	-5.062915	1.319571	1.059312
С	-2.884506	-0.074274	0.106911	С	2.888351	1.739915	0.735751	Н	-5.358876	2.168275	1.842156
С	-1.447779	-0.383535	0.083868	Н	2.094370	1.219098	1.249941	В	-5.421737	-0.424265	1.297563
С	-0.569116	0.311986	-0.772831	С	2.995570	3.114712	0.817868	Н	-5.964085	-0.827451	2.278416
Н	-0.963957	1.069069	-1.440058	Н	2.257952	3.676285	1.378447	В	-4.091834	-1.312580	0.377886
С	0.791540	0.040271	-0.783752	С	4.064777	3.780916	0.198328	Н	-3.713749	-2.382669	0.730506
Н	1.432571	0.572325	-1.479023	Н	4.135589	4.860804	0.261196	В	-3.753160	0.390397	-1.339831
С	1.328430	-0.945321	0.069570	С	5.054906	3.055287	-0.496889	Н	-3.113947	0.633896	-2.311795
С	0.457447	-1.668314	0.906492	Н	5.874039	3.580759	-0.973440	В	-5.024579	1.573880	-0.718408
Н	0.860070	-2.437591	1.556706	С	4.978429	1.682313	-0.582384	Н	-5.277192	2.629541	-1.209093
С	-0.898948	-1.383441	0.919416	Н	5.718954	1.102637	-1.116396	В	-6.282713	0.548420	0.054786
Н	-1.551531	-1.934803	1.586273	Ν	3.235885	-2.502474	0.047268	Н	-7.427747	0.866159	0.144298
С	2.744645	-1.293454	0.054414	Ν	4.990465	-1.073642	-0.193743	В	-5.837085	-1.146126	-0.264424
С	4.599272	-2.337949	-0.100371	Ν	3.836083	-0.372061	-0.054608	Н	-6.571600	-2.077898	-0.340330
С	5.542658	-3.479182	-0.155231	В	-3.765663	0.160286	1.452952	В	-5.589454	0.102387	-1.523850
Н	6.567334	-3.129073	-0.277668	Н	-3.186086	0.088835	2.488948	Н	-6.130957	0.144255	-2.581486
Н	5.278387	-4.139066	-0.988293	В	-3.514938	1.422551	0.180135	Н	-4.309950	-1.875110	-1.959582

Table S12 Cartesian coordinates of the first excited state (S1) fully optimized geometry of CB1 in THF from B3LYP calculations (in Å)

Atom	X	Y	Z	Н	3.672070	-4.417746	0.524250	Ν	2.940115	0.791866	-0.059538
С	-4.569543	-0.386817	1.242361	С	3.539950	-2.783692	-0.868155	Ν	4.052179	1.587279	-0.089076
С	-3.820825	0.155861	-0.147978	Н	3.720463	-3.417336	-1.730482	Ν	2.188919	2.848681	-0.250600
С	-2.345227	0.484714	-0.130022	С	3.342005	-1.409963	-1.051987	В	-4.927196	1.115920	-1.035635
С	-1.368068	-0.510492	-0.259178	С	2.912814	-0.309098	2.644843	Н	-4.484480	2.011878	-1.667057
Н	-1.653376	-1.548817	-0.365931	Н	2.692754	0.712083	2.322220	В	-4.876873	1.214831	0.738492
С	-0.011862	-0.192272	-0.267477	С	4.211448	-0.251586	3.473112	Н	-4.391138	2.092511	1.355632
Н	0.704896	-0.994746	-0.376416	Н	4.080500	0.405224	4.339508	В	-6.431913	1.131344	-0.088349
С	0.413293	1.140216	-0.151790	Н	5.041866	0.134065	2.874248	Н	-7.149824	2.075352	-0.094656
С	-0.569085	2.140118	-0.042984	Н	4.492375	-1.243495	3.843107	В	-6.255789	0.022719	-1.479733
Н	-0.256260	3.174443	0.032418	С	1.724415	-0.784920	3.500783	Н	-6.855240	0.182559	-2.491481
С	-1.919830	1.819440	-0.034024	Н	1.577834	-0.109267	4.349757	В	-4.576790	-0.565733	-1.507723
Н	-2.645295	2.619659	0.044406	Н	1.891646	-1.789438	3.903338	Н	-3.895665	-0.789962	-2.447906
С	1.821693	1.570662	-0.157012	Н	0.798183	-0.804962	2.918329	В	-6.163805	0.180981	1.391102
С	3.547548	2.810634	-0.206302	С	3.412659	-0.797747	-2.447265	Н	-6.565793	0.429043	2.475391
С	4.407772	4.029695	-0.283886	Н	3.035440	0.226950	-2.384747	В	-7.021419	-0.554742	0.020454
Н	5.461483	3.753434	-0.219403	С	4.876159	-0.714788	-2.925398	Н	-8.176313	-0.816542	0.095513
Н	4.172895	4.721132	0.531218	Н	4.929115	-0.236022	-3.908957	В	-5.864794	-1.603553	-0.853222
Н	4.239563	4.562668	-1.224882	Н	5.320215	-1.712608	-3.011245	Н	-6.178594	-2.608004	-1.400218
С	3.114832	-0.628770	0.099514	Н	5.481643	-0.130924	-2.226427	В	-4.312559	-1.504452	-0.023652
С	3.102702	-1.169485	1.400034	С	2.533760	-1.543708	-3.466934	Н	-3.493189	-2.336505	0.121580
С	3.302781	-2.550190	1.524308	Н	2.557978	-1.024015	-4.430145	В	-5.813837	-1.495246	0.922560
Н	3.299453	-3.002517	2.511096	Н	1.491682	-1.593482	-3.136107	Н	-5.980421	-2.380226	1.689249
С	3.516465	-3.349621	0.404690	Н	2.883132	-2.567009	-3.638514	 Н	-3.918336	-0.491648	2.100826

Table S13 Cartesian coordinates of the ground state (S₀) fully optimized geometry of **CB2** in THF from B3LYP calculations (in Å)

Atom	Х	Y	Z	Н	3.316284	-4.476296	-0.357454	Ν	3.009059	0.778436	-0.088186
С	-5.228999	0.572569	1.787844	С	2.705915	-2.681073	-1.369837	Ν	4.117898	1.516530	-0.007884
С	-3.693180	0.164625	0.036534	Н	2.371623	-3.215347	-2.251471	Ν	2.304424	2.879425	0.021630
С	-2.259248	0.526432	0.030784	С	2.615909	-1.290112	-1.333365	В	-4.683700	0.347355	-1.240491
С	-1.280393	-0.386791	0.475596	С	4.167745	-0.652089	2.203649	Н	-4.207362	0.808723	-2.227130
Н	-1.587311	-1.356993	0.847303	Н	3.852300	0.393272	2.176208	В	-4.939017	1.345068	0.303295
С	0.066143	-0.055904	0.475085	С	5.709195	-0.660776	2.250981	Н	-4.628244	2.491675	0.310859
Н	0.779417	-0.761655	0.881744	Н	6.058486	-0.137492	3.146653	В	-6.332771	0.744411	-0.754322
С	0.492658	1.209654	0.007868	Н	6.131672	-0.162257	1.374692	Н	-6.981461	1.426112	-1.483614
С	-0.486782	2.137416	-0.420893	Н	6.097587	-1.684104	2.285531	В	-5.904557	-0.951981	-1.163666
Н	-0.168903	3.111245	-0.775201	С	3.565623	-1.271508	3.478694	Н	-6.254397	-1.499314	-2.162396
С	-1.826344	1.796328	-0.419563	Н	3.880982	-0.691552	4.351357	В	-4.274725	-1.254760	-0.505480
Н	-2.558825	2.512651	-0.772302	Н	3.899093	-2.302277	3.632908	Н	-3.480634	-2.034712	-0.923306
С	1.877175	1.625862	-0.032343	Н	2.471866	-1.269899	3.447678	В	-6.605058	0.871881	0.989725
С	3.653216	2.789861	0.044061	С	2.172132	-0.518884	-2.569805	Н	-7.352593	1.680682	1.436520
С	4.566451	3.957324	0.094982	Н	1.946699	0.510486	-2.279901	В	-7.036787	-0.641980	0.144594
Н	5.606793	3.634167	0.061487	С	3.337964	-0.448946	-3.582124	Н	-8.177012	-0.975080	0.054886
Н	4.394316	4.526372	1.014993	Н	3.041526	0.147196	-4.450534	В	-5.683754	-1.792791	0.408279
Н	4.363543	4.631923	-0.742663	Н	3.611755	-1.449584	-3.931688	Н	-5.859065	-2.964209	0.529403
С	3.088388	-0.641744	-0.154386	Н	4.226380	0.010289	-3.138472	В	-4.385294	-0.815359	1.292474
С	3.667110	-1.341241	0.938779	С	0.903179	-1.096265	-3.218003	Н	-3.644548	-1.335277	2.062345
С	3.726303	-2.729966	0.830875	Н	0.587600	-0.449426	-4.041826	В	-6.198600	-0.720680	1.720221
Н	4.137807	-3.310183	1.649135	Н	0.080810	-1.160495	-2.500072	Н	-6.627746	-1.159795	2.737927
С	3.251103	-3.394438	-0.303573	Н	1.071656	-2.093952	-3.634699	Н	-4.946035	1.066543	2.707993

Table S14 Cartesian coordinates of the first excited state (S1) fully optimized geometry of CB2 in THF from B3LYP calculations (in Å)

				-							
Atom	Х	Y	Z	Н	5.186391	-4.163279	-0.893565	В	-3.797658	1.209700	-0.947267
С	-4.057390	-1.331401	0.003999	Н	5.238889	-4.135577	0.869517	Н	-3.161718	1.926588	-1.653374
С	-3.094261	-0.099078	-0.034677	C	3.706332	1.025583	0.060053	В	-5.133589	1.651344	0.093830
С	-1.624942	-0.397021	-0.066707	C	3.006823	1.699758	1.064814	Н	-5.566965	2.762229	0.169574
С	-0.709946	0.434793	-0.734624	Н	2.412850	1.141160	1.779317	В	-5.172125	0.678750	1.582922
Н	-1.077947	1.287850	-1.292787	C	3.084968	3.090468	1.136820	Н	-5.684986	1.116465	2.569923
С	0.657204	0.179139	-0.710199	Н	2.538751	3.615945	1.913754	В	-4.028327	-0.464720	-1.466423
Н	1.326225	0.831776	-1.260257	C	3.870696	3.801023	0.226738	Н	-3.518099	-0.937468	-2.428346
С	1.167641	-0.923804	-0.006496	Н	3.932387	4.882918	0.290511	В	-5.427243	0.612344	-1.331922
С	0.261437	-1.764830	0.657681	C	4.580530	3.116354	-0.762524	Н	-6.025897	0.991680	-2.290608
Н	0.639519	-2.625262	1.199607	Н	5.195586	3.663147	-1.470461	В	-6.247664	0.221111	0.231826
С	-1.104203	-1.501090	0.631833	C	4.498506	1.727181	-0.852858	Н	-7.432382	0.341925	0.322815
Н	-1.774186	-2.156621	1.178154	Н	5.041672	1.181673	-1.616253	В	-5.308825	-1.088005	1.016799
С	2.596755	-1.269123	0.013251	Ν	3.061330	-2.516863	0.025619	Н	-5.835045	-1.976628	1.614448
С	4.416281	-2.367178	-0.015587	Ν	4.827418	-1.107438	-0.050514	В	-5.537100	-1.042429	-0.779789
С	5.366985	-3.520002	-0.026474	Ν	3.652789	-0.399652	-0.022805	Н	-6.115242	-1.944064	-1.298274
Н	6.397017	-3.161114	-0.062735	В	-3.608762	1.190262	0.816687	Н	-4.527544	-0.360914	1.906870
				Н	-2.818992	1.944560	1.301736	Н	-3.595085	-2.305730	-0.109227

Table S15 Cartesian coordinates of the ground state (S₀) fully optimized geometry of *nido*-CB1 in THF from B3LYP calculations (in Å)

Atom	Х	Y	Ζ	Н	4.846387	-4.394724	-0.806091	В	-3.859909	1.447441	0.460668
С	-4.001032	-0.712058	-1.084969	Н	5.094026	-4.212711	0.929593	Н	-3.182568	2.331173	0.865457
С	-3.151299	-0.010716	-0.015432	С	3.856028	0.933174	-0.029564	В	-5.424480	0.949236	1.188847
С	-1.672875	-0.276320	-0.001663	С	3.068451	1.716154	0.838653	Н	-5.918144	1.560218	2.081141
С	-0.723882	0.619662	-0.530632	Н	2.276895	1.248484	1.410752	В	-5.687201	-0.787466	1.216021
Н	-1.058432	1.552032	-0.977207	С	3.323011	3.079791	0.974090	Н	-6.311731	-1.310139	2.076930
С	0.633908	0.345867	-0.507602	Н	2.706329	3.665926	1.650453	В	-3.851351	0.970380	-1.230519
Н	1.314690	1.059611	-0.954383	С	4.365322	3.691097	0.272235	Н	-3.203340	1.464749	-2.083632
С	1.142146	-0.869666	0.057641	Н	4.557449	4.753743	0.384112	В	-5.369168	1.550539	-0.489283
С	0.162075	-1.785999	0.560559	С	5.163659	2.907885	-0.571545	Н	-5.842336	2.591515	-0.805889
Н	0.505442	-2.728984	0.971477	Н	5.984153	3.363252	-1.119945	В	-6.408244	0.151208	-0.095922
С	-1.185565	-1.493368	0.537792	С	4.918098	1.547568	-0.724403	Н	-7.587536	0.251366	-0.189708
Н	-1.889112	-2.215844	0.945768	Н	5.538496	0.939540	-1.371965	В	-5.475121	-1.344498	-0.494990
С	2.519634	-1.245891	0.090939	Ν	2.950064	-2.535794	0.223985	Н	-5.903343	-2.340409	-0.974713
С	4.273283	-2.473209	-0.024780	Ν	4.771961	-1.270018	-0.284747	В	-5.368835	0.125315	-1.542981
С	5.154113	-3.686609	-0.028904	Ν	3.642461	-0.444983	-0.181741	Н	-5.785891	-0.002249	-2.644756
Н	6.193464	-3.403463	-0.208487	В	-3.985576	-0.018729	1.449873	Н	-4.971963	-1.720184	0.701105
				Н	-3.383533	-0.314719	2.424345	Н	-3.451825	-1.323919	-1.789890

Table S16 Cartesian coordinates of the first excited state (S1) fully optimized geometry of *nido*-CB1 in THF from B3LYP calculations (in Å)

Atom	Х	Y	Z	C	-3.318604	-3.359393	0.525427	Н	-5.333194	-1.805014	-2.825980
С	4.323781	-1.228150	0.293139	Н	-3.449716	-4.426028	0.682711	Ν	-2.838688	0.776434	-0.084790
С	3.918937	0.216514	-0.149557	С	-3.416557	-2.830170	-0.759724	Ν	-3.973671	1.545853	-0.124147
С	2.457131	0.547595	-0.130005	Н	-3.628857	-3.491179	-1.593919	Ν	-2.137813	2.846175	-0.320166
С	1.486811	-0.439970	-0.368087	С	-3.248519	-1.459877	-0.991389	В	5.131028	1.373879	0.335577
Н	1.793522	-1.462717	-0.558679	С	-2.642054	-0.249784	2.645297	Н	4.865607	2.469520	0.717692
С	0.126045	-0.141143	-0.394877	Н	-2.477821	0.769282	2.285655	В	4.843781	0.846549	-1.333576
Н	-0.576843	-0.939882	-0.594094	С	-3.880169	-0.211779	3.562341	Н	4.381612	1.639959	-2.098215
С	-0.324244	1.172182	-0.186349	Н	-3.709874	0.470050	4.402297	В	6.468446	0.894224	-0.686246
С	0.643881	2.170132	0.030912	Н	-4.102780	-1.201986	3.974472	Н	7.294483	1.658218	-1.087818
Н	0.314164	3.191463	0.184275	Н	-4.763318	0.133447	3.016265	В	6.419904	0.358463	1.019317
С	1.997831	1.864516	0.056318	С	-1.381609	-0.669329	3.424410	Н	7.174908	0.772122	1.843971
Н	2.715924	2.657043	0.232337	Н	-1.195425	0.030776	4.245472	В	4.723165	0.015532	1.391679
С	-1.737442	1.578601	-0.202928	Н	-0.499746	-0.676306	2.777113	Н	4.127940	0.124054	2.413054
С	-3.495666	2.775327	-0.267387	Н	-1.489478	-1.668518	3.859754	В	6.036005	-0.451277	-1.766644
С	-4.383903	3.973268	-0.365443	С	-3.391367	-0.888936	-2.398746	Н	6.617785	-0.599351	-2.800226
Н	-5.431124	3.675182	-0.290144	Н	-3.004849	0.134131	-2.385035	В	6.927815	-0.813016	-0.261596
Н	-4.232561	4.491552	-1.317675	С	-2.573678	-1.670016	-3.442656	Н	8.058142	-1.197107	-0.295678
Н	-4.161343	4.686947	0.434061	Н	-2.641888	-1.173751	-4.416166	В	5.844117	-1.291224	1.050144
С	-2.977701	-0.640181	0.123847	Н	-2.941843	-2.693209	-3.571127	Н	6.055641	-2.119331	1.878178
С	-2.888277	-1.145271	1.435587	Н	-1.516476	-1.723804	-3.164887	В	5.508052	-1.837075	-0.644243
С	-3.058440	-2.524956	1.608747	С	-4.877676	-0.808758	-2.800902	Н	5.609644	-3.003267	-0.875727
Н	-2.993037	-2.948748	2.606121	Н	-4.980210	-0.365619	-3.797361	Н	5.018683	-1.203348	-1.780464
				Н	-5.438891	-0.193446	-2.092269	Н	3.529804	-1.853167	0.685838

Table S17 Cartesian coordinates of the ground state (S₀) fully optimized geometry of *nido*-CB2 in THF from B3LYP calculations (in Å)

Atom	Х	Y	Z	С	-3.397998	-3.329413	0.726424	Н	-4.815867	-2.380885	-3.068341
С	4.567374	0.117717	1.233011	Н	-3.539969	-4.381413	0.958435	Ν	-2.870566	0.751934	-0.173936
С	3.918656	0.239437	-0.157650	С	-3.371309	-2.906122	-0.600413	Ν	-4.026052	1.531679	-0.270519
С	2.462401	0.585347	-0.236000	Н	-3.494216	-3.635209	-1.396438	Ν	-2.182318	2.842080	-0.497889
С	1.483423	-0.431118	-0.103895	С	-3.188057	-1.555638	-0.923803	В	5.070994	0.681952	-1.315629
Н	1.803587	-1.464115	0.015011	С	-2.913704	-0.045194	2.625306	Н	4.737134	1.280890	-2.282191
С	0.128880	-0.160960	-0.120088	Н	-2.733557	0.937367	2.182995	В	4.515059	-0.990564	-1.147988
Н	-0.561783	-0.987676	-0.015981	С	-4.212939	0.053006	3.447484	Н	3.737654	-1.592375	-1.805704
С	-0.368372	1.182954	-0.275569	Н	-4.112126	0.808042	4.235037	В	6.233916	-0.687121	-1.321270
С	0.639219	2.204195	-0.420590	Н	-4.457449	-0.900924	3.928436	Н	6.812093	-1.008165	-2.309470
Н	0.308823	3.227995	-0.556183	Н	-5.056381	0.335972	2.809899	В	6.608233	0.799043	-0.413185
С	1.984483	1.915113	-0.397988	С	-1.704879	-0.375442	3.520356	Н	7.474472	1.541713	-0.739718
Н	2.695978	2.727788	-0.516494	Н	-1.581579	0.392662	4.291750	В	5.081193	1.418332	0.278530
С	-1.739256	1.563117	-0.307441	Н	-0.783262	-0.418054	2.931657	Н	4.783105	2.531685	0.530501
С	-3.527838	2.746630	-0.464452	Н	-1.827339	-1.338316	4.028971	В	5.813786	-1.994540	-0.226477
С	-4.428089	3.933172	-0.636174	С	-3.162289	-1.113396	-2.382043	Н	6.087202	-3.122370	-0.467773
Н	-5.474912	3.632930	-0.553452	Н	-2.953654	-0.040887	-2.393330	В	6.986107	-0.788269	0.314652
Н	-4.276058	4.403539	-1.613832	С	-2.039349	-1.811068	-3.171805	Н	8.117636	-1.090949	0.510230
Н	-4.220892	4.694731	0.123425	Н	-2.005361	-1.432414	-4.199255	В	6.192364	0.481797	1.281152
С	-3.027549	-0.632831	0.131820	Н	-2.191702	-2.895019	-3.223338	Н	6.659965	0.934929	2.271589
С	-3.061728	-1.042426	1.482086	Н	-1.063708	-1.628176	-2.710462	В	5.608811	-1.224760	1.400806
С	-3.244439	-2.403773	1.755933	С	-4.534067	-1.321883	-3.051419	Н	5.679591	-1.765528	2.453775
Н	-3.271553	-2.742862	2.787729	Н	-4.513649	-0.965139	-4.087120	Н	4.864091	-2.052492	0.633766
				Н	-5.315934	-0.772749	-2.517675	Н	3.914400	0.337718	2.068463

Table S18 Cartesian coordinates of the first excited state (S1) fully optimized geometry of *nido*-CB2 in THF from B3LYP calculations (in Å)