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Figure S1. EPR simulations for 3-5. As the data do not contain sufficient resolution to 
simultaneously determine five hyperfine tensors, to add in the 14N couplings, we initially limited 
the possible 14N hyperfine tensors to [A||, A^] = [20, 40] or [40, 20] MHz, depending on whether 
the nitrogen in question was in the xy-plane or on the z-axis (M. Iwaizumi, T. Kudo and S. Kita, 
Inorg. Chem., 1986, 25, 1546-1550).  This is consistent with the ~14 G (~39 MHz) splitting that 
is resolved near g = 2 in the spectra for compounds 3 and 5. We found that no combination, or 
permutation, of these two tensors alone produced a feature at 3180 G. Only the combination 
of one 14N with [A||, A^] = [20, 40] and two with [A||, A^]  = [40, 20], with a fourth 14N with a 40 
MHz isotropic coupling, satisfactorily reproduced the g|| region of the spectrum, and specifically 
the feature at 3180 G. Any other combination that produced a feature near that position also 
produced poorly resolved features to lower field that are not reflected in the spectra. 
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Figure S2. EPR spectrum of 6 in CH3CN:toluene (1:1) 
at 12 K. Parameters: g||= 2.27, g^ = 2.07, and 63,65Cu 
couplings of [A||, A^] = [530, 116] MHz.	
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Figure S3. Absorption spectrum of 3 (6.0 x 10-5 M) in 
CH3CN. 
	

	
Figure S4. UV-Vis spectrum of the d-d region of 3 in 
CH3CN. 
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Figure S5. Absorption spectrum of 4 (6.2 x 10-5 M) in CH3CN. 
 
	

	
Figure S6. Absorption spectrum of 5 (4.0 x 10-5 M) in 
CH3CN. 
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Figure S7. Absorption spectrum of 6 (6.12 x 10-5 M) in CH3CN. 
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Figure S8. ESI-MS of isolated 3 in CH3CN. The * near the isotope cluster m/z 466.1 
represents an adduct of trifluoro acetic acid (TFA) with [TPACu]2+, which is due to 
contamination in the mass spectrometer. 
	

	
Figure S9. ESI-MS of isolated 4 in CH3CN. The * near the isotope cluster m/z 466.2 
represents an adduct of trifluoro acetic acid (TFA) with [TPACu]2+, which is due to 
contamination in the mass spectrometer. 
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Figure S10. ESI-MS of 5 in CH3CN. The * near the isotope cluster m/z 466.2 represents an 
adduct of trifluoro acetic acid (TFA) with [TPACu]2+, which due to contamination in the mass 
spectrometer. 
	

	
Figure S11. ESI-MS of 6 in CH3CN. The * near the isotope cluster m/z 466.1 represents an 
adduct of trifluoro acetic acid (TFA) with [TPACu]2+, which is due to contamination in the mass 
spectrometer. 
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Figure S12. IR spectrum of 3 (KBr pellet). 
	

	
Figure S13. IR spectrum of 4 (KBr pellet). 
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Figure S14. IR spectrum of 5 (KBr pellet). 
	

	
Figure S15. IR spectrum of 6 (KBr pellet). 
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Figure S17. ESI-MS (CH3CN)of the reaction mixture for the attempted preparation of 
7.	

	
Figure S16. Representations of the cationic and anionic 
portions of the X-ray structure of 11. Ellipsoids are 
plotted at the 50% probability level. 
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Figure S18. Representation of the cationic 
portion of the X-ray structure of 12. Ellipsoids 
are plotted at the 50% probability level. 
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Figure S19. ESI-MS of 12 in CH3CN. The * near the isotope cluster m/z 466.2 represents an 
adduct of trifluoro acetic acid (TFA) with [TPACu]2+, which is due to contamination in the mass 
spectrometer. 
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Figure S20. ESI-MS (CH3CN) of the reaction mixture for the attempted preparation of 8.	
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Figure S21. ESI-MS (CH3CN) of the reaction mixture for the attempted preparation of 9. 
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Figure S22. ESI-MS (CH3CN) of the reaction mixture for the attempted preparation of 
10. 
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Figure S23. 1H NMR (CD3CN) of the organic recovery from the reaction mixture of 7. 
Ph3CH is present as an internal standard.  
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Figure S24. 1H NMR (CD3CN) of the organic recovery from the reaction mixture of 8. 
Ph3CH is present as an internal standard.  
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Figure S25. 1H NMR (CD3CN) of the organic recovery from the reaction mixture of 9. 
Ph3CH is present as an internal standard.  
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Figure S26. 1H NMR (CD3CN) of the organic recovery from the reaction mixture of 10. 
Ph3CH is present as an internal standard.  
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Figure 27. 1H NMR (CD3CN) of the free organic products from the reaction mixture of 7 
with excess H2O (200 eq). Ph3CH is present as an internal standard.  
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Figure 28. 1H NMR (CD3CN) of the free organic products from the reaction mixture of 8 
with excess H2O (200 eq). Ph3CH is present as an internal standard.  
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Figure S29. 1H NMR (CD3CN) of the free organic products from the reaction mixture of 9 
with excess H2O (200 eq). Ph3CH is present as an internal standard. 
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Figure S30. 1H NMR (CD3CN) of the free organic products from the reaction mixture of 
10 with excess H2O (200 eq). Ph3CH is present as an internal standard. 
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Figure S31. 1H NMR (CD3CN) of the organic recovery from the reaction mixture of 
[(TPA)Cu(CH3CN)](ClO4)2, LiHMDS, and 2-chloro-1,3-phenylpropane-1,3-dione. Ph3CH is 
present as an internal standard. 
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Figure S32. 1H NMR (CD3CN) of the organic recovery from the reaction mixture of 
[(TPA)Cu(CH3CN)](ClO4)2, LiHMDS, 2-chloro-1,3-phenylpropane-1,3-dione and excess 
H2O (200 eq). Ph3CH is present as an internal standard. 
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Figure S33. 1H NMR (CD3CN) of the organic recovery from the reaction mixture of 
[(TPA)Cu(CH3CN)](ClO4)2, LiHMDS, 2-chloro-1,3-phenylpropane-1,3-dione and excess 
D2O. Ph3CH is present as an internal standard. 
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Figure S34. 1H NMR (CD3CN) of the organic recovery from the reaction mixture of 
[(TPA)Cu(CH3CN)](ClO4)2, LiHMDS, 2-chloro-1,3-phenylpropane-1,3-dione and excess 
MeOH. Ph3CH is present as an internal standard. 
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Figure S35. 1H NMR (CD3CN) of the organic recovery from the reaction mixture of 
Cu(ClO4)2•6H2O, LiHMDS, and 2-chloro-1,3-phenylpropane-1,3-dione. Ph3CH is present as 
an internal standard. 
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Figure S36. 1H NMR (CD3CN) of the organic recovery from the reaction mixture of in-situ 
generated 1. Ph3CH is present as an internal standard. 
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Figure S37. 1H NMR (CD3CN) of the organic recovery from the reaction mixture of in-situ 
generated 2. Ph3CH is present as an internal standard. 
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Figure S38. 1H NMR (CD3CN) of the organic recovery from the reaction mixture of in-
situ generated 3. Ph3CH is present as an internal standard. 
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Figure S39. 1H NMR (CD3CN) of the organic recovery from the reaction mixture of 7 
under O2. Ph3CH is present as an internal standard. 
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Scheme S1. General reaction for dehalogenation of 2-chloro-1,3-diphenyl-1,3-
propanedion by 1 eq (a) or 2 eq (b) of [(TPA)Cu(CH3CN)]PF6. 
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Figure S40. 1H NMR (CD3CN) of the organic recovery following reaction of 
[(TPA)Cu(CH3CN)]PF6 (1 eq) with 2-chloro-1,3-phenylpropane-1,3-dione (1 eq). Ph3CH is 
present as an internal standard.  
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Figure S41. 1H NMR (CD3CN) of the organic recovery following reaction of 
[(TPA)Cu(CH3CN)]PF6 (2 eq) with 2-chloro-1,3-phenylpropane-1,3-dione (1 eq). Ph3CH is 
present as an internal standard. 
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Figure S42. EPR spectrum of [(TPA)Cu(O2CPh)]ClO4 (12) in 
CH2CH2:toluene (1:1) at 4.5 K and a simulated spectrum. This 
complex exhibits a strained EPR spectrum that is dominated 
by a much more isotropic 63,65Cu hyperfine tensor; [A||, A^] = 
[285, 220] MHz. Simulations show that the observed line 
shape can be matched without including any 14N couplings, 
with the inclusion of an isotropic g-strain of 0.02 and 90 MHz 
of A-strain (parallel direction only).  
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Figure S43. EPR spectra of the reaction mixture of 8 after 
stirring for 1 hr (black) and 48 hr (red), respectively, at 30 
°C. The samples were collected in CH3CN:toluene (1:1) at 
12 K .  
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Figure S44. EPR spectra of the reaction mixture of 9 after 
stirring for 1 hr (black) and 48 hr (red), respectively, at 30 
°C. The samples were collected in CH3CN:toluene (1:1) at 
12 K .  
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Figure S45. EPR spectra of the reaction mixture of 10 (R = 
-Cl) after stirring for 1 hr (black) and 48 hr (red), 
respectively, at 30 °C. The samples were collected in 
CH3CN:toluene (1:1) at 12 K.  
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Figure S46. Absorption spectra (CH3CN) of the 
reaction mixture of 7 at the start of the reaction, and 
after 24 and 48 h. 
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Figure S47. 1H NMR (CD3CN) of the organic recovery from the reaction mixture of 7 after 
1 hr. Ph3CH is present as an internal standard.  
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Table S1. Summary of X-ray data collection and refinement for 3-6. 

 3 4 5 6 
empirical formula C66H58Cl2Cu2N8O12 

 

C35H33ClCuN4O6 

 

C35H33ClCuN4O8 C66H54Cl6Cu2N8O12 
formula weight 1353.18 704.64 736.64 1490.95 
crystal system Triclinic Monoclinic Monoclinic Monoclinic 
space group P-1 P21/c P21/c P21 
a (Å) 10.6383(5) 12.8484(7) 12.6105(4) 12.4169(3) 
b (Å) 16.6917(8) 21.3956(12) 22.0545(6) 21.7754(5) 
x (Å) 18.4503(9) 12.5769(6) 12.8161(4) 12.5537(4) 
a (deg) 77.820(2) 90 90 90 
b (deg) 80.769(2) 113.825(2) 114.532(4) 113.723(4) 
g (deg) 71.530(2) 90 90 90 
V (Å3) 3022.0(3) 3162.8(3) 3242.63(19) 3107.49(17) 
Z 4 4 4 

 

2  
density (calcd), Mg m-3 1.487 1.480 1.509 1.593 
temp (K) 100(1) 100 100 (2)  100 (1)  
crystal size (mm3) 0.03 x 0.09 x 0.11 

 

0.41 x 0.12 x 0.06 0.09 x 0.30 x 0.39 0.777 x 0.23 x 0.114 
diffractometer Bruker D8 Venture Bruker D8 Venture XtaLAB Synergy-S Rigaku 
Abs. coeff. (mm-1) 0.864 0.829 0.817 1.017 
2q max (deg) 54.79 54.98 64.82 61.49 
Reflections collected 9807 65958 13931 15300 
Indep. reflections 13934 7271 6625 18046 
variable parameters 811 448 444 849 
R1 / wR2b 0.0371/0.0782 0.0850/0.1653 0.0330/0.0839 0.0506/0.1253 
goodness-of-fit (F2) 1.032 1.344 1.048 1.017 
largest diff. (e Å-3) 0.608/-0.526 0.69/-0.91 0.722/-0.483 1.47/-1.92 

aRadiation used: Mo Ka (l = 0.71073 Å). bR1 = ∑ | |Fo| - |Fc| | / ∑ |Fo|;  
wR2 = [∑[w(Fo2-Fc2)2]/[∑(Fo2)2]]1/2 where w = 1/[s2(Fo2) + (aP)2 + bP]. 
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Table S2. Selected bond distances (Å) and angles (deg) for 3 and 4. 

     3 4 
 Cation A Cation B  

Cu(1)-O(1) 1.9384(14) 1.9443(13) 1.937(3) 
Cu(1)-O(2) 1.9391(14) 1.9218(13) 1.943(3) 
Cu(1)-N(1) 2.0981(17) 2.0954(16) 2.062(4) 
Cu(1)-N(2) 2.0122(17) 1.9992(16) 1.994(4) 
Cu(1)-N(3) 2.3561(18) 2.3481(18) 2.831 
Cu(1)-N(4) 2.3680(19) 2.4945(17 2.274(4) 
O(1)-C(19) 1.274(2) 1.279(2) 1.283(5) 
O(2)-C(27) 1.277(2) 1.280(2) - 
O(2)-C(28) - - 1.282(5) 

O(1)-Cu(1)-O(2) 92.99(6) 92.87(6) 92.71(13) 
O(1)-Cu(1)-N(1) 89.47(6) 93.39(6) 174.11(14) 

 O(1)-Cu(1)-N(2) 172.69(7) 175.10(6) 92.51(14) 
 O(1)-Cu(1)-N(3) 94.54(6) 88.21(6) 111.46 

O(1)-Cu(1)-N(4) 83.44(6) 93.05(6) 98.13(14) 
 O(2)-Cu(1)-N(1) 175.47(6) 172.48(6) 91.01(14) 
 O(2)-Cu(1)-N(2) 93.52(6) 90.37(6) 167.58(14) 
 O(2)-Cu(1)-N(3) 97.17(6) 100.89(6) 91.02 

O(2)-Cu(1)-N(4) 108.45(6) 106.88(6) 93.03(14) 
 N(1)-Cu(1)-N(3) 78.83(6) 75.15(6) 73.01 

N(1)-Cu(1)-N(4) 75.60(6) 76.94(6) 77.10(15) 
 N(2)-Cu(1)-N(1) 83.82(7) 83.66(6) 84.75(15) 
 N(2)-Cu(1)-N(3) 81.33(6) 94.79(6) 76.20 

N(2)-Cu(1)-N(4) 97.65(6) 82.49(6) 97.37(15) 
 N(3)-Cu(1)-N(4) 154.36(6) 152.09(6) 149.84 
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Table S3. Selected bond distances (Å) and angles  
(deg) for 5. 

 5 
  

Cu(1)-O(1) 1.9325(13) 
Cu(1)-O(2) 1.9234(13) 
Cu(1)-N(1) 2.0586(15) 
Cu(1)-N(2) 2.2994(16) 
Cu(1)-N(3) 1.9868(15) 

Cu(1)-N(38)* 2.79 
O(1)-C(19) 1.278(2) 
O(2)-C(28) 1.285(2) 

O(1)-Cu(1)-O(2) 92.10(5) 
O(1)-Cu(1)-N(1) 91.35(6) 
O(1)-Cu(1)-N(2) 90.73(6) 
O(1)-Cu(1)-N(3) 168.23(6) 
O(1)-Cu(1)-N(38) 90.37 
O(2)-Cu(1)-N(1) 175.26(6) 
O(2)-Cu(1)-N(2) 99.41(6) 
O(2)-Cu(1)-N(3) 92.95(6) 
O(2)-Cu(1)-N(38) 108.57 
N(1)-Cu(1)-N(3) 84.27(6) 
N(1)-Cu(1)-N(38) 74.63 
N(2)-Cu(1)-N(1) 77.29(6) 
N(2)-Cu(1)-N(3) 98.91(6) 
N(2)-Cu(1)-N(38) 151.92 
N(3)-Cu(1)-N(38) 77.95 
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Table S4. Selected bond distances (Å) and angles (deg) for 6 

               6 
 Cation A Cation B 

Cu(1)-O(1) 1.927(3) 1.924(3) 
Cu(1)-O(2) 1.947(3) 1.949(3) 
Cu(1)-N(1) 2.058(4) 2.043(4) 
Cu(1)-N(2) 1.985(3) 1.982(3) 
Cu(1)-N(3) 2.264(4) 2.262(4) 
Cu(1)-N(4) 2.754 2.876 
O(1)-C(19) 1.283(5) 1.292(5) 
O(2)-C(27) 1.272(5) 1.280(5) 

O(1)-Cu(1)-O(2) 92.22(13) 92.36(13) 
O(1)-Cu(1)-N(1) 172.72(14) 175.01(15) 
O(1)-Cu(1)-N(2) 93.02(14) 93.40(14) 
O(1)-Cu(1)-N(3) 95.74(14) 98.49(13) 
O(1)-Cu(1)-N(4) 113.01 110.73 
O(2)-Cu(1)-N(1) 91.41(13) 90.85(14) 
O(2)-Cu(1)-N(2) 166.78(14) 166.83(14) 
O(2)-Cu(1)-N(3) 94.25(14) 91.59(13) 
O(2)-Cu(1)-N(4) 90.45 

 

92.80 
N(1)-Cu(1)-N(3) 77.69(14) 77.59(14) 
N(1)-Cu(1)-N(4) 73.26 72.90 
N(2)-Cu(1)-N(1) 84.80(14) 84.27(15) 
N(2)-Cu(1)-N(3) 97.29(14) 99.25(15) 
N(2)-Cu(1)-N(4) 76.32 74.08 
N(3)-Cu(1)-N(4) 150.67 150.22 
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Table S5. Summary of X-ray data collection and refinement for 11 
 11 

empirical formula C38H39Cl5Cu2LiN9O12 

formula weight 1125.06 
crystal system Trigonal 
space group P3c1 
a (Å) 12.6221(10) 
b (Å) 12.6221(10) 
x (Å) 16.3066(12) 
a (deg) 90 
b (deg) 90 
g (deg) 120 
V (Å3) 2249.9(4) 
Z 1.99998 
density (calcd), Mg m-3 1.661 
temp (K) 100 
crystal size (mm3) 0.11 x 0.12 x 0.20 
diffractometer Bruker D8 Venture 
Abs. coeff. (mm-1) 1.314 

 
2q max (deg) 60.902 

 
Reflections collected 9941 

 
Indep. reflections 3427 
variable parameters 334 
R1 / wR2b 0.0386/0.0850 
goodness-of-fit (F2) 1.023 

 
largest diff. (e Å-3) 0.671/-0.285 

aRadiation used: Mo Ka (l = 0.71073 Å). bR1 = ∑ | |Fo| - |Fc| | / ∑ |Fo|;  
wR2 = [∑[w(Fo2-Fc2)2]/[∑(Fo2)2]]1/2 where w = 1/[s2(Fo2) + (aP)2 + bP]. 
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Table S6. Selected bond distances (Å) and angles (deg) for 11 
 11 
 Cation A Cation B 

Cu(1)-Cl(1) 2.234(2) 2.238(2) 
Cu(1)-N(1) 2.063(3) 2.055(3) 
Cu(1)-N(2) 2.068(7) 2.035(8) 

N(1)-Cu(1)-Cl(1) 99.26(10) 98.75(9) 
N(1)-Cu(1)-N(1) 117.46(5) 117.73(5) 
N(1)-Cu(1)-N(2) 80.74(10) 81.25(9) 
N(2)-Cu(1)-Cl(1) 180.0 180.0 
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Table S7. Summary of X-ray data collection and refinement for  
[(TPA)Cu(O2CPh)]ClO4 (12) 

 [(TPA)Cu(O2CPh)]ClO4 
 

empirical formula C25H23ClCuN4O6 

formula weight 574.46 
crystal system monoclinic 
space group P21/c 
a (Å) 18.5496(10) 
b (Å) 9.0884(5) 
x (Å) 14.4320(7) 
a (deg) 90 
b (deg) 99.219(2) 
g (deg) 90 
V (Å3) 2401.6(2) 
Z 4 
density (calcd), Mg m-3 1.589 
temp (K) 100 
crystal size (mm3) 0.28 × 0.25 × 0.05 
diffractometer Bruker D8 Venture 
Abs. coeff. (mm-1) 1.071 
2q max (deg) 54.260 

 
Reflections collected 9904 
Indep. reflections 5541 
variable parameters 204 
R1 / wR2b 0.0396/0.0663 
goodness-of-fit (F2) 1.081 
largest diff. (e Å-3) 0.50/-0.33 

aRadiation used: Mo Ka (l = 0.71073 Å). bR1 = ∑ | |Fo| - |Fc| | / ∑ |Fo|;  
wR2 = [∑[w(Fo2-Fc2)2]/[∑(Fo2)2]]1/2 where w = 1/[s2(Fo2) + (aP)2 + bP]. 
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Table S8. Selected bond distances (Å) and angles  
(deg) for [(TPA)Cu(O2CPh)]ClO4 (12) 
 

 [(TPA)Cu(O2CPh)]ClO4 (12) 
    

Cu(1)-O(1) 1.9384(13) 
Cu(1)-N(1) 2.0295(14) 
Cu(1)-N(2) 2.0340(15) 
Cu(1)-N(3) 2.0794(15) 
Cu(1)-N(4) 2.0983(15) 

N(1)-Cu(1)-O(1) 176.95(6) 
N(2)-Cu(1)-O(1) 100.67(6) 
N(3)-Cu(1)-O(1) 98.97(6) 
N(4)-Cu(1)-O(1) 96.38(5) 
N(1)-Cu(1)-N(2) 81.15(6) 
N(1)-Cu(1)-N(3) 81.81(6) 
N(1)-Cu(1)-N(4) 80.60(6) 
N(2)-Cu(1)-N(3) 125.56(6) 
N(2)-Cu(1)-N(4) 115.86(6) 
N(3)-Cu(1)-N(4) 111.63(6) 
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


