Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Tris(2-pyridylmethyl)amine-ligated Cu(II) 1,3-diketonate complexes: Anaerobic retro-Claisen and dehalogenation reactivity of 2-chloro-1,3-diketonate derivatives

Josiah G. D. Elsberg,^{*a*}, Stephen N. Anderson.^{*a*} David L. Tierney,^{*b*} Eric W. Reinheimer^{*c*} and Lisa M. Berreau^{*a*,*}

^aDepartment of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA

^bDepartment of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA

^cRigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX 77381, USA

Contact information:

Lisa M. Berreau

lisa.berreau@usu.edu

Table of Contents

EPR simulation of spectra features of 3-5	3
EPR spectrum of 6	4
Absorption spectra of 3-6	5-7
ESI-MS data for 3-6	8-9
IR spectra of 3-6	10-11
X-Ray Structure of 11	12
ESI-MS of reaction mixture of 7	12
X-Ray Structure of 12	13
ESI-MS of 12	14
ESI-MS of reaction mixtures of 8-10	15-17
Organic product isolation from reaction mixtures of 7-10	18-21
Organic product isolation from reaction mixtures of 7-10 with excess H ₂ O	
Organic product isolation of reaction mixtures using [(TPA)Cu(CH ₃ CN)](CIO ₄).	
Organic product isolation of reaction mixture with no TPA	
Organic product isolation of <i>in situ</i> generated 1	31
Organic product isolation of <i>in situ</i> generated 2	32
Organic product isolation of <i>in situ</i> generated 3	33
Organic product isolation from reaction mixtures of 7 under O ₂	
Dehalogenation of 2-chloro-1,3-diphenyl-1,3-propanedione by [(TPA)Cu(CH ₃ CN)]PF ₆ 35-37
EPR spectrum of 12	38
EPR of reaction mixtures of 8-10	
UV-Vis of reaction mixture of 7 over 48 hr	42
Organic product isolation from reaction mixtures of 7 after 1 h	43
X-ray data collection and selected bond distances (Å) and angles (deg)	44-51

Figure S1. EPR simulations for **3-5**. As the data do not contain sufficient resolution to simultaneously determine five hyperfine tensors, to add in the ¹⁴N couplings, we initially limited the possible ¹⁴N hyperfine tensors to $[A_{||}, A_{\perp}] = [20, 40]$ or [40, 20] MHz, depending on whether the nitrogen in question was in the xy-plane or on the z-axis (M. Iwaizumi, T. Kudo and S. Kita, *Inorg. Chem.*, 1986, **25**, 1546-1550). This is consistent with the ~14 G (~39 MHz) splitting that is resolved near g = 2 in the spectra for compounds **3** and **5**. We found that no combination, or permutation, of these two tensors alone produced a feature at 3180 G. Only the combination of one ¹⁴N with $[A_{||}, A_{\perp}] = [20, 40]$ and two with $[A_{||}, A_{\perp}] = [40, 20]$, with a fourth ¹⁴N with a 40 MHz isotropic coupling, satisfactorily reproduced the $g_{||}$ region of the spectrum, and specifically the feature at 3180 G. Any other combination that produced a feature near that position also produced poorly resolved features to lower field that are not reflected in the spectra.

Figure S2. EPR spectrum of **6** in CH₃CN:toluene (1:1) at 12 K. Parameters: g_{\parallel} = 2.27, g_{\perp} = 2.07, and ^{63,65}Cu couplings of [A_{||}, A_{\perp}] = [530, 116] MHz.

Figure S3. Absorption spectrum of **3** (6.0 x 10^{-5} M) in CH₃CN.

Figure S4. UV-Vis spectrum of the *d*-*d* region of **3** in CH_3CN .

Figure S5. Absorption spectrum of 4 (6.2 x 10^{-5} M) in CH₃CN.

Figure S6. Absorption spectrum of 5 (4.0 x 10^{-5} M) in CH₃CN.

Wavelength (nm) Figure S7. Absorption spectrum of 6 (6.12 x 10^{-5} M) in CH₃CN.

Figure S8. ESI-MS of isolated **3** in CH₃CN. The * near the isotope cluster m/z 466.1 represents an adduct of trifluoro acetic acid (TFA) with [TPACu]²⁺, which is due to contamination in the mass spectrometer.

Figure S9. ESI-MS of isolated **4** in CH₃CN. The * near the isotope cluster m/z 466.2 represents an adduct of trifluoro acetic acid (TFA) with [TPACu]²⁺, which is due to contamination in the mass spectrometer.

Figure S10. ESI-MS of **5** in CH₃CN. The * near the isotope cluster m/z 466.2 represents an adduct of trifluoro acetic acid (TFA) with [TPACu]²⁺, which due to contamination in the mass spectrometer.

Figure S11. ESI-MS of **6** in CH₃CN. The * near the isotope cluster m/z 466.1 represents an adduct of trifluoro acetic acid (TFA) with [TPACu]²⁺, which is due to contamination in the mass spectrometer.

Figure S12. IR spectrum of 3 (KBr pellet).

Figure S15. IR spectrum of 6 (KBr pellet).

Figure S16. Representations of the cationic and anionic portions of the X-ray structure of **11**. Ellipsoids are plotted at the 50% probability level.

Figure S17. ESI-MS (CH $_3$ CN)of the reaction mixture for the attempted preparation of 7.

Figure S18. Representation of the cationic portion of the X-ray structure of **12**. Ellipsoids are plotted at the 50% probability level.

Figure S19. ESI-MS of **12** in CH₃CN. The * near the isotope cluster m/z 466.2 represents an adduct of trifluoro acetic acid (TFA) with [TPACu]²⁺, which is due to contamination in the mass spectrometer.

Figure S20. ESI-MS (CH $_3$ CN) of the reaction mixture for the attempted preparation of 8.

Figure S21. ESI-MS (CH $_3$ CN) of the reaction mixture for the attempted preparation of 9.

Figure S22. ESI-MS (CH $_3$ CN) of the reaction mixture for the attempted preparation of **10.**

Figure S23. ¹H NMR (CD₃CN) of the organic recovery from the reaction mixture of **7**. Ph₃CH is present as an internal standard.

Figure S24. ¹H NMR (CD₃CN) of the organic recovery from the reaction mixture of **8**. Ph₃CH is present as an internal standard.

Figure S25. ¹H NMR (CD₃CN) of the organic recovery from the reaction mixture of **9**. Ph₃CH is present as an internal standard.

Figure S26. ¹H NMR (CD₃CN) of the organic recovery from the reaction mixture of **10**. Ph₃CH is present as an internal standard.

Figure 27. ¹H NMR (CD₃CN) of the free organic products from the reaction mixture of **7** with excess H_2O (200 eq). Ph₃CH is present as an internal standard.

Figure 28. ¹H NMR (CD₃CN) of the free organic products from the reaction mixture of **8** with excess H_2O (200 eq). Ph₃CH is present as an internal standard.

Figure S29. ¹H NMR (CD₃CN) of the free organic products from the reaction mixture of **9** with excess H_2O (200 eq). Ph₃CH is present as an internal standard.

Figure S30. ¹H NMR (CD₃CN) of the free organic products from the reaction mixture of **10** with excess H_2O (200 eq). Ph_3CH is present as an internal standard.

Figure S31. ¹H NMR (CD₃CN) of the organic recovery from the reaction mixture of [(TPA)Cu(CH₃CN)](ClO₄)₂, LiHMDS, and 2-chloro-1,3-phenylpropane-1,3-dione. Ph₃CH is present as an internal standard.

Figure S32. ¹H NMR (CD₃CN) of the organic recovery from the reaction mixture of $[(TPA)Cu(CH_3CN)](CIO_4)_2$, LiHMDS, 2-chloro-1,3-phenylpropane-1,3-dione and excess H₂O (200 eq). Ph₃CH is present as an internal standard.

Figure S33. ¹H NMR (CD₃CN) of the organic recovery from the reaction mixture of $[(TPA)Cu(CH_3CN)](CIO_4)_2$, LiHMDS, 2-chloro-1,3-phenylpropane-1,3-dione and excess D₂O. Ph₃CH is present as an internal standard.

Figure S34. ¹H NMR (CD₃CN) of the organic recovery from the reaction mixture of [(TPA)Cu(CH₃CN)](ClO₄)₂, LiHMDS, 2-chloro-1,3-phenylpropane-1,3-dione and excess MeOH. Ph₃CH is present as an internal standard.

Figure S35. ¹H NMR (CD₃CN) of the organic recovery from the reaction mixture of Cu(ClO₄)₂•6H₂O, LiHMDS, and 2-chloro-1,3-phenylpropane-1,3-dione. Ph₃CH is present as an internal standard.

Figure S36. ¹H NMR (CD₃CN) of the organic recovery from the reaction mixture of in-situ generated **1**. Ph₃CH is present as an internal standard.

Figure S37. ¹H NMR (CD₃CN) of the organic recovery from the reaction mixture of in-situ generated **2**. Ph₃CH is present as an internal standard.

Figure S38. ¹H NMR (CD₃CN) of the organic recovery from the reaction mixture of insitu generated **3**. Ph₃CH is present as an internal standard.

Figure S39. ¹H NMR (CD₃CN) of the organic recovery from the reaction mixture of **7** under O_2 . Ph₃CH is present as an internal standard.

Scheme S1. General reaction for dehalogenation of 2-chloro-1,3-diphenyl-1,3-propanedion by 1 eq (a) or 2 eq (b) of $[(TPA)Cu(CH_3CN)]PF_6$.

Figure S40. ¹H NMR (CD₃CN) of the organic recovery following reaction of $[(TPA)Cu(CH_3CN)]PF_6$ (1 eq) with 2-chloro-1,3-phenylpropane-1,3-dione (1 eq). Ph₃CH is present as an internal standard.

Figure S41. ¹H NMR (CD₃CN) of the organic recovery following reaction of $[(TPA)Cu(CH_3CN)]PF_6$ (2 eq) with 2-chloro-1,3-phenylpropane-1,3-dione (1 eq). Ph₃CH is present as an internal standard.

Figure S42. EPR spectrum of [(TPA)Cu(O₂CPh)]ClO₄ (**12**) in CH₂CH₂:toluene (1:1) at 4.5 K and a simulated spectrum. This complex exhibits a strained EPR spectrum that is dominated by a much more isotropic ^{63,65}Cu hyperfine tensor; [A_{||}, A_⊥] = [285, 220] MHz. Simulations show that the observed line shape can be matched without including any ¹⁴N couplings, with the inclusion of an isotropic g-strain of 0.02 and 90 MHz of A-strain (parallel direction only).

Figure S43. EPR spectra of the reaction mixture of 8 after stirring for 1 hr (black) and 48 hr (red), respectively, at 30 °C. The samples were collected in CH₃CN:toluene (1:1) at 12 K .

Figure S44. EPR spectra of the reaction mixture of 9 after stirring for 1 hr (black) and 48 hr (red), respectively, at 30 °C. The samples were collected in CH₃CN:toluene (1:1) at 12 K .

Figure S45. EPR spectra of the reaction mixture of **10** (R = -CI) after stirring for 1 hr (black) and 48 hr (red), respectively, at 30 °C. The samples were collected in CH_3CN :toluene (1:1) at 12 K.

Figure S46. Absorption spectra (CH_3CN) of the reaction mixture of **7** at the start of the reaction, and after 24 and 48 h.

Figure S47. ¹H NMR (CD₃CN) of the organic recovery from the reaction mixture of **7** after 1 hr. Ph₃CH is present as an internal standard.

	3	4	5	6
empirical formula	$C_{66}H_{58}CI_2Cu_2N_8O_{12}$	$C_{35}H_{33}CICuN_4O_6$	C35H33ClCuN4O8	$C_{66}H_{54}CI_{6}Cu_{2}N_{8}O_{12}$
formula weight	1353.18	704.64	736.64	1490.95
crystal system	Triclinic	Monoclinic	Monoclinic	Monoclinic
space group	<i>P-</i> 1	P21/c	P21/c	P21
a (Å)	10.6383(5)	12.8484(7)	12.6105(4)	12.4169(3)
b (Å)	16.6917(8)	21.3956(12)	22.0545(6)	21.7754(5)
<i>x</i> (Å)	18.4503(9)	12.5769(6)	12.8161(4)	12.5537(4)
α (deg)	77.820(2)	90	90	90
β (deg)	80.769(2)	113.825(2)	114.532(4)	113.723(4)
γ(deg)	71.530(2)	90	90	90
V (Å ³)	3022.0(3)	3162.8(3)	3242.63(19)	3107.49(17)
Ζ	4	4	4	2
density (calcd), Mg m ⁻³	1.487	1.480	1.509	1.593
temp (K)	100(1)	100	100 (2)	100 (1)
crystal size (mm ³)	0.03 x 0.09 x 0.11	0.41 x 0.12 x 0.06	0.09 x 0.30 x 0.39	0.777 x 0.23 x 0.114
diffractometer	Bruker D8 Venture	Bruker D8 Venture	XtaLAB Synergy-S	Rigaku
Abs. coeff. (mm ⁻¹)	0.864	0.829	0.817	1.017
2θ max (deg)	54.79	54.98	64.82	61.49
Reflections collected	9807	65958	13931	15300
Indep. reflections	13934	7271	6625	18046
variable parameters	811	448	444	849
R1 / wR2 ^b	0.0371/0.0782	0.0850/0.1653	0.0330/0.0839	0.0506/0.1253
goodness-of-fit (F ²)	1.032	1.344	1.048	1.017
largest diff. (e Å-3)	0.608/-0.526	0.69/-0.91	0.722/-0.483	1.47/-1.92

Table S1. Summary of X-ray data collection and refinement for 3-6.

^aRadiation used: Mo K α (λ = 0.71073 Å). ^bR1 = $\sum ||F_o| - |F_c|| / \sum |F_o|$; wR2 = $[\sum [w(F_o^2 - F_c^2)^2]/[\sum (F_o^2)^2]]^{1/2}$ where $w = 1/[\sigma^2(F_o^2) + (aP)^2 + bP]$.

		5	-
	Cation A	Cation B	
Cu(1)-O(1)	1.9384(14)	1.9443(13)	1.937(3)
Cu(1)-O(2)	1.9391(14)	1.9218(13)	1.943(3)
Cu(1)-N(1)	2.0981(17)	2.0954(16)	2.062(4)
Cu(1)-N(2)	2.0122(17)	1.9992(16)	1.994(4)
Cu(1)-N(3)	2.3561(18)	2.3481(18)	2.831
Cu(1)-N(4)	2.3680(19)	2.4945(17	2.274(4)
O(1)-C(19)	1.274(2)	1.279(2)	1.283(5)
O(2)-C(27)	1.277(2)	1.280(2)	-
O(2)-C(28)	-	-	1.282(5)
O(1)-Cu(1)-O(2)	92.99(6)	92.87(6)	92.71(13)
O(1)-Cu(1)-N(1)	89.47(6)	93.39(6)	174.11(14)
O(1)-Cu(1)-N(2)	172.69(7)	175.10(6)	92.51(14)
O(1)-Cu(1)-N(3)	94.54(6)	88.21(6)	111.46
O(1)-Cu(1)-N(4)	83.44(6)	93.05(6)	98.13(14)
O(2)-Cu(1)-N(1)	175.47(6)	172.48(6)	91.01(14)
O(2)-Cu(1)-N(2)	93.52(6)	90.37(6)	167.58(14)
O(2)-Cu(1)-N(3)	97.17(6)	100.89(6)	91.02
O(2)-Cu(1)-N(4)	108.45(6)	106.88(6)	93.03(14)
N(1)-Cu(1)-N(3)	78.83(6)	75.15(6)	73.01
N(1)-Cu(1)-N(4)	75.60(6)	76.94(6)	77.10(15)
N(2)-Cu(1)-N(1)	83.82(7)	83.66(6)	84.75(15)
N(2)-Cu(1)-N(3)	81.33(6)	94.79(6)	76.20
N(2)-Cu(1)-N(4)	97.65(6)	82.49(6)	97.37(15)
N(3)-Cu(1)-N(4)	154.36(6)	152.09(6)	149.84

 Table S2. Selected bond distances (Å) and angles (deg) for 3 and 4.

 3
 4

	5
Cu(1)-O(1)	1.9325(13)
Cu(1)-O(2)	1.9234(13)
Cu(1)-N(1)	2.0586(15)
Cu(1)-N(2)	2.2994(16)
Cu(1)-N(3)	1.9868(15)
Cu(1)-N(38)*	2.79
O(1)-C(19)	1.278(2)
O(2)-C(28)	1.285(2)
O(1)-Cu(1)-O(2)	92.10(5)
O(1)-Cu(1)-N(1)	91.35(6)
O(1)-Cu(1)-N(2)	90.73(6)
O(1)-Cu(1)-N(3)	168.23(6)
O(1)-Cu(1)-N(38)	90.37
O(2)-Cu(1)-N(1)	175.26(6)
O(2)-Cu(1)-N(2)	99.41(6)
O(2)-Cu(1)-N(3)	92.95(6)
O(2)-Cu(1)-N(38)	108.57
N(1)-Cu(1)-N(3)	84.27(6)
N(1)-Cu(1)-N(38)	74.63
N(2)-Cu(1)-N(1)	77.29(6)
N(2)-Cu(1)-N(3)	98.91(6)
N(2)-Cu(1)-N(38)	151.92
N(3)-Cu(1)-N(38)	77.95

Table S3. Selected bond distances (Å) and angles(deg) for 5.

		6
	Cation A	Cation B
Cu(1)-O(1)	1.927(3)	1.924(3)
Cu(1)-O(2)	1.947(3)	1.949(3)
Cu(1)-N(1)	2.058(4)	2.043(4)
Cu(1)-N(2)	1.985(3)	1.982(3)
Cu(1)-N(3)	2.264(4)	2.262(4)
Cu(1)-N(4)	2.754	2.876
O(1)-C(19)	1.283(5)	1.292(5)
O(2)-C(27)	1.272(5)	1.280(5)
O(1)-Cu(1)-O(2)	92.22(13)	92.36(13)
O(1)-Cu(1)-N(1)	172.72(14)	175.01(15)
O(1)-Cu(1)-N(2)	93.02(14)	93.40(14)
O(1)-Cu(1)-N(3)	95.74(14)	98.49(13)
O(1)-Cu(1)-N(4)	113.01	110.73
O(2)-Cu(1)-N(1)	91.41(13)	90.85(14)
O(2)-Cu(1)-N(2)	166.78(14)	166.83(14)
O(2)-Cu(1)-N(3)	94.25(14)	91.59(13)
O(2)-Cu(1)-N(4)	90.45	92.80
N(1)-Cu(1)-N(3)	77.69(14)	77.59(14)
N(1)-Cu(1)-N(4)	73.26	72.90
N(2)-Cu(1)-N(1)	84.80(14)	84.27(15)
N(2)-Cu(1)-N(3)	97.29(14)	99.25(15)
N(2)-Cu(1)-N(4)	76.32	74.08
N(3)-Cu(1)-N(4)	150.67	150.22

Table S4. Selected bond distances (Å) and angles (deg) for 6

	••
empirical formula	C ₃₈ H ₃₉ Cl ₅ Cu ₂ LiN ₉ O ₁₂
formula weight	1125.06
crystal system	Trigonal
space group	P3c1
a (Å)	12.6221(10)
b (Å)	12.6221(10)
<i>x</i> (Å)	16.3066(12)
α (deg)	90
β (deg)	90
γ(deg)	120
V (Å ³)	2249.9(4)
Ζ	1.99998
density (calcd), Mg m ⁻³	1.661
temp (K)	100
crystal size (mm ³)	0.11 x 0.12 x 0.20
diffractometer	Bruker D8 Venture
Abs. coeff. (mm ⁻¹)	1.314
2θ max (deg)	60.902
Reflections collected	9941
Indep. reflections	3427
variable parameters	334
<i>R</i> 1 / w <i>R</i> 2 ^b	0.0386/0.0850
goodness-of-fit (F ²)	1.023
largest diff. (e Å-3)	0.671/-0.285
^a Radiation used: Mo Ka ($\lambda = 0.71073 \text{ Å}$). ${}^{b}R1 = \Sigma F_{o} - F_{o} / \Sigma F_{o} $:

Table S5.	Summary	of X-ray dat	a collection	and refinen	nent for 1	1
			11			

^{*a*}Radiation used: Mo K α (λ = 0.71073 Å). ^{*b*}R1 = $\sum ||F_o| - |F_c|| / \sum |F_o|$; wR2 = $[\sum [w(F_o^2 - F_c^2)^2] / [\sum (F_o^2)^2]]^{1/2}$ where $w = 1/[\sigma^2(F_o^2) + (aP)^2 + bP]$.

	11	
	Cation A	Cation B
Cu(1)-Cl(1)	2.234(2)	2.238(2)
Cu(1)-N(1)	2.063(3)	2.055(3)
Cu(1)-N(2)	2.068(7)	2.035(8)
N(1)-Cu(1)-Cl(1)	99.26(10)	98.75(9)
N(1)-Cu(1)-N(1)	117.46(5)	117.73(5)
N(1)-Cu(1)-N(2)	80.74(10)	81.25(9)
N(2)-Cu(1)-Cl(1)	180.0	180.0

Table S6. Selected bond distances (Å) and angles (deg) for 11

	[(TPA)Cu(O ₂ CPh)]ClO ₄
empirical formula	$C_{25}H_{23}CICuN_4O_6$
formula weight	574.46
crystal system	monoclinic
space group	P2 ₁ /c
a (Å)	18.5496(10)
b (Å)	9.0884(5)
<i>x</i> (Å)	14.4320(7)
α (deg)	90
β (deg)	99.219(2)
γ(deg)	90
V (Å ³)	2401.6(2)
Z	4
density (calcd), Mg m ⁻³	1.589
temp (K)	100
crystal size (mm ³)	0.28 × 0.25 × 0.05
diffractometer	Bruker D8 Venture
Abs. coeff. (mm ⁻¹)	1.071
$2\theta \max (\deg)$	54.260
Reflections collected	9904
Indep. reflections	5541
variable parameters	204
<i>R</i> 1 / w <i>R</i> 2 ^b	0.0396/0.0663
goodness-of-fit (F ²)	1.081
largest diff. (e Å-3)	0.50/-0.33
^a Padiation used: Mo Ka ($\lambda = 0.71073 \text{ Å} \frac{b}{P}1 = \nabla 1 \text{ [IE]} \frac{1}{2} \text{ [E]} \frac{1}{2} $

Table S7. Summary of X-ray data collection and refinement for[(TPA)Cu(O_2CPh)]ClO4 (12)

^aRadiation used: Mo K α (λ = 0.71073 Å). ^bR1 = $\sum ||F_0| - |F_c|| / \sum |F_0|$; wR2 = $[\sum [w(F_0^2 - F_c^2)^2] / [\sum (F_0^2)^2]]^{1/2}$ where $w = 1/[\sigma^2(F_0^2) + (aP)^2 + bP]$.

Table S8. Selected bond distances (Å) and angles
(deg) for [(TPA)Cu(O ₂ CPh)]ClO ₄ (12)

[(TPA)Cu(O ₂ CPh)]ClO ₄ (12)	
Cu(1)-O(1)	1.9384(13)
Cu(1)-N(1)	2.0295(14)
Cu(1)-N(2)	2.0340(15)
Cu(1)-N(3)	2.0794(15)
Cu(1)-N(4)	2.0983(15)
N(1)-Cu(1)-O(1)	176.95(6)
N(2)-Cu(1)-O(1)	100.67(6)
N(3)-Cu(1)-O(1)	98.97(6)
N(4)-Cu(1)-O(1)	96.38(5)
N(1)-Cu(1)-N(2)	81.15(6)
N(1)-Cu(1)-N(3)	81.81(6)
N(1)-Cu(1)-N(4)	80.60(6)
N(2)-Cu(1)-N(3)	125.56(6)
N(2)-Cu(1)-N(4)	115.86(6)
N(3)-Cu(1)-N(4)	111.63(6)

##