Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

Selective carbene transfer to amines and olefins catalyzed by ruthenium phthalocyanine complexes with donor substituents

Lucie P. Cailler,^a Andrey P. Kroitor,^b Yulia G. Gorbunova,^{*b,c} Alexander G. Martynov,^{*b} Alexander B. Sorokin^{*a}

^a Institut de Recherches sur la Catalyse et l'Environnement de Lyon IRCELYON, UMR 5256, CNRS -Université Lyon 1, 2 avenue A. Einstein, 69626 Villeurbanne cedex, France, e-mail: <u>alexander.sorokin@ircelyon.univ-lyon1.fr</u>

^b A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences,

Leninskii pr., 31, bldg. 4, 119071, Moscow, Russia, e-mail: martynov.alexandre@gmail.com

^c N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii

pr., 31, 11991, Moscow, Russia, e-mail: yulia@igic.ras.ru

This PDF file includes

Characterization of Complexes and Reaction Products Figures S1 –S43

Table of content

1.	Synthesis and characterization of ruthenium phthalocyanine complexes	. S3
2.	Catalytic procedures	. S5
3.	Characterization of products of cyclopropanation	. S6
4.	Characterization of products of carbene insertion into N-H bonds	\$13
5.	NMR interpretation of typical reaction mixtures after reaction completion	522
6.	Spectral data of new compounds (HRMS, ¹ H, ¹³ C, ¹⁹ F NMR, Mass)	524

1. Synthesis and characterization of ruthenium phthalocyanine complexes

Ruthenium(II) carbonyl complexes of octa-2,3,9,10,16,17,23,24-*n*-butoxyphthalocyanine $[RuPc(OBu)_8](CO)$, tetra-2(3),9(10),16(17),23(24)-tert-butylphthalocyanine $[RuPc(^tBu_4)](CO)$ and octa-2,3,9,10,16,17,23,24-mesityloxyphthalocyanine $[RuPc(OMes)_8](CO)$ were synthesized according to the previously reported procedures.^{S1-S3}

Octa-2,3,9,10,16,17,23,24-n-butoxyphthalocyaninatoruthenium(II) carbonyl [RuPc(OBu)₈](CO)

- HR ESI, m/z: found $1219.510 [M+H]^+$, calculated for $[C_{65}H_{81}N_8O_9Ru]^+ 1219.519$.
- MALDI TOF MS, m/z: found 2381.2 $[M-CO]_{2^+}$, calculated for $[C_{128}H_{160}N_{16}O_{16}Ru_2]^+$ 2381.0.
 - UV-Vis in CHCl₃, λ_{max}, nm (lgε): 655 (5.09), 593 (4.43), 316 (4.92).
- ¹H NMR (400 MHz, CDCl₃+Py-d₅) δ 8.76 (s, 8H, H_{Pc}), 4.54 (br m, 16H, α -CH₂), 2.14 2.07

(m, 16H, β -CH₂), 1.78 – 1.69 (m, 16H, γ -CH₂), 1.13 (t, *J* = 7.4 Hz, 24H).

- ¹³C NMR (101 MHz, CDCl₃+Py-d₅) δ 151.16 (a), 143.98 (d), 133.33 (c), 105.97 (b), 69.58 (α), 31.64 (β), 19.52 (γ), 14.10 (<u>C</u>H₃).
- FTIR, v cm⁻¹: 3848, 3731, 2956, 2930, 2870, 1939 (v^{co}), 1601, 1496, 1454, 1411, 1383, 1346, 1275, 1195, 1158, 1195, 1158, 1108, 1051, 953, 896, 856, 829, 859, 829, 750, 734, 667, 623, 608, 559, 551.

Tetra-2(3),9(10),16(17),23(24)-tert-butylphthalocyaninatoruthenium carbonyl [RuPc(^tBu₄)](CO)

- HR ESI, m/z: found 865.3169 $[M-H]^+$, calculated for $[C_{49}H_{48}N_8ORu-H]^+$ 865.2924.
- MALDI TOF MS, m/z: found $1676.6 [M-CO]_{2^+}$, calculated for $[C_{96}H_{96}N_{16}Ru_2]^+ 1676.6$.
- UV-Vis in CHCl₃, λ_{max} nm (lgε): 653 (5.22), 591 (4.69), 298 (5.12).
- ¹H NMR (600 MHz, CDCl₃+Py-d₅) δ ppm: δ ppm 9.43 9.39 (m, 1H, H_{Pc}2), 9.32 9.25 (m,

1H, H_{Pc}3), 8.14 – 8.13 (m, 1H, H_{Pc}1), 1.78 – 1.77 (m, 9H, CH₃).

• FTIR, v cm⁻¹: 2955, 2930, 2869, 1951 (v^{co}), 1606, 1495, 1453, 1407, 1379, 1346, 1275, 1197, 1155, 1108, 1049, 972, 939, 913, 893, 856, 820.

Octa-2,3,9,10,16,17,23,24-mesityloxyphthalocyaninatoruthenium(II) carbonyl [RuPc(OMes)₈](CO)

- HR ESI, m/z: found 1715.6353 [M]⁺, calculated for $[C_{105}H_{96}N_8O_9Ru]$ 1715.6446.
- MALDI TOF MS, m/z: found 1686.7 [M-CO]⁺, calculated for $[C_{104}H_{96}N_8O_8Ru]^+$ 1686.6; found 3375.4 [M-CO]₂⁺, calculated for $[C_{208}H_{192}N_{16}O_{16}Ru_2]^+$ 3374.3.
 - UV-Vis in CHCl₃, λ_{max} nm (lgε): 659 (5.00), 596 (4.32), 418 (3.98), 314 (4.81).

- ¹H NMR (600 MHz, CDCl₃+Py-d₅) δ 8.10 (s, 8H, H_{Ar}), 7.07 (s, 16H, H_{Ar-Mes}), 2.56 (s, 24H, *p*-CH₃), 2.36 (s, 48H, *o*-CH₃).
- FTIR, v cm⁻¹: 2954, 2918, 2852, 1961(v^{c0}), 1722, 1610, 1481, 1450, 1396, 1311, 1267, 1222, 1197, 1175, 1153, 1137, 1101, 1037, 955, 903, 880, 853, 752, 717, 592, 561, 553.

References

S1. A. Cidlina, J. Svec, L. Ludvová, J. Kuneš, P. Zimcik and V. Novakova, *J. Porphyrins Phthalocyanines* 2016, **20**, 1122–1133.

S2. A. P. Kroitor, L. P. Cailler, A. G. Martynov, Yu. G. Gorbunova, A. Yu. Tsivadze and A. B. Sorokin, *Dalton Trans.* 2017, **46**, 15651-15655.

S3. A. P. Kroitor, A. G. Martynov, Y. G. Gorbunova, A. Yu. Tsivadze and A. B. Sorokin, *Eur. J. Inorg. Chem.* 2019, 1923-1931.

2. Catalytic procedures

Cyclopropanation of olefins

All olefins were filtered through basic alumina and silica before use.

A 2 M solution of EDA in dichloromethane (0.23 mL, 0.48 mmol, 1.2 equiv.) was added to a solution of olefin (1 M, 0.4 mmol, 1 equiv.) and [RuPc(BuO)₈](CO) (1 mM, 4.10⁻⁴ mmol, 0.1 mol%) in 0.4 mL of dichloromethane under argon atmosphere via a syringe pump over 2h at 25°C. The reaction mixture was magnetically stirred for 2h to 2h30. Reaction products were analyzed by GC-MS and by NMR (CDCl₃) methods. Careful analyses of ¹H NMR and ¹⁹F NMR (for fluorinated compounds) spectra with identification of all reaction products allowed for determination of conversion and product yields. The accuracy of this protocol was confirmed in separate experiments using 0.5 M CH₂Br₂ as internal standard. The products of several reactions were purified and isolated using PuriFlash XS 420 system (Interchim) at PF-15SIHP flash columns (cyclohexane/ethyl acetate). Analytical data for the reaction products were identical to those published in the literature.

Carbene N-H insertion of amines

EDA (91 μ L, 0.5 mmol, 1 equiv.) was added to a solution of amine (1 M, 0.5 mmol, 1 equiv.) and [RuPc(BuO)₈](CO) (0.5 mM, 2.5.10⁻⁴ mmol, 0.05 mol%) in 0.5 mL of dichloromethane under argon atmosphere at 40°C. The reaction mixture was magnetically stirred for 10 min to 20 h at 40°C. Reaction products were analyzed by GC-MS and by ¹H NMR (CDCl₃) methods. Careful analyses of ¹H NMR and ¹⁹F NMR (for fluorinated compounds) spectra with identification of all reaction products allowed for determination of conversion and product yields. The accuracy of this protocol was confirmed in separate experiments using 0.5 M CH₂Br₂ as internal standard. The products of several reactions were purified and isolated using PuriFlash XS 420 system (Interchim) at PF-15SIHP flash columns (cyclohexane/ethyl acetate). Analytical data for the reaction products were identical to those published in the literature.

Nine novel compounds were additionally characterized by high resolution mass spectrometry (HRMS).

3. Characterization of products of cyclopropanation

Ethyl 2-phenylcyclopropane-1-carboxylate was synthesized from styrene and EDA.

trans-isomer: ¹**H NMR** (400 MHz, CDCl₃) (δ, ppm): 7.04 (m, 3H), 7.09 (d, *J* = 7.8 Hz, 2H), 4.18 (q, *J* = 7.1 Hz, 2H), 2.54 (m, 1H), 1.91 (m, 1H), 1.61 (m, 1H), 1.30 (m, 1H), 1.27 (t, *J* = 7.1 Hz, 3H). **MS** (EI) m/z (%): 190 (M⁺, 30), 144 (20), 117 (100), 91 (22).

cis-isomer: ¹**H NMR** (400 MHz, CDCl₃) (δ, ppm): 7.25 - 7.18 (m, 5H), 3.87 (q, *J* = 7.1 Hz, 2H), 2.54 (m, 1H), 2.07 (m, 1H), 1.72 (m, 1H), 1.40 (m, 1H), 0.97 (3H, t, *J* = 7.1 Hz). **MS (EI) m/z (%):** 190 (M⁺, 27), 144 (20), 117 (100), 91 (21).

H. Fritschi, U. Leutenegger and A. Pfaltz, *Helv. Chim. Acta*, 1988, **71**, 1553–1565.

Ethyl 2,2-diphenylcyclopropane-1-carboxylate was synthesized from 1,1'-diphenylethylene and EDA.

¹**H** NMR (400 MHz, CDCl₃) (δ , ppm): 7.38–7.14 (m, 10H), 3.85–4.00 (m, 2H), 2.55 (dd, *J* = 6, 8 Hz, 1H), 2.17 (dd, *J* = 5 and 6 Hz, 1H), 1.59 (dd, *J* = 5 and 8 Hz, 1H), 1.00 (t, *J* = 8 Hz, 3H). **MS (EI)** *m/z* (%): 237 [(M - C₂H₅)⁺, 23] 192 (100), 165 (28), 115 (50), 91 (14).

C. J. Sanders, K. M. Gillespie and P. Scott, *Tetrahedron: Asymmetry*, 2001, **12**, 1055-1061.

Ethyl 2-(4-methoxyphenyl)cyclopropane-1-carboxylate was synthesized from 4-

methoxystyrene and EDA.

trans-isomer: **¹H NMR** (400 MHz, CDCl₃) (δ, ppm): 7.04 (d, *J* = 8.5 Hz, 2H), 6.82 (d, *J* = 8.5 Hz, 2H), 4.16 (q, *J* = 7.1 Hz, 2H), 2.48 (m, 1H), 1.82 (m, 1H), 1.55 (m, 1H), 1.30 (m, 1H), 1.28 (t, *J* = 7.1 Hz, 3H). **MS (EI) m/z (%):** 220 (M⁺, 37), 175 (21), 147 (100), 115 (20), 91 (21); *cis*-isomer: **¹H NMR** (400 MHz, CDCl₃): (δ, ppm) 7.18 (d, *J* = 8.5 Hz, 2H), 6.80 (d, *J* = 8.5 Hz, 2H), 2.02 (m + 1H), 2.52 (m + 1H), 1.20 (m + 1H), 1.02 (m + 7.1 Hz), 1.02 (m + 7.1

3.89 (q, *J* = 7.1 Hz, 2H), 2.03 (m, 1H), 2.52 (m, 1H), 1.30 (m, 1H), 1.65 (m, 1H), 1.02 (t, *J* = 7.1Hz, 3H). **MS (EI) m/z (%):** 220 (M⁺, 34), 175 (17), 147 (100), 115 (20), 91 (22).

trans-isomer: T. Niimi, T. Uchida, R. Irie and T. Katsuki, *Adv. Synth. Catal.*, 2001, **343**, 79-88. *cis*-isomer: T. Uchida, R. Irie and T. Katsuki , *Tetrahedron*, 2000, **56**, 3501-3509.

Ethyl 2-(4-fluorophenyl)cyclopropane-1-carboxylate was synthesized from 4-fluorostyrene and EDA.

trans-isomer: ¹**H NMR** (400 MHz, CDCl₃) (δ, ppm): 7.07 (d, 2H), 6.96 (d, 2H), 4.17 (q, *J* = 7.1 Hz, 2H), 2.50 (m, 1H), 1.84 (m, 1H), 1.58 (m, 1H), 1.33 (m, 1H), 1.28 (t, *J* = 7.1 Hz, 3H). **MS (EI)** *m/z* (%): 208 (M⁺, 32), 163 (27), 135 (100), 109 (24).

cis-isomer: ¹**H NMR** (400 MHz, CDCl₃) (δ, ppm): 7.22 (d, 2H), 6.96 (d, 2H), 3.89 (q, *J* = 7.2 Hz, 2H), 2.53 (m, 1H), 2.12 (m, 1H), 1.67 (m, 1H), 1.25 (m, 1H), 1.01 (t, *J* = 7.2, 3H). **MS (EI)** *m/z* (%): 208 (M⁺, 31), 163 (23), 135 (100), 109 (25).

trans-isomer: Y. Chen and X. P. Zhang, J. Org. Chem., 2007, **72**, 5931-5934.

cis-isomer: A. Z. Kadzhaeva, E. V. Trofimova, A. N. Fedotov, K. A. Potekhin, R. A. Gazzaeva, S. S. Mochalov and N. S. Zefirov, *Chem. Heterocycl. Comp.*, 2009, **45**, 1095-1104.

Ethyl 2-(pentafluorophenyl)cyclopropane-1-carboxylate was synthesized from 2,3,4,5,6-pentafluorostyrene and EDA.

trans-isomer: ¹**H NMR** (400 MHz, CDCl₃) (δ, ppm): 4.26 (q, *J* = 7.1 Hz, 2H), 2.45 (m, 1H), 2.15 (m, 1H), 1.63 (m, 1H), 1.50 (m, 1H), 1.30 (t, *J* = 7.1 Hz, 3H). **MS (EI)** *m/z* (%): 280 (M⁺, 52), 253 (39), 235 (62), 225 (30), 207 (68), 187 (100).

cis-isomer: ¹**H NMR** (400 MHz, CDCl₃) (δ, ppm): 4.21 (q, *J* = 7.1 Hz, 2H), 2.45 (m, 1H), 2.15 (m, 1H), 1.63 (m, 1H), 1.54 (m, 1H), 1.19 (t, *J* = 7.1 Hz, 3H). **MS (EI)** *m/z* (%): 280 (M⁺, 48), 253 (43), 235 (62), 225 (29), 207 (71), 187 (100).

trans-isomer: Y. Chen and X. P. Zhang, J. Org. Chem. 2007, 72, 5931-5934.

cis-isomer: A. P. Kroitor, L. P. Cailler, A. G. Martynov, Yu. G. Gorbunova, A. Yu. Tsivadze and A. B. Sorokin, *Dalton Trans.* 2017, **46**, 15651-15655.

Ethyl 2-(4-Chlorophenyl)cyclopropane-1-carboxylate was synthesized from 4-chlorostyrene and EDA.

trans-isomer: ¹**H NMR** (400 MHz, CDCl₃) (δ, ppm): 7.24 (d, *J* = 8.4 Hz, 2H), 7.02 (d, *J* = 8.4 Hz, 2H), 4.16 (q, *J* = 7.1 Hz, 2H), 2.48 (ddd, *J* = 9.4, 6.5, 4.2 Hz, 1H), 1.85 (ddd, *J* = 8.5, 5.3, 4.2 Hz, 1H), 1.63-1.55 (m, 1H), 1.37-1.21 (m, 1H), 1.27 (t, *J* = 7.1 Hz, 3H). **MS (EI) m/z (%):** 224 (M+, 39), 196 (8), 178 (26), 169 (24), 161 (2), 151 (90), 144 (22), 138 (5), 132 (2), 125 (9), 115 (100), 103 (6), 97 (1), 89 (13), 75 (6), 63 (8), 51 (3), 39 (4).

cis-isomer: ¹**H NMR** (400 MHz, CDCl₃) (δ, ppm): 7.31 (dd, *J* = 19.2, 8.6 Hz, 2H), 7.21 (d, *J* = 15.4, 8.6 Hz, 2H), 3.89 (q, *J* = 7.1 Hz, 2H), 2.51 (q, *J* = 8.6 Hz, 1H), 2.07 (ddd, *J* = 9.2, 7.9, 5.7 Hz, 1H), 1.69-1.63 (m, 1H), 1.37-1.21 (m, 1H), 1.02 (t, *J* = 7.1 Hz, 3H). **MS (EI) m/z (%):** 224 (M+, 36), 196 (7), 178 (24), 169 (24), 161 (2), 151 (88), 144 (20), 138 (5), 132 (2), 125 (9), 115 (100), 103 (7), 89 (14), 77 (7), 63 (8), 51 (3), 39 (4).

trans-isomer: T. Niimi, T. Uchida, R. Irie and T. Katsuki, *Adv. Synth. Catal.* 2001, **1**, 79-88. *cis*-isomer: T. Uchida, R. Irie, and T. Katsuki, *Tetrahedron* 2000, **56**, 3501-3509.

Ethyl 2-(4-acetoxyphenyl)cyclopropanecarboxylate was synthesized from 4-acetoxystyrene and EDA.

trans-isomer: ¹**H NMR** (400 MHz, CDCl₃) (δ, ppm): 7.10 (d, *J* = 8.5 Hz, 2H), 7.00 (d, *J* = 8.6 Hz, 2H), 4.16 (q, *J* = 7.1 Hz, 2H), 2.48 (ddd, *J* = 9.4, 6.5, 4.2 Hz, 1H), 2.28 (s, 1H), 1.87 (ddd, *J* = 8.5, 5.3, 4.2 Hz, 1H), 1.62-1.54 (m, 1H), 1.37-1.21 (m, 1H), 1.27 (t, *J* = 7.1 Hz, 3H). **MS (EI) m/z (%):** 248 (M+, 12), 206 (63), 193 (2), 177 (17), 160 (24), 149 (12), 133 (100), 123 (3), 115 (7), 105 (13), 91 (3), 77 (10), 65 (2), 55 (3), 43 (13).

cis-isomer: ¹**H NMR** (400 MHz, CDCl₃) (δ , ppm): 7.26 (d, *J* = 8.3 Hz, 2H), 6.98 (d, *J* = 8.3 Hz, 2H), 3.88 (q, *J* = 7.1 Hz, 2H), 2.54 (q, *J* = 8.6 Hz, 1H), 2.27 (s, 1H), 2.07 (ddd, *J* = 9.2, 7.9, 5.7 Hz, 1H), 1.68 (dt, *J* = 7.4, 5.4 Hz, 1H), 1.37-1.21 (m, 1H), 0.98 (t, *J* = 7.1 Hz, 3H). **MS (EI) m/z (%):** 248 (M+, 11), 206 (58), 193 (2), 177 (17), 160 (23), 149 (12), 133 (100), 123 (3), 115 (7), 105 (13), 91 (3), 77 (11), 65 (2), 55 (4), 43 (15).

L. Huang, Y. Chen, G.-Y. Gao and X. P. Zhang *J. Org. Chem.* 2003, **68**, 8179-8184.

Ethyl 2-[4-(*tert***-butyl)phenyl]cyclopropane-1-carboxylate** was synthesized from 4-*tert*-butylstyrene and EDA.

trans-isomer: ¹**H NMR** (400 MHz, CDCl₃) (δ, ppm): 7.30 (d, *J* = 8.3 Hz, 2H), 7.04 (d, *J* = 8.3 Hz, 2H), 4.16 (q, *J* = 7.1 Hz, 2H), 2.48 (ddd, *J* = 9.4, 6.5, 4.2 Hz, 1H), 1.88 (ddd, *J* = 8.4, 5.3, 4.2 Hz, 1H), 1.60-1.53 (m, 1H), 1.40-1.20 (m, 1H), 1.30 (s, 9H), 1.27 (t, *J* = 7.1 Hz, 3H). **MS (EI) m/z (%)**: 246 (M+, 40), 231 (100), 217 (1), 203 (9), 191 (14), 173 (11), 161 (9), 157 (13), 144 (23), 128 (19), 115 (28), 105 (2), 91 (9), 79 (7), 71 (1), 64 (4), 57 (60), 41 (8).

cis-isomer: ¹**H NMR** (400 MHz, CDCl₃) (δ, ppm): 7.28 (d, *J* = 8.3 Hz, 2H), 7.19 (d, *J* = 8.3 Hz, 2H), 3.91-3.81 (m, 2H), 2.54 (dd, *J* = 7.6, 15.7 Hz, 1H), 2.04 (ddd, *J* = 9.3, 7.8, 5.7 Hz, 1H), 1.72-1.65 (m, 1H), 1.40-1.20 (m, 1H), 1.29 (s, 9H), 0.92 (t, *J* = 7.1 Hz, 3H). **MS (EI) m/z (%)**: 246 (M+, 36), 231 (100), 203 (8), 191 (4), 185 (8), 173 (11), 161 (10), 157 (13), 144 (25), 128 (21), 115 (33), 105 (3), 91 (11), 79 (8), 64 (5), 57 (71), 41 (10).

S. Bachmann and A. Mezzetti *Helv. Chim. Acta*, 2001, **84**, 3063-3074.

Ethyl 2-*p***-tolylcyclopropanecarboxylate** was synthesized from 4-methylstyrene and EDA. *trans*-isomer: ¹**H NMR** (400 MHz, CDCl₃) (δ, ppm): 7.08 (d, *J* = 8.1 Hz, 2H), 6.99 (d, *J* = 8.1 Hz, 2H), 4.16 (q, *J* = 7.1 Hz, 2H), 2.51-2.45 (m, 1H), 2.31 (s, 3H), 1.85 (ddd, *J* = 8.5, 5.2, 4.2 Hz, 1H), 1.59-1.52 (m, 1H), 1.31-1.14 (m, 1H), 1.27 (t, *J* = 7 Hz, 3H). **MS (EI) m/z (%):** 204 (M+, 36), 175 (4), 158 (24), 147 (18), 141 (4), 131 (100), 121 (5), 115 (33), 103 (4), 91 (24), 77 (7), 65 (4), 51 (3), 39 (2).

cis-isomer: ¹**H NMR** (400 MHz, CDCl₃) (δ , ppm): 7.15 (d, *J* = 7.6 Hz, 2H), 7.06 (d, *J* = 7.6 Hz, 2H), 3.89 (q, *J* = 7.1 Hz, 2H), 2.56 (dd, *J* = 16.0, 7.8 Hz, 1H), 2.29 (s, 3H), 2.04 (ddd, *J* = 9.2, 7.8, 5.6 Hz, 1H), 1.69-1.63 (m, 1H), 1.32-1.27 (m, 1H), 1.01 (t, *J* = 7.1 Hz, 3H). **MS (EI) m/z (%):** 204 (M+, 33), 175 (4), 158 (23), 147 (17), 141 (3), 131 (100), 121 (5), 115 (34), 103 (5), 91 (26), 77 (8), 65 (5), 51 (4), 39 (3).

trans-isomer: L. Huang, Y. Chen, G.-Y. Gao and X. P. Zhang *J. Org. Chem.* 2003, **68**, 8179-8184. *cis*-isomer: M. Bordeaux, V. Tyagi and R. Fasan *Angew. Chem. Int. Ed.* 2015, **54**, 1744-1748.

Ethyl 2-[2,4,6-trimethylphenyl]cyclopropane-1-carboxylate was synthesized from 2,4,6-trimethylstyrene and EDA.

trans-isomer: **HRMS (ESI+)** exact mass calculated for $[C_{15}H_{20}O_2 + Na]+: 255.1356$, found : 255.1356. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 6.83 (s, 2H), 4.31 – 4.14 (m, 2H), 2.34 (s, 6H), 2.30 (dd, *J* = 13.3, 8.2 Hz, 1H), 2.25 (s, 3H), 1.72 (dt, *J* = 8.3, 4.9 Hz, 1H), 1.69 – 1.62 (m, 1H), 1.31 (t, *J* = 7.1 Hz, 3H), 1.13 (ddd, *J* = 8.2, 7.2, 4.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) (δ , ppm): 174.49, 138.52, 136.51, 133.28, 129.04, 60.73, 23.32, 23.29, 20.94, 20.58, 17.73, 14.55. MS (EI) m/z (%): 232 (M+, 9), 217 (52), 203 (2), 187 (7), 175 (22), 159 (100), 143 (52), 129 (48), 115 (22), 105 (9), 91 (15), 77 (9), 65 (5), 51 (4).

cis-isomer: **HRMS (ESI+)** exact mass calculated for [C₁₅H₂₀O₂ + Na]+ : 255.1356, found : 255.1360. ¹**H NMR** (400 MHz, CDCl₃) (δ, ppm): 6.78 (s, 2H), 3.92 (q, *J* = 7.1 Hz, 2H), 2.33 (s, 6H), 2.31 – 2.23 (m, 1H), 2.22 (s, 3H), 2.18 – 2.10 (m, 1H), 1.65 – 1.50 (m, 2H), 1.02 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) (δ, ppm): 172.33, 138.28, 135.89, 130.67, 128.95, 60.23, 23.02, 21.21, 21.00, 20.64, 16.15, 14.09. **MS (EI) m/z (%):** 232 (M+, 51), 217 (2), 203 (8), 186 (19), 175 (22), 171 (12), 159 (100), 143 (54), 129 (46), 119 (19), 115 (23), 105 (9), 91 (16), 77 (10), 71 (3), 65 (5), 55 (4), 51 (4).

Trans-(1*R*,2*S*)-Ethyl 1-methyl-2-phenylcyclopropane-1-carboxylate was synthesized from *trans*-β-methylstyrene and EDA.

¹**H NMR** (400 MHz, CDCl₃) (δ, ppm): 7.34–7.18 (m, 3H), 7.11-7.04 (m, 2H), 4.17 (q, *J* = 7.1 Hz, 2H), 2.40 (dd, *J* = 6.4, 5.1 Hz, 1H), 2.01 (dd, *J* = 9.2, 5.0 Hz, 1H), 1.69 (dd, *J* = 12.6, 6.4 Hz, 1H), 1.35 (d, *J* = 6.2 Hz, 3H), 1.28 (t, *J* = 7.1 Hz, 3H). **MS (EI) m/z (%):** 204 (M+, 16), 189 (2), 175 (1), 159 (14), 144 (3), 131 (100), 115 (21), 103 (4), 91 (32), 77 (7), 65 (4), 58 (1), 51 (3), 39 (2).

T. Goto, K. Takeda, M. Anada, K. Ando and S. Hashimoto, *Tetrahedron Lett.* 2011, **52**, 4200-4203.

2-Methyl-2-phenyl-cyclopropanecarboxylic acid ethyl ester was synthesized from α -methylstyrene and EDA.

trans-isomer: ¹**H** NMR (400 MHz, CDCl₃) (δ, ppm): 7.24-7.12 (m, 5H), 4.19 (ddd, *J* = 14.2, 7.1, 2.4 Hz, 2H), 1.96 (dd, *J* = 8.3, 6.1 Hz, 1H), 1.52 (s, 3H), 1.43 (ddd, *J* = 12.9, 7.2, 4.7 Hz, 1H), 1.30 (t, *J* = 7.1 Hz, 3H). MS (EI) m/z (%): 204 (M+, 5), 189 (1), 175 (14), 159 (21), 147 (11), 141 (3), 131 (100), 121 (1), 115 (30), 103 (10), 91 (35), 77 (12), 65 (4), 58 (1), 51 (5), 43 (2).

cis-isomer: ¹**H NMR** (400 MHz, CDCl₃) (δ, ppm): 7.24-7.12 (m, 5H), 3.90-3.76 (m, 2H), 1.90 (dd, *J* = 7.8, 5.4 Hz, 1H), 1.77 (t, *J* = 5.0 Hz, 1H), 1.46 (s, 3H), 1.14 (dd, *J* = 7.8, 4.6 Hz, 1H), 0.94 (t, *J* = 7.1 Hz, 3H). **MS (EI) m/z (%):** 204 (M+, 4), 189 (1), 175 (13), 159 (18), 147 (11), 141 (3), 131 (100), 121 (1), 115 (32), 103 (10), 91 (36), 77 (13), 65 (4), 58 (1), 51 (6), 43 (3).

K. C. Bendeddouche, B. Rechsteiner, F. Texier-Boullet, J. Hamelin and H. Benhaoua, *J. Chem. Res.* (*S*), 2002, 114-117.

tert-Butyl 2-phenylcyclopropane-1-carboxylate was synthesized from styrene and *tert*-butyl diazoacetate.

trans-isomer: ¹**H NMR** (400 MHz, CDCl₃) (δ, ppm): 7.29-7.08 (m, 5H), 2.64-2.58 (m, 1H), 2.05-1.98 (m, 1H), 1.72-1.64 (m, 1H), 1.41-1.34 (m, 1H), 1.35 (s, 9H). **MS (EI) m/z (%):** 218 (M⁺, 0), 174 (6), 161 (1), 147 (1), 127 (2), 115 (15), 104 (6), 91 (100), 77 (3), 65 (6), 51 (2), 39 (2).

cis-isomer: ¹**H NMR** (400 MHz, CDCl₃) (δ, ppm): 7.29-7.16 (m, 5H), 2.64 (q, *J* = 9 Hz, 1H), 2.14-2.22 (m, 1H), 1.81-1.75 (m, 1H), 1.41-1.34 (m, 1H), 1.33 (s, 9H). **MS (EI) m/z (%):** 218 (M⁺, 0), 174 (6), 161 (1), 147 (1), 127 (2), 115 (15), 104 (7), 91 (100), 77 (3), 65 (7), 51 (2), 39 (2).

T. Niimi, T. Uchida, R. Irie and T. Katsuki *Adv. Synth. Catal.* 2001, **343**, 79-88.

4. Characterization of products of carbene insertion into N-H bonds

N-phenylglycine ethyl ester was synthesized from aniline and EDA.

¹**H NMR** (400 MHz, CDCl₃) (δ, ppm): 7.20 (t, *J* = 8.6 Hz, 2H), 6.75 (d, *J* = 7.8 Hz, 1H), 6.62 (d, *J* = 8.6 Hz, 2H), 4.25 (q, *J* = 7.1 Hz, 2H), 3.90 (s, 2H), 1.30 (t, *J* = 7.1 Hz, 3H). **MS (EI) m/z (%):** 179 (M⁺, 19), 106 (100), 93 (1), 79 (6), 77 (22), 65 (1), 51 (8).

Z. Zhu and J. H. Espenson, J. Am. Chem. Soc., 1996, **118**, 9901-9907.

N-(4-methylphenyl)glycine ethyl ester was synthesized from *p*-toluidine and EDA. ¹**H NMR** (400 MHz, CDCl₃) (δ, ppm): 6.88 (d, *J* = 7.9 Hz, 2H), 6.53 (d, *J* = 8.3 Hz, 2H), 4.14 (q, *J* = 7.1 Hz, 2H), 3.80 (s, 2H), 1.20 (t, *J* = 7.1 Hz, 3H). **MS (EI) m/z (%):** 193 (M⁺, 18), 120 (100), 104 (1), 91 (19), 89 (4), 77 (3), 65 (8), 63 (2), 51 (2).

Z. Zhu and J. H. Espenson, J. Am. Chem. Soc., 1996, 118, 9901-9907.

N-(4-chlorophenyl)glycine ethyl ester was synthesized from 4-chloroaniline and EDA. ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.13 (d, *J* = 8.9 Hz, 2H), 6.52 (d, *J* = 8.9 Hz, 2H), 4.24 (q, *J* = 7.1 Hz, 2H), 3.86 (s, 2H), 1.29 (t, *J* = 7.1 Hz, 3H). **MS (EI) m/z (%):** 213 (M⁺, 18), 140 (100), 127 (1), 111 (11), 99 (1), 85 (1), 75 (10), 63 (1), 50 (3).

Z. Zhu and J. H. Espenson, J. Am. Chem. Soc., 1996, 118, 9901-9907.

Ethyl N-ethoxycarbonylmethyl-N-(4-chlorophenyl)aminoacetate was synthesized from 4-chloroaniline and EDA.

MS (EI) m/z (%): 299 (M⁺, 17), 281 (2), 253 (1), 226 (100), 207 (4), 198 (4), 170 (3), 154 (15), 140 (36), 125 (21), 111 (14), 99 (2), 89 (3), 75 (8), 63 (1), 59 (45), 51(2).

I. Aviv and Z. Gross, *Chem. Eur. J.* 2008, **14**, 3995-4005.

Ethyl 2-morpholinoacetate was synthesized from morpholine and EDA.

¹H NMR (400 MHz, CDCl₃) (δ, ppm): 4.17 (q, *J* = 7.1 Hz, 3H), 3.76 – 3.71 (m, 2H), 3.18 (s, 1H), 2.60 – 2.52 (m, 2H), 1.26 (t, *J* = 7.1 Hz, 5H). **MS (EI) m/z (%):** 173 (M⁺, 4), 114 (1), 100 (100), 70 (5), 56 (11).

I. Aviv and Z. Gross, Chem. - Eur. J., 2008, 14, 3995-4005.

Ethyl N-(4-methoxyphenyl)glycinate was synthesized from *p*-methoxyaniline and EDA. ¹**H NMR** (400 MHz, CDCl₃) (δ, ppm): 6.79 (d, *J* = 8.9 Hz, 1H), 6.58 (d, *J* = 8.9 Hz, 1H), 4.23 (q, *J* = 7.1 Hz, 1H), 3.86 (s, 1H), 3.74 (s, 2H), 1.29 (t, *J* = 7.1 Hz, 2H). **MS (EI) m/z (%):** 209 (M⁺, 24), 194 (1), 136 (100), 121 (10), 108 (6), 92 (7), 77 (6), 64 (3), 51 (1).

J. S. Samec, L. Mony and J.-E. Bäckvall Can. J. Chem. 2005, 83, 909-916.

Ethyl 2-((4-Fluorophenyl)amino)acetate was synthesized from *p*-fluoroaniline and EDA. ¹**H NMR** (400 MHz, CDCl₃) (δ, ppm): 6.95 – 6.85 (m, 2H), 6.59 – 6.48 (m, 2H), 4.24 (q, *J* = 7.1 Hz, 2H), 3.86 (s, 2H), 1.29 (t, *J* = 7.1 Hz, 3H). **MS (EI) m/z (%):** 197 (M⁺, 16), 124 (100), 111 (1), 95 (13), 83 (1), 75 (7), 69 (1), 50 (1).

R. Rohlmann, T. Stopka, H. Richter and O. García Mancheño J. Org. Chem. 2013, 78, 6050-6064.

Ethyl N-ethoxycarbonylmethyl-N-(4-fluorophenyl)aminoacetate was synthesized from *p*-fluoroaniline and EDA.

MS (EI) m/z (%): 283 (M+, 16), 237 (1), 210 (100), 182 (5), 154 (3), 138 (17), 124 (33), 109 (24), 95 (14), 75 (5), 59 (32).

Reference: Mitsubishi Pharma Corporation - US6455528, 2002, B1.

Ethyl [(2-fluorophenyl)amino]acetate was synthesized from 2-fluoroaniline and EDA. **HRMS (ESI+)** exact mass calculated for [C₁₀H₁₂FNO₂ + H]+ : 198.0925, found : 198.0929. ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.03 – 6.96 (m, 2H), 6.72 – 6.63 (m, 1H), 6.63 – 6.54 (m, 1H), 4.54 (bs, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 3.93 (d, *J* = 1.7 Hz, 2H), 1.30 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) (δ, ppm): 170.77 (s), 151.76 (d, *J* = 239.4 Hz), 135.72 (d, *J* = 11.7 Hz), 124.65 (d, *J* = 3.6 Hz), 117.72 (d, *J* = 7.0 Hz), 114.75 (d, *J* = 18.4 Hz), 112.34 (d, *J* = 3.1 Hz), 61.47 (s), 45.59 (s), 14.25 (s). ¹⁹F NMR (376 MHz, CDCl₃) (δ, ppm): -135.86. MS (EI) m/z (%): 197 (M+, 18), 124 (100), 111 (1), 102 (1), 95 (7), 83 (1), 77 (19), 75 (6), 69 (1), 63 (1), 57 (1), 51 (2).

Ethyl [(2,3,4,5,6-pentafluorophenyl)amino]acetate was synthesized from 2,3,4,5,6-pentafluorofluoroaniline and EDA.

HRMS (ESI+) exact mass calculated for [C₁₀H₈F₅NO₂ + H]+ : 270.0548, found : 270.0549.

¹**H** NMR (400 MHz, CDCl₃) (δ, ppm): 4.24 (q, *J* = 7.1 Hz, 2H), 4.08 (dt, *J* = 6.2, 1.5 Hz, 2H), 1.29 (t, *J* = 7.1 Hz, 3H). ¹³**C** NMR (101 MHz, CDCl₃) (δ, ppm): 170.77, 139.71-139.15, 137.23-136.76, 135.50-135.14, 133.07-132.70, 123.31-123.02, 61.80, 47.33 (t, *J* = 4.2 Hz), 14.27. ¹⁹**F** NMR (376 MHz, CDCl₃) (δ, ppm): -159.50 - -159.74 (m), -163.99 - -164.28 (m), -170.64 (tt, *J* = 21.9, 6.1 Hz). MS (EI) m/z (%): 269 (M⁺, 17), 196 (100), 177 (3), 167 (5), 149 (4), 137 (1), 126 (5), 117 (7), 106 (1) 99 (4), 93 (2), 75 (1), 69 (1).

Ethyl [(2*-tert***-butylphenyl)amino]acetate** was synthesized from 2*-tert*-butylaniline and EDA. **HRMS (ESI+)** exact mass calculated for [C₁₄H₂₁NO₂ + H]+ : 236.1645, found : 236.1648.

¹**H NMR** (400 MHz, CDCl₃) (δ, ppm): 7.28 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.14 (td, *J* = 8.1, 1.4 Hz, 1H), 6.74 (td, *J* = 7.7, 1.3 Hz, 1H), 6.52 (dd, *J* = 8.0, 1.0 Hz, 1H), 4.74 (s, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 3.97 (d, *J* = 4.8 Hz, 2H), 1.48 (s, 9H), 1.33 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) (δ, ppm): 171.50, 145.25, 133.88, 127.31, 126.48, 117.71, 111.70, 61.55, 46.48, 34.28, 29.98, 14.33. **MS (EI) m/z** (%): 235 (M+, 29), 220 (8), 204 (2), 162 (100), 146 (29), 132 (26), 117 (14), 106 (11), 91 (12), 77 (8), 65 (3), 57 (2), 51 (2).

Ethyl [(2,6-diisopropylphenyl)amino]acetate was synthesized from 2,6-diisopropylaniline and EDA.

HRMS (ESI+) exact mass calculated for [C₁₆H₂₅NO₂ + H]+ : 264.1958, found : 264.1961. ¹**H** NMR (400 MHz, CDCl₃) (δ, ppm): 7.14 – 7.04 (m, 3H), 4.27 (q, *J* = 7.1 Hz, 2H), 3.84 (bs, 1H), 3.74 (s, 2H), 3.32 (hept, *J* = 6.8 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H), 1.27 (d, *J* = 6.8 Hz, 12H). ¹³**C** NMR (101 MHz, CDCl₃) (δ, ppm): 172.07, 142.85, 142.10, 123.98, 123.75, 61.31, 52.61, 27.95, 24.24, 14.31. MS (EI) m/z (%): 263 (M+, 26), 248 (2), 234 (4), 220 (4), 190 (100), 176 (25), 160 (25), 146 (17), 132 (15), 117 (9), 103 (2), 91 (7), 77 (4), 65 (2), 51 (1).

Ethyl [(2,6-dimethylphenyl)amino]acetate was synthesized from 2,6-dimethylaniline and EDA.

HRMS (ESI+) exact mass calculated for [C₁₂H₁₇NO₂ + H]+ : 208.1332, found : 208.1331. ¹**H** NMR (400 MHz, CDCl₃) (δ, ppm): 6.99 (d, *J* = 7.5 Hz, 2H), 6.82 (t, *J* = 7.5 Hz, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 3.95 (s, 1H), 3.82 (s, 2H), 2.33 (s, 6H), 1.29 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) (δ, ppm): 172.39, 145.86, 128.99, 128.63, 121.90, 61.30, 50.15, 18.75, 14.28. MS (EI) m/z (%): 207 (M+, 41), 134 (100), 117 (11), 105 (25), 91 (8), 77 (17), 65 (5), 51 (3).

Ethyl N-ethoxycarbonylmethyl-N-(2,6-dimethylphenyl)aminoacetate was synthesized from 2,6-dimethylaniline and EDA.

HRMS (ESI+) exact mass calculated for [C₁₆H₂₃NO₄ + H]+ : 294.1700, found : 294.1709. **MS (EI) m/z (%):** 293 (M+, 9), 264 (2), 247 (1), 220 (100), 206 (1), 192 (13), 164 (2), 146 (16), 132 (19), 117 (7), 105 (5), 91 (3), 77 (6), 65 (1), 59 (8), 51 (1).

Ethyl (*N***-methyl-***N***-phenylamino)acetate** was synthesized from N-methylaniline and EDA. ¹**H NMR** (400 MHz, CDCl₃) (δ, ppm): 7.23 (t, *J* = 8.8 Hz, 2H), 6.74 (t, *J* = 8.8 Hz, 1H), 6.69 (d, *J* = 8.8 Hz, 2H), 4.17 (q, *J* = 7.1 Hz, 2H), 4.05 (s, 2H), 3.07 (s, 3H), 1.24 (t, *J* = 7.1 Hz, 3H). **MS (EI) m/z (%):** 193 (M+, 13), 120 (100), 104 (10), 91 (4), 77 (13), 51 (4).

NMR: S. L. Parisel, L. A. Adrio, A. Amoedo Pereira, M. Marino Pérez, J. M. Vila and K. K. Hii *Tetrahedron*, 2005, **61**, 9822-9826

MS: T. Satoh, A. Osawa, T. Ohbayashi and A. Kondo *Tetrahedron*, 2006, **62**, 7892-7901.

Ethyl [(4-ethenylphenyl)amino]acetate was synthesized from 4-aminostyrene and EDA. ¹**H NMR** (400 MHz, CDCl₃) (δ, ppm): 7.26 (d, *J* = 8.5 Hz, 2H), 6.61 (dd, *J* = 17.6, 10.9 Hz, 1H), 6.56 (d, *J* = 8.7 Hz, 2H), 5.54 (dd, *J* = 17.6, 1.0 Hz, 1H), 5.03 (dd, *J* = 10.9, 1.0 Hz, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 3.90 (bs, 2H), 1.30 (t, *J* = 7.1 Hz, 1H). **MS (EI) m/z (%):** 205 (M+, 17), 132 (100), 103 (6), 77 (11).

Z. J. Wang, N. E. Peck, H. Renata and F. H. Arnold *Chem. Sci.*, 2014, **5**, 598-601.

Ethyl {[3,5-bis(trifluoromethyl)phenyl]amino}acetate was synthesized from 3,5-bis(trifluoromethyl)aniline and EDA.

HRMS (ESI+) exact mass calculated for [C₁₂H₁₁F₆NO₂ + H]+ : 316.0767, found : 316.0768.

¹**H NMR** (400 MHz, CDCl₃) (δ, ppm): 7.20 (s, 1H), 6.94 (s, 2H), 4.79 (s, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 3.95 (d, *J* = 5.2 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) (δ, ppm): 170.07 (s), 147.73 (s), 132.62 (q, *J* = 32.9 Hz), 123.58 (q, *J* = 272.7 Hz), 112.22 (d, *J* = 2.9 Hz), 111.58 – 110.01 (m), 61.93 (s), 45.31 (s), 14.21 (s). ¹⁹**F NMR** (376 MHz, CDCl₃) (δ, ppm): -63.25. **MS (EI) m/z (%)**: 315 (M+, 18), 296 (14), 242 (100), 223 (5), 213 (11), 202 (1), 195 (11), 182 (1), 173 (4), 163 (6), 144 (6), 125 (3), 104 (1), 94 (1), 75 (3), 51 (1).

Ethyl diisopropylglycinate was synthesized from diisopropylamine and EDA. ¹**H NMR** (400 MHz, CDCl₃) (δ, ppm): 4.14 (q, *J* = 7.1 Hz, 2H), 3.21 (s, 2H), 3.06 (hept, *J* = 6.5 Hz, 2H), 1.24 (t, *J* = 7.1 Hz, 3H), 1.01 (d, *J* = 6.5 Hz, 12H). **MS (EI) m/z (%):** 187 (10), 172 (15), 144 (4), 130 (21), 114 (100), 102 (4), 84 (2), 72 (39), 56 (32).

L. Chen, H. Cui, Y. Wang, W. Liang, L. Zhang and C.-Y. Su, *Dalton Trans.*, 2018, **47**, 3940-3946.

$$\langle N \rangle = N$$

N-(4,5-dihydro-2-thiazolyl)glycine ethyl ester was synthesized from 2-aminothiazoline and EDA.

¹**H** NMR (400 MHz, CDCl₃) (δ, ppm): 4.11 (q, *J* = 7.1 Hz, 2H), 4.02 (s, 2H), 3.67 (t, *J* = 6.8 Hz, 2H), 3.14 (t, *J* = 6.8 Hz, 2H), 1.19 (t, *J* = 7.1 Hz, 3H). MS (EI) m/z (%): 188 (M+, 31), 170 (7), 142 (42), 129 (3), 115 (100), 101 (29), 88 (97), 86 (55), 72 (3), 56 (39).

L. P. Cailler, A. G. Martynov, Yu. G. Gorbunova, A. Yu. Tsivadze and A. B. Sorokin, *J. Porphyrins Phthalocyanines*, 2019, **23**, 497-506.

N-1,3,4-thiadiazol-2-ylglycine ethyl ester was synthesized from 2-amino-1,3,4-thiadiazole and EDA.

¹**H NMR** (400 MHz, CDCl₃) (δ, ppm): 8.47(s,1H), 5.54 (s, 2H), 4.25 (q,J= 7.1 Hz, 2H), 1.29 (t,J= 7.1 Hz, 3H). **MS (EI) m/z (%):** 187 (M+, 33), 169 (2), 142 (11), 114 (78), 101 (11), 88 (19), 74 (2), 60 (18), 55 (100).

N. E. A. Abdel-Sattar, A. M. El-Naggar and M. S. A. Abdel-Mottaleb J. Chem. 2017, 1-11.

N-(2-ethoxy-2-oxoethyl)-N-1,3,4-thiadiazol-2-ylglycine ethyl ester was synthesized from 2-amino-1,3,4-thiadiazole and EDA.

¹**H** NMR (400 MHz, CDCl₃) (δ, ppm): 7.98 (s, 1H), 4.16 (q, *J* = 7.1 Hz, 2H), 4.13 (t, *J* = 7.1 Hz, 2H), 3.86 (s, 2H), 3.55 (s, 2H), 1.22 (t, *J* = 7.1 Hz, 3H), 1.22 (t, *J* = 7.1 Hz, 3H). MS (EI) m/z (%): 273 (M+, 5), 228 (3), 200 (100), 172 (24), 126 (2), 114 (9), 100 (1), 72 (12), 55 (9).

L. P. Cailler, A. G. Martynov, Yu. G. Gorbunova, A. Yu. Tsivadze and A. B. Sorokin, *J. Porphyrins Phthalocyanines*, 2019, **23**, 497-506.

$$\checkmark^{\mathsf{H}} \checkmark^{\mathsf{CO}_2\mathsf{Et}}$$

Ethyl N-(cyclopropyl)glycinate was synthesized from cyclopropylamine and EDA. ¹**H NMR** (400 MHz, CDCl₃) (δ, ppm): 4.19 (q, *J* = 7.1Hz 2H), 3.43 (s, 2H), 2.25 – 2.18 (m, 1H), 1.27 (t, *J* = 7.1 Hz, 3H), 0.44 – 0.39 (m, 2H), 0.38 – 0.33 (m, 2H). **MS (EI) m/z (%):** 143 (M+, 3), 114 (11), 97 (1), 86, (3), 70 (100), 56 (4).

Y. Zhu, X. Zou, F. Hu, C. Yao, B. Liu and H. Yang, J. Agric. Food Chem. 2005, 53, 9566-9570.

N-(2-ethoxy-2-oxoethyl)-N-(cyclopropyl)glycine ethyl ester was synthesized from cyclopropylamine and EDA.

HRMS (ESI+) exact mass calculated for [C₁₁H₁₉NO₄ + H]+ : 230.1387, found : 230.1386. ¹**H NMR** (400 MHz, CDCl₃) (δ, ppm): 4.15 (q, *J* = 7.1 Hz, 13H), 3.65 (s, 12H), 2.48 (tt, *J* = 6.4, 3.8 Hz, 3H), 1.26 (t, *J* = 7.1 Hz, 20H), 0.53 – 0.42 (m, 13H). ¹³**C NMR** (101 MHz, CDCl₃) (δ, ppm): 171.56, 60.50, 55.02, 35.90, 14.36, 7.73. **MS (EI) m/z (%)**: 229 (M+, 12), 200 (15), 172 (3), 156 (100), 142 (4), 128 (13), 114 (10), 110 (2), 100 (4), 84 (16), 82 (10), 70 (6), 68 (9), 59 (14), 55 (5).

Ethyl 2-(2-pyrrolyl)acetate was synthesized from pyrrole and EDA.

¹H NMR (400 MHz, CDCl₃) (δ, ppm): 8.73 (br s, 1H, NH), 6.75 (dd, *J* = 2.9, 4.2 Hz, 1H), 6.14 (dd, *J* = 2.5, 2.9 Hz, 1H), 6.04-5.99 (br m, 1H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.67 (s, 2H), 1.26 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) (δ, ppm): 171.36, 123.47, 117.82, 108.40, 107.40, 61.73, 33.36, 14.31. MS (EI) m/z (%): 153 (M+, 25), 106 (1), 80 (100), 53 (11).

J.S. Yadav, B.V.S. Reddy and G. Satheesh *Tetrahedron Lett.*, 2003, **44**, 8331-8334.

Diethyl pyrrole-2,5-diacetate was synthesized from pyrrole and EDA.

¹**H** NMR (400 MHz, CDCl₃) (δ, ppm): 9.02 (bs, 1H, NH), 5.91 (d, *J* = 2.5 Hz, 2H), 4.17 (q, *J* = 7.1 Hz, 4H), 3.62 (s, 4H), 1.28 (t, *J* = 7.1 Hz, 6H). ¹³**C** NMR (101 MHz, CDCl₃) (δ, ppm): 171.13, 123.50, 107.44, 61.16, 33.56, 14.26. MS (EI) m/z (%): 239 (M+, 23), 166 (100), 138 (7), 120 (27), 93 (28), 65 (7), 52 (3).

R. Li, D. S. Larsen and S. Brooker *New J. Chem.*, 2003, **27**, 1353-1359.

5. NMR analysis of typical reaction mixtures after reaction completion

Figure S1: ¹H NMR spectrum (CDCl₃, 400 MHz) of the reaction mixture after completion of the reaction between styrene and EDA (Table 2, entry 1).

Figure S2: ¹H NMR spectrum (CDCl₃, 400 MHz) of the reaction mixture after completion of the reaction between aniline and EDA (Table 6, entry 1).

Figure S3: ¹H NMR spectrum (CDCl₃, 101 MHz) of the reaction mixture after completion of the reaction between 2,3,4,5,6-pentafluoroaniline and EDA (Table 6, entry 8).

Figure S4: ¹⁹F NMR spectrum (CDCl₃, 376 MHz) of the reaction mixture after completion of the reaction between aniline and EDA (Table 6, entry 8).

6. Spectral data of new compounds (HRMS, ¹H, ¹³C, ¹⁹F NMR, Mass)

Bruker Compass DataAnalysis 4.4

Page 1 of 1

Figure S5: HRMS spectrum of *trans*-ethyl 2-[2,4,6-trimethylphenyl]cyclopropane-1-carboxylate isolated by column chromatography from reaction between 2,4,6-trimethylstyrene and EDA (Table 2, entry 10).

Figure S6: ¹H NMR spectrum (CDCl₃, 400 MHz) of *trans*-ethyl 2-[2,4,6-trimethylphenyl]cyclopropane-1-carboxylate isolated by column chromatography from reaction between 2,4,6-trimethylstyrene and EDA (Table 2, entry 10).

Figure S7: ¹³C NMR spectrum (CDCl₃, 101 MHz) of *trans*-ethyl 2-[2,4,6-trimethylphenyl]cyclopropane-1-carboxylate isolated by column chromatography from reaction between 2,4,6-trimethylstyrene and EDA (Table 2, entry 10).

Figure S8: Mass spectrum (EI) of *trans*-ethyl 2-[2,4,6-trimethylphenyl]cyclopropane-1-carboxylate isolated by column chromatography from reaction between 2,4,6-trimethylstyrene and EDA (Table 2, entry 10).

Analysis Info

	Analysis Name Method Comment	Impact2_200610_01_ Tune_pos_Standard.r	E154-F33-34.d n		Acquisition Date Instrument / Ser#	6/10/2020 impact II	8:34:44 AM 1825265.1
	Acquisition Par Source Type Focus Scan Begin Scan End	ameter ESI Active 50 m/z 1000 m/z	lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4500 V -500 V 750.0 Vpp	Set Nebulize Set Dry Heat Set Dry Gas Set Divert Va	r (er 2 alve 5	0081 0.3 Bar 200 °C 4.0 l/min Source
Intens x10 ⁶		1+ 255.1360		I	mpact2_200610_01_E15	4-F33-34.d: +N	MS, 1.5-1.5min #85-86
2.0							
1.5							
1.0							
0.5							
0.0	0 100	200 300	348.1426 487.2 400 5	500 600	700	800	900 m/z
Intens.				l	mpact2_200610_01_E15	4-F33-34.d: +N	MS, 1.5-1.5min #85-86
		255-1360					
2.0							
1.5-							
1.0			1+				
0.5			256.1396				
x10 ⁶		1.	a		•		C ₁₅ H ₂₀ NaO ₂ , 255.1356
2.5-		255.1356					
2.0							
1.5							
1.0			1+				
0.5			256.1390	25	1+ 7 1417		
0.01	254	255	256	257	<u> </u>	258	
N	Neas. m/z Ion For 255.1360 C15H2 487.2830 C30H4	r mula m/z 0NaO2 255.1356 0NaO4 487.2819	Sum Formula err [C15H20O2	ppm] mSign -1.7 6 -2.2 17	na Adduct z 5.9 M+Na 1+ 7.8 2M+Na 1+		

Bruker Compass DataAnalysis 4.4

Page 1 of 1

Figure S9: HRMS spectrum of *cis*-ethyl 2-[2,4,6-trimethylphenyl]cyclopropane-1-carboxylate isolated by column chromatography from reaction between 2,4,6-trimethylstyrene and EDA (Table 2, entry 10).

Figure S10: ¹H NMR spectrum (CDCl₃, 400 MHz) of *cis*-ethyl 2-[2,4,6-trimethylphenyl]cyclopropane-1-carboxylate isolated by column chromatography from reaction between 2,4,6-trimethylstyrene and EDA (Table 2, entry 10).

Figure S11: ¹³C NMR spectrum (CDCl₃, 101 MHz) of *cis*-ethyl 2-[2,4,6-trimethylphenyl]cyclopropane-1-carboxylate isolated by column chromatography from reaction between 2,4,6-trimethylstyrene and EDA (Table 2, entry 10).

Figure S12: Mass spectrum (EI) of *cis*-ethyl 2-[2,4,6-trimethylphenyl]cyclopropane-1-carboxylate isolated by column chromatography from reaction between 2,4,6-trimethylstyrene and EDA (Table 2, entry 10).

Analysis Info

Analysis Name Impact2_200609_13_E105-F15.d Method Tune_pos_Standard.m Comment

Acquisition Date 6/9/2020 4:22:10 PM Instrument / Ser# impact II 1825265.1 0081

Acquisition Para	ameter				0001	
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.3 Bar	
Focus	Active	Set Capillary	4500 V	Set Dry Heater	200 °C	
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 l/min	
Scan End	1000 m/z	Set Collision Cell RF	750.0 Vpp	Set Divert Valve	Source	

Bruker Compass DataAnalysis 4.4

Page 1 of 1

Figure S13: HRMS spectrum of ethyl [(2-fluorophenyl)amino]acetate isolated by column chromatography from reaction between 2-fluoroaniline and EDA (Table 6, entry 6).

Figure S14: ¹H NMR spectrum (CDCl₃, 400 MHz) of ethyl [(2-fluorophenyl)amino]acetate isolated by column chromatography from reaction between 2-fluoroaniline and EDA (Table 6, entry 6).

Figure S15: ¹³C NMR spectrum (CDCl₃, 101 MHz) of ethyl [(2-fluorophenyl)amino]acetate isolated by column chromatography from reaction between 2-fluoroaniline and EDA (Table 6, entry 6).

Figure S16: ¹⁹F NMR spectrum (CDCl₃, 376 MHz) of ethyl [(2-fluorophenyl)amino]acetate isolated by column chromatography from reaction between 2-fluoroaniline and EDA (Table 6, entry 6).

Figure S17: Mass spectrum (EI) of ethyl [(2-fluorophenyl)amino]acetate isolated by column chromatography from reaction between 2-fluoroaniline and EDA (Table 6, entry 6).

Analysis Info

Analysis Name Impact2_200609_12_E101.d Ν С

Method	Tune_pos_Standard.m			Acquisition Date	6/9/2020 4:16:08 PM	
Comment				Instrument/Ser# 1	.mpact II 1825265.1	
Acquisition Para	meter				0001	
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.3 Bar	
Focus	Active	Set Capillary	4500 V	Set Dry Heater	200 °C	
Scan Begin Scan End	50 m/z 2500 m/z	Set End Plate Offset Set Collision Cell RF	-500 V 750.0 Vpp	Set Dry Gas Set Divert Valv	4.0 l/min /e Source	

Figure S18: HRMS spectrum of ethyl [(2,3,4,5,6-pentafluorophenyl)amino]acetate isolated by column chromatography from reaction between 2,3,4,5,6-pentafluoroaniline and EDA (Table 6, entry 8).

Figure S19: ¹H NMR spectrum (CDCl₃, 400 MHz) of ethyl [(2,3,4,5,6-pentafluorophenyl)amino]acetate isolated by column chromatography from reaction between 2,3,4,5,6-pentafluoroaniline and EDA (Table 6, entry 8).

Figure S20: ¹³C NMR spectrum (CDCl₃, 101 MHz) of ethyl [(2,3,4,5,6-pentafluorophenyl)amino]acetate isolated by column chromatography from reaction between 2,3,4,5,6-pentafluoroaniline and EDA (Table 6, entry 8).

Figure S21: ¹⁹F NMR spectrum (CDCl₃, 376 MHz) of ethyl [(2,3,4,5,6-pentafluorophenyl)amino]acetate isolated by column chromatography from reaction between 2,3,4,5,6-pentafluoroaniline and EDA (Table 6, entry 8).

Figure S22: Mass spectrum (EI) of ethyl [(2,3,4,5,6-pentafluorophenyl)amino]acetate isolated by column chromatography from reaction between 2,3,4,5,6-pentafluoroaniline and EDA (Table 6, entry 8).

Analysis Info

Analysis Name Impact2_200609_15_E108-F11-13.d Method Tune_pos_Standard.m

Method Comment	Tune_pos_Standard.m			Acquisition Date Instrument / Ser#	6/9/2020 4:54 impact II	1:54 PM 1825265.1
Acquisition Pa	arameter					0001
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.3 E	Bar
Focus	Active	Set Capillary	3500 V	Set Dry Heate	er 200	°C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0	/min
Scan End	1000 m/z	Set Collision Cell RF	750.0 Vpp	Set Divert Val	lve Sour	rce

Figure S23: HRMS spectrum of ethyl [(2-*tert*-butylphenyl)amino]acetate isolated by column chromatography from reaction between 2-*tert*-butylaniline and EDA (Table 6, entry 11).

Figure S24: ¹H NMR spectrum (CDCl₃, 400 MHz) of ethyl [(2*-tert*-butylphenyl)amino]acetate isolated by column chromatography from reaction between 2*-tert*-butylaniline and EDA (Table 6, entry 11).

Figure S25: ¹³C NMR spectrum (CDCl₃, 101 MHz) of ethyl [(2*-tert*-butylphenyl)amino]acetate isolated by column chromatography from reaction between 2*-tert*-butylaniline and EDA (Table 6, entry 11).

Figure S26: Mass spectrum (EI) of ethyl [(2-*tert*-butylphenyl)amino]acetate isolated by column chromatography from reaction between 2-*tert*-butylaniline and EDA (Table 6, entry 11).

Analysis Info

Scan End

Analy Meth Com

Analysis Name Method Comment	Impact2_200609_ Tune_pos_Standa	I4_E106-F19.d rd.m		Acquisition Date Instrument / Ser#
Acquisition Par	ameter			
Source Type	ESI	Ion Polarity	Positive	Set Nebuliz
Focus	Active	Set Capillary	4500 V	Set Dry Hea
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas

impact II 1825265.1 0081 0.3 Bar lizer Set Capillary Set End Plate Offset 4500 V -500 V Set Dry Heater Set Dry Gas 200 °C 4.0 l/min 1000 m/z Set Collision Cell RF 750.0 Vpp Set Divert Valve Source

6/9/2020 4:37:23 PM

Figure S27: HRMS spectrum of ethyl [(2,6-diisopropylphenyl)amino]acetate isolated by column chromatography from reaction between 2,6-diisopropylaniline and EDA (Table 6, entry 10).

Figure S28: ¹H NMR spectrum (CDCl₃, 400 MHz) of ethyl [(2,6-diisopropylphenyl)amino]acetate isolated by column chromatography from reaction between 2,6-diisopropylaniline and EDA (Table 6, entry 10).

Figure S29: ¹³C NMR spectrum (CDCl₃, 101 MHz) of ethyl [(2,6-diisopropylphenyl)amino]acetate isolated by column chromatography from reaction between 2,6-diisopropylaniline and EDA (Table 6, entry 10).

Figure S30: Mass spectrum (EI) of ethyl [(2,6-diisopropylphenyl)amino]acetate isolated by column chromatography from reaction between 2,6-diisopropylaniline and EDA (Table 6, entry 10).

Analysis Info

Analysis Name Impact2_200609_17_E109-F12-17.d Method Tune_pos_Standard.m

Comment	rune_pos_standard.m			Instrument / Ser#	impact II 1825265.1
Acquisition Par	ameter				0081
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.3 Bar
Focus	Active	Set Capillary	1500 V	Set Dry Heate	r 200 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 l/min
Scan End	1000 m/z	Set Collision Cell RF	750.0 Vpp	Set Divert Val	ve Source

Bruker Compass DataAnalysis 4.4

Page 1 of 1

C/0/2020 E:00:1E DM

Acquisition Data

Figure S31: HRMS spectrum of ethyl [(2,6-dimethylphenyl)amino]acetate isolated by column chromatography from reaction between 2,6-dimethylaniline and EDA (Table 6, entry 9).

Figure S32: ¹H NMR spectrum (CDCl₃, 400 MHz) of ethyl [(2,6-dimethylphenyl)amino]acetate isolated by column chromatography from reaction between 2,6-dimethylaniline and EDA (Table 6, entry 9).

Figure S33: ¹³C NMR spectrum (CDCl₃, 101 MHz) of ethyl [(2,6-dimethylphenyl)amino]acetate isolated by column chromatography from reaction between 2,6-dimethylaniline and EDA (Table 6, entry 9).

Figure S34: Mass spectrum (EI) of ethyl [(2,6-dimethylphenyl)amino]acetate isolated by column chromatography from reaction between 2,6-dimethylaniline and EDA (Table 6, entry 9).

Figure S35: HRMS spectrum of ethyl {[3,5-bis(trifluoromethyl)phenyl]amino}acetate isolated by column chromatography from reaction between 3,5-bis(trifluoromethyl)aniline and EDA (Table 6, entry 7).

Figure S36: ¹H NMR spectrum (CDCl₃, 400 MHz) of ethyl {[3,5-bis(trifluoromethyl)phenyl]amino}acetate isolated by column chromatography from reaction between 3,5-bis(trifluoromethyl)aniline and EDA (Table 6, entry 7).

Figure S37: ¹³C NMR spectrum (CDCl₃, 101 MHz) of ethyl {[3,5-bis(trifluoromethyl)phenyl]amino}acetate isolated by column chromatography from reaction between 3,5-bis(trifluoromethyl)aniline and EDA (Table 6, entry 7).

Figure S38: ¹⁹F NMR spectrum (CDCl₃, 376 MHz) of ethyl {[3,5-bis(trifluoromethyl)phenyl]amino}acetate isolated by column chromatography from reaction between 3,5-bis(trifluoromethyl)aniline and EDA (Table 6, entry 7).

Figure S39: Mass spectrum (EI) of ethyl {[3,5-bis(trifluoromethyl)phenyl]amino}acetate isolated by column chromatography from reaction between 3,5-bis(trifluoromethyl)aniline and EDA (Table 6, entry 7).

-		
Δna	vsis	Info
	.,	

Analysis Name Impact2 200609 19 E120.d

Method Comment	Tune_pos_Standard.m			Acquisition Date Instrument / Ser#	6/9/2020 5:5 impact II	7:41 PM 1825265.1
Acquisition Pa	arameter					0001
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.3	Bar
Focus	Active	Set Capillary	3500 V	Set Dry Heat	er 200	°C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0	/min
Scan End	1000 m/z	Set Collision Cell RF	750.0 Vpp	Set Divert Va	lve Sou	rce

Figure S40: HRMS spectrum of N-(2-ethoxy-2-oxoethyl)-N-(cyclopropyl)glycine ethyl ester isolated by column chromatography from reaction between cyclopropylamine and EDA (Table 6, entry 21).

Figure S41: ¹H NMR spectrum (CDCl₃, 400 MHz) of N-(2-ethoxy-2-oxoethyl)-N-(cyclopropyl)glycine ethyl ester isolated by column chromatography from reaction between cyclopropylamine and EDA (Table 6, entry 21).

Figure S42: ¹³C NMR spectrum (CDCl₃, 101 MHz) of N-(2-ethoxy-2-oxoethyl)-N-(cyclopropyl)glycine ethyl ester isolated by column chromatography from reaction between cyclopropylamine and EDA (Table 6, entry 21).

Figure S43: Mass spectrum (EI) of N-(2-ethoxy-2-oxoethyl)-N-(cyclopropyl)glycine ethyl ester isolated by column chromatography from reaction between cyclopropylamine and EDA (Table 6, entry 21).