Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Ruthenium-doped NiFe-based metal-organic framework nanoparticles as highly

efficient catalyst for oxygen evolution reaction

Yu Lin^a, Linxiu Zhao^a, Limin Wang^a, Yaqiong Gong^{a*}

^aSchool of Chemical Engineering and Technology, North University of China,

Taiyuan, 030051, P. R. China

*Email:gyq@nuc.edu.cn(Yaqiong Gong)

Fig. S1XRD patterns of as-synthetizedNiFe-MOF and Ru-NiFe-MOF.

Fig. S2Elemental mappingof (a) NiFe-MOF/NF and(b)Ru-NiFe-MOF/NF.

Fig. S3EDX spectrum of Ru-NiFe-MOF.

Fig. S4 (a) CV curves of NiFe-MOF/NF and Ru-NiFe-MOF/NFcatalystsin thepotential range from-0.2 to 0.6 V (vs. RHE)in 1 M PBS (pH=7) with scan rate of 50 mVs⁻¹. (b) Calculated TOFs ofNiFe-MOF/NF and Ru-NiFe-MOF/NF for OER (inset shows the corresponding TOFs at special overpotentials of220, 240, 260, and 280 mV, respectively).

and (d) Ru-Ni₁Fe₃-MOF/NFcatalystswith various scan rates (10, 20, 30, 40, and 50 mV/s) toward OER 1 M KOH.

Fig.S6EDX elemental mapping of Ru-NiFe-MOF/NF after long-term stability test.

	1	5		
Catalysts	Overpotential at 10 mAcm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	Stability (h)	Reference
NiFe-MOF/NF	232	61	—	This work
Ru-NiFe-MOF/NF	205	50	100	This work
NP-Ru ₃	245	15	15	J. Mater. Sci. Technol. 2021 ,70,197-204
e-Ni _{0.6} Ru _{0.4} @C	250	46	10	J. Mater. Chem. A 2020 , 8,9049-9057
Ru ₂ Ni ₂ SNs/C	310	~40	_	Nano Energy 2018 , 47, 1-7
Ru/NF-2	330	62	20	ACS Appl. Mater. Interfaces 2020 , 1236177-36185
Ru-NiCoP	216 mV @ 20 mAcm ⁻²	84.5	30	<i>Appl. Catal.,</i> B 2020 ,279,119396
RuO ₂ -NiO	187	36	20	J. Mater. Chem. A 2020 ,8,18945-1895 4
RuO ₂ /N-C	280	56		ACS Sustainable Chem. Eng. 2018 , 6, 11529-11535
NiRu@C	250	46	9	J. Mater. Chem. A 2020 , 8, 9049-9057
Ru/Cu-doped RuO ₂	241	67	6	<i>Small</i> 2018 , 14, 1803009
RuO ₂ /Co ₃ O ₄	305	69	_	<i>RSC Adv.</i> 2017 , 7, 3686

Table	S1 Comparison	of	electrochemical	OER	performance
ofRu-NiFe					