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General procedures. All reagents were obtained from commercial vendors and, unless otherwise noted,
were used without further purification. Elemental analysis (C, H, N) were carried out with an Elementar
Vario EL IIl. The IR spectra were obtained in the 4000~400 cm™ on a Bruker Tensor27 spectrometer
using KBr pellets. Thermal gravimetric analyses (TGA) were performed under N2 atmosphere (100
ml/min) with a heating rate of 5 <C/min using a Beijing Henven HTG-1 thermogravimetric analyzer.
Powder X-ray diffraction (PXRD) data were collected on a Bruker D8 ADVANCEX-ray diffractometer
with Cu Ka radiation. The content of Cu and Li in MOF sample was carried out with Optima 5300 DV
ICP.

X-ray crystallography. Single-crystal X-ray diffraction data were measured on a Bruker D8 Venture at
153 K using graphite monochromated Cu/Ko radiation (A = 1.54178 A). Data reduction was made with
the Bruker SAINT program. The structures were solved by direct methods and refined with full-matrix
least squares technique using the SHELXTL package!!. Non-hydrogen atoms were refined with
anisotropic displacement parameters during the final cycles. Organic hydrogen atoms were placed in
calculated positions with isotropic displacement parameters set to 1.2 x U,, of the attached atom. The unit
cell includes a large region of disordered solvent molecules, which could not be modelled as discrete
atomic sites. We employed PLATON/SQUEEZE!? to calculate the diffraction contribution of the solvent

molecules and, thereby, to produce a set of solvent-free diffraction intensities; structures were then refined
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again using the data generated. A summary of the crystallographic data are given in Table S1. CCDC

1878404 contains the supplementary crystallographic data for SNNU-Bai67.

Table S1. Crystallographic Data of SNNU-Bai67

MOFs

SNNU-Bai67

Empirical formula
Formula weight
T [K]
Wavelength [A]
Crystal system
Space group
a[A]

b[A]

c[A]

o [deg]

P [deg]

v [deg]

V [A3]

4
Peale[g cm]

p# [mm']
F(000)
Crystal size [mm?]
Theta range [deg]

Limiting indices

Reflections collected
Reflections unique
Completeness
Data/restraints/parameters
Goodness-of-fit on F/2
R1, wR2¢ [I>20(D)]
R1, wR2“all data]
Apmax | Apmin[e. A7]

Ca7Ha3C12CUsNgO25 [+4DMF 6(H.0)]

1585.04
153(2)
1.54178
Monoclinic
P2:
14.9785(6)
18.7174(8)
15.2305(6)
90
102.450(2)
90
4169.6(3)

2
1.263
2.816
1592
0.13 x0.1 x<0.08
3.835-72.419
-18<=h<=13
23<=k<=22
-18<=1<=18
32433
14901 [R(int) = 0.0476]
98.9 %
14901 /22 / 803
1.027
0.0409, 0.1186
0.0416, 0.1198
-0.642/0.911

“R1 = X|[F| = |Fell/|Fol; WR2 = [EW(EF,2 — FAZw(F2)]"2.
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Figure S1. The illustrative graphics of three different kinds of sg/-layers constructed by Cu-paddlewheel
unit and isophthalate fragment exhibiting different pore sizes with the purple bond representing the 5-
carbon atom in the isophthalate pointing “up” and the orange bond representing the 5-carbon atom in the

isophthalate pointing “down”, and the corresponding MOFs resulted from each sgl-layer.

Figure S§2. The asymmetric unit in the ellipsoid mode (a) and the partial corn-sg/ layer of SNNU-Bai67
(b). H atoms have been omitted for clarity.



Figure $4. (a) The 3D structure viewed along b axis in SNNU-Bai67; (b) the 1D channel in SNNU-Bai67.
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Figure S5. The 3D topological net with point symbol of {62.8%.10.12}2{6%.8}6{6*8.10} viewed along b
axis (a) and two kinds of 4-connected nodes and four different 3-connected nodes (b) in SNNU-Bai67.

Figure S6. Comparisons of the coordination environments for two kinds of mononuclear Cu?" ions in

SNNU-Bai67 and VNU-18.
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Figure S7. The simulated and experimental PXRD patterns and their differences of SNNU-Bai67 (a) and
VNU-18 (b); PXRD patterns of as-synthesized, CH2Clx-exchanged and activated SNNU-Bai67 (c) and

VNU-18 (d); slight flexibility of SNNU-Bai67 (e) and VNU-18 (f) after CH>Cl>-exchange and activation.
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Figure §8. TGA curves of as-synthesized (red), CH>Clx-exchanged (blue) and activated (green) SNNU-
Bai67 (a) and VNU-18 (b).
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Figure S9. Infrared spectra of ligand (red), as-synthesized (blue), CH>Cl>-exchanged (green), and
activated (pink) SNNU-Bai67. In the spectrum of HzL, the IR peak of -COOH is evident at 1721.5 cm™
and it shifted to 1644.9 cm™ after its coordination with Cu?* ion in as-synthesized, CH,Cl-exchanged,
and activated SNNU-Bai67. Moreover, in the spectrum of as-synthesized SNNU-Bai67, the IR peak of
DMF molecule is evident at 1672.6 cm™ and it disappeared after the CH.Cl, exchanged into the pores of
exchanged SNNU-Bai67 and in activated SNNU-Bai67, which indicated the successful CH2Cl>-exchange
in exchanged SNNU-Bai67 and full activation of activated SNNU-Bai67.
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Gas sorption measurements. Low-pressure adsorption isotherms of N2 (99.999%), C2Hz (99.999%),
C2Hs (99.999%), C2He (99.999%) and CHa4 (99.999%) gases were performed on Micromeritics 3Flex
surface area and pore size analyzer. Before analysis, about 50 mg samples were activated by using the
‘outgas” function of the surface area analyzer. For all isotherms, ultra-high purity He gas (UHP grade 5.0,
99.999% purity) was used for the estimation of the free space (warm and cold), assuming that it is not
adsorbed at any of the studied temperatures. The specific surface areas were determined using the
Brunauer-Emmett-Teller (BET) and the Langmuir equation from the N> sorption data at 77 K. When
applying the BET theory, we made sure that our analysis satisfied the two consistency criteria as detailed

by Walton and co-workers.[*) For the Langmuir surface area, data from the whole adsorption data were

used.
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Figure S10. The V[1-(P/Po)] vs. P/Po for SNNU-Bai67 (a) and VNU-18 (b), only the range below P/Po =
0.04 or 0.03 satisfies the first consistency criterion for applying the BET theory. Inset: Plot of the linear
region for the BET equation.
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Figure S11. CoH, CoH4, C2Hg and CHg adsorption isotherms for SNNU-Bai67 (a) and VNU-18 (b) at
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273 K with the unit of gas uptake as cm?/g (STP); Filled and open symbols represent adsorption and

desorption, respectively.

Estimation of the isosteric heats of gas adsorption. A virial-type!* expression

comprising the temperature-independent parameters a; and b; was employed to calculate the enthalpies of
adsorption for C2H», CoHa, CoHe and CH4 (at 273 and 298 K) of activated SNNU-Bai67. In each case, the

data were fitted using the equation:

INP=InN+1/T> aN'+> bN' (1)

i~0 -0

Here, P is the pressure expressed in Torr, N is the amount adsorbed in mmol/g, T is thetemperature
in K, a; and b; are virial coefficients, and m, n represent the number of coefficients required to adequately
describe the isotherms (m and n were gradually increased until the contribution of extra added a and b
coefficients was deemed to be statistically insignificant towards the overall fit, and the average value of
the squared deviations from the experimental values was minimized). The values of the virial coefficients

ao through a,, were then used to calculate the isosteric heat of adsorption using the following expression.
Q =-RY>aN" (2
i—0

Oy 1s the coverage-dependent isosteric heat of adsorption and R is the universal gas constant. The
heat of C2H», C2H4, C2He and CH4 sorption for activated SNNU-Bai67 in the manuscript are determined
by using the sorption data measured in the pressure range from 0-1 bar (273 and 298 K), which is fitted
by the virial-equation very well (R? > 0.9999).
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Figure S12. The details of virial equation (solid lines) fitting to the experimental CoH: (a), CoHs (b), C2Hs
(c) and CH4 (d) adsorption data (symbols) for activated SNNU-Bai67.
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Figure S13. The details of virial equation (solid lines) fitting to the experimental CoH> (a), C2Ha (b), C2Hs
(c) and CH4 (d) adsorption data (symbols) for VNU-18.
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Prediction of the Gas Adsorption Selectivity by IAST. IAST (ideal adsorption

solution theory)®® was used to predict binary mixture adsorption from the experimental pure-gas
isotherms. In order to perform the integrations required by IAST, the single-component isotherms should
be fitted by a proper model. In practice, several methods to do this are available. We found for this set of
data that the dual-site Langmuir-Freundlich equation was successful in fitting the data. As can be seen in
Figure S14 and Table S2-3, the model fits the isotherms very well (R? > 0.9999).

1 1

_ Qmabip /my qm,2Db2p /n

- 1/ + 1/
1+bip’™ 1+ b,p /™

(3)

Here, P is the pressure of the bulk gas at equilibrium with the adsorbed phase (kPa), g is the adsorbed
amount per mass of adsorbent (mmol/g), gm: and g2 are the saturation capacities of sites 1 and 2
(mmol/g), b; and b, are the affinity coefficients of sites 1 and 2 (1/kPa), and »n; and n> represent the
deviations from an ideal homogeneous surface. The fitted parameters were then used to predict multi-

component adsorption with IAST.

The selectivity S/ in a binary mixture of components A and B is defined as (x4/y4)/ (x8/ys), where

x; and y; are the mole fractions of component i (i = A, B) in the adsorbed and bulk phases, respectively.
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Figure S14. Low pressure gas adsorption isotherms and the dual-site Langmuir-Freundlich (DSLF) fit
lines of C2H», CoHa, C2Hs and CH4 in SNNU-Bai67 (a) and VNU-18 (b) at 298 K.
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Table S2. Dual-site Langmuir-Freundlich parameters for pure CoH», CoHa, C2Hs and CHg4 isotherms in

activated SNNU-Bai67 at 298 K

SNNU-Bai67
CaoH2 CoH4 CoHs CH4

R? 0.999993773432604 0.999995326671241 0.999994132308008 0.999977396320602
Om,1 2.4928740879393 2.38092409284434 3.06592538141372 7.56767855662538
Om.2 4.51534038891507 3.36971559425661 2.35228182283931 0.0175596152872175

b1 0.0151093385937918 0.134412427645968 0.110691078400833 0.00140410425964977

b, 0.0995645778573002 0.0232484590714453 0.018552762173548 4.85724902534828E-35

N1 1.111736252 0.946400212 1.013563138 1.033635678742880

Ny 1.060512841 1.141609791 1.109310821 0.057455926122578

Table S3. Dual-site Langmuir-Freundlich parameters for pure CoH», CoHa, C2Hs and CHgs isotherms in
VNU-18 at 298 K

VNU-18
CoH2 CoH4 CoHs CH4

R2 0.999997566124258 0.999995165406282 0.999993077253106 0.999982088511563
Om,1 2.48311044977533 2.12175878108389 2.45563781206927 0.0165938504076144
Om,2 4.256599107818 2.8448595637287 2.02866315054155 3.24870054992584
b1 0.00929287161151276 0.123538219446429 0.110469936023112 1.45102717371289E-54
b, 0.0971281133138944 0.0194245812009864 0.0161451009227828 0.00347104908037213
n 1.138639412 0.988141097 1.03472122 0.035892711009700
N2 1.105931607 1140459065 1.105922555 1.000375151588010
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Computation Detail. Atomistic GCMC simulations were performed to estimate the adsorption
isotherms of C2H,, CoHas, C2Hg and CH4 in SNNU-Bai67 and VNU-18. The framework of SNNU-Bai67

and VNU-18 were fixed from their crystallographic data. All simulations/calculations were performed by
the Materials Studio 7.0 package. DFT and PDFT calculations were performed by the Dmol3 module,
using the generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional
and the double numerical plus d-functions (DNP) basis set, TS for DFT-D correction, and the Effective
Core Potentials (ECP).[®! The Mulliken charges of the atoms of the framework were calculated by PDFT
performed through the Dmol3 module. The CoHz, C2Ha, C2Hg and CH4 gas molecules were optimized
using the DMol3 method and adopted the B3LYP fitted ESP-charge.””! The adsorption isotherms of C2H>,
CoHa4, CoHg and CH4 gases at 298 K were estimated through Grand Canonical Monte Carlo (GCMC)
simulations by using the adsorption isotherm task and metropolis method in the sorption calculation
module.!®”) Both the framework and gas molecule were regarded as rigid. The equilibration steps and
production steps were set to 1 x 10° and 1 x 107, respectively. The framework and gas molecule were
described by the COMPASSII. The cutoff distance was set to 18.5 A for the Lennard-Jones (LJ)
interactions, and the electrostatic interactions and the van der Waals interactions were handled using the
Ewald and Atom based summation method, respectively. The adsorption locations of CoH», CoHa, C2He
and CH4 molecules were searched through Grand Canonical Monte Carlo (GCMC) simulations by using
the location task and metropolis method in the sorption calculation module. The loading steps, production

steps and temperature cycles were setto 1 x 10°, 1 x 107 and 40, respectively.

The adsorption isotherms for CoHz, C2Ha, CoHs and CH4 gases of SNNU-Bai67 and VNU-18 were
simulated at 298 K and below 1 bar. As shown in Fig. S16, the adsorption uptakes for CoHa, CoHa, C2oHs
and CH4 of SNNU-Bai67 and VNU-18 were both overestimated, which could be due to the fact that a
perfect crystal is utilized in simulation or inaccuracies in the present simulation model. However, for
SNNU-Bai67, the trend of adsorption uptakes over the whole pressure range is CoH2>CoH4>CoHe>CHy,
with those of C2Hs and C2Hs being similar and VNU-18 exhibits the similar trend of those adsorption
uptakes, both of which are consistent with those observed in experimentally, respectively. Moreover, the
adsorption uptakes for CoH2, C2H4 and CoHs of SNNU-Bai67 are slightly higher than those of VNU-18,
respectively and that for CH4 of SNNU-Bai67 is similar to the value of VNU-18, which is also consistent
with those observed experimentally, respectively.

The adsorption locations of CoH», CoHs, C2Hs and CH4 molecules in SNNU-Bai67 and VNU-18 were
searched with their adsorption uptakes being equal to those measured in experiments at 1 bar, as shown
in Fig. 5. In SNNU-Bai67, the C2H>, C2H4 and CH4 molecules with numbers of 13, 10 and 2, respectively,
within one unit are all located at the square units in the partial corn-sql layer, whereas 9 of C.Hs molecules
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are located at the square units in the partial corn-sqgl layer and another one C2He molecule occupies the
corner of pillars. In comparison, in VNU-18, the CoHs4 and CH4 molecules with numbers of 8 and 2,
respectively, within one unit are all located at the square units in the partial corn-sql layer, whereas 9 of
C2H2 and 7 of CoHe molecules are located at the square units in the partial corn-sgl layer and another two

C2H2 molecules and one C2Hs molecule occupies the corner of pillars.
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Figure S15. The ESP charges used in the GCMC simulations for atoms of ligands constituting the partial
corn-sgl layers in SNNU-Bai67 and VNU-18.
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Figure S16. The experimental (a) and simulated (b) C2H2, Co:H4, C2Hg and CH4 adsorption isotherms for
SNNU-Bai67 and VNU-18 at 298 K with the unit of gas uptake as N/UC.
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Figure S17. The interactions of Hcana...Ocoo (green), Heona. .. Npy (blue), Hpy...Ccona (turquiose), @t...n
(black) and Hcomz...Ccomz (pink) in SNNU-Bai67 (a); the interactions of Hcons...Ocoo (green),
Hcana...Cpy (purple), Hpy...Ccons (turquiose), m...w (black) and Hezna. .. Coons (pink) in SNNU-Bai67 (b);
the interactions of Hcans...Ocoo (green), Heawms. . .Cry (purple), Hpy...Ccans (turquiose), Hezns. .. Cl™ (grey)
and Hcons...Ccoone (pink) in SNNU-Bai67 (c); the interactions of Hcha...Ocoo (green) and Hcns...Cpy
(purple) in SNNU-Bai67 (d).
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Figure S18. The interactions of Hconz...Ocoo (green), Hconz...Npy (blue), Hconz...Cpy (purple),
Hpy...Cconm2 (turquiose), m...m (black) and Hcoma...Ccomz (pink) in VNU-18 (a); the interactions of
Hcana...Ocoo (green), Heona...Crpy (purple), mt...w (black) and Heans...Ceong (pink) in VNU-18 (b); the
interactions of Hcans...Ocoo (green), Heans...Cry (purple), Heons. .. Npy (blue), Hpy...Ccons (turquiose),
and Hcans. .. Ceans (pink) in VNU-18 (c¢); the interactions of Hena. ..Ocoo (green) and Hcna...Cpy (purple)
in VNU-18 (d).
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